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Abstract: A methodology based on the theory of stochastic processes is applied to the analysis of floods. 
The approach will be based on some results of the theory of extreme values over a threshold. In this paper, 
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1 Introduction 

An important facet in the large-scale planning of water resources projects and the 
development of water resources is the prediction of future water supply, mainly from 
rainfall and runoff. Of particular importance for the improvement of flood plain manage- 
ment and the design of various hydraulic structures are excessive flows, commonly 
described as floods. 

Understanding the stochastic nature of  the flood phenomenon, which is a complex 
geophysical time process, is the basis of  a general methodology of  flood analysis. 

Since in hydrology most processes involve several random variables, the best 
approach to the analysis of  such processes is through the use of  multivariate distribu- 
tions; and in many aspects of water management and environmental planning, the 
knowledge of the size and time distribution of  streamflows is essential. Peak flood 
discharge, flood volume and flood duration are three random variables whose probability 
distributions are of interest to hydrologists. 

In many practical problems of flood control engineering, it is important to consider 
not only the sequences of  flood peak exceedances but also the volume of water associated 
with these exceedances. 

Mainly there are two probabilistic methods to analyse flood phenomena: the first 
method is based on the annual flood series, which corresponds to fitting a distribution 
function - the most frequently used are log-normal, log Pearson type 3, two parameter 
gamma and Gumbel or extreme value type I and generalized extreme value - distributions 
to sampled values of maximum annual floods; the second one is based on the partial 
duration series (Langbein, 1949; Dalrymple, 1960; Borgman, 1963; Shane and Lynn, 
1964; Bernier, 1967; Todorovic and Zelenhasic, 1969; Zelenhasic, 1970; Todorovic and 
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Woolhiser, 1972; Todorovic, 1978). In this article we shall focus on the latter method. A 
brief review of both methods is presented by Smith (1990). 

In section 2, we introduce some notations and review briefly some known results; in 
section 3, we present a bivariate exponential distribution to fit the discharge exceedances 
and the discharge durations over a threshold; and in section 4, we model flood volume. 

2 Preliminaries and literature review 

Referring to Figure 1, denote by ~(t), t > 0 a hydrograph which represents the discharge 
rate of river flow at a given site. We select a certain base level x 0 and consider the water 

flows (exceedances) which exceed the base level x 0. Denote by T I, 7"2, T 3 the duration of 

these exceedances, that is the time between an upcrossing of the level x 0 and the subse- 

quent downcrossing, and "c 1, ~2, x3 . . . .  the times of local maxima of water levels during 

these exceedances. Define also by 

X 0 = 0 and X k = ~(xk) - x 0 for k = 1, 2, �9 �9 �9 (1) 

the series of maximum value of exceedances; the series (X k) is called the partial duration 

series. The exceedances X k can be assumed to be independent and identically distributed 

or dependent and identically distributed within a homogeneous time interval such as the 
year or the "season" (see below). To examine the dependence of successive exceedances 
multivariate distribution functions might be used, see in particular Rojsberg (1987), who 
applied Marshall-Olkin bivariate exponential distribution to model two successive 
exceedances under Markovian assumption. For a brief review of multivariate extremes, 
refer to Smith (1990). In this paper, we suppose that the exceedances X k are independent 

and identically distributedL We define also flood counts or number of exceedances within 
a fixed time interval [0, q] by 

q(t l)  = sup {k I~ k < tl} (2) 

In this article the time interval will be considered exclusively one year, however, if there 
are significant seasonal variations in the river flow process, the time interval can with no 
loss of generality be taken to be one season. Hence in the sequel, we shall omit the index 
t 1 and write the random variable (r.v.) rl(tl) in (2) as rl. The r.v. ~1 which is the number of 

annual exceedances has often been shown to follow a Poisson distribution of  parameter 
~., see for instance Borgman (1963); Shane and Lynn (1964); Bernier (1967) 

Pr( 'q=k)=e-~ ' )~k /k!  f o r k = 0 ,  1,2, . . .  o r l l - P ( ~ . )  (3) 

The r.v. exceedance X in (1) and the r.v. duration T often follow exponential distributions 
of parameter c~ and [3 respectively, see for instance Todorovic (1978); Cunnane (1979); 
North (1980); Ashkar and Rousselle (1981), that is 

f ( x ) = l e  -x/a forx  _> 0 o r X - E x p ( t x )  (4) 
o~ 

and 

g(t)  = -~e  -t/~ for t > 0 or T ~ Exp([~) (5) 

In general, the use of the exponential distribution function for both exceedances and 
the durations is a crude approximation. Davison and Smith (1990), following Pickards 
(1975), use the generalized Pareto distribution function, whose cumulative distribution 
function is given by 
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Figure 1. Hydrograph of instantaneous flow of a river at a given station 
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Figure 2. The geographic location of the Coulonge River. Coulonge River Watershed: Hydrometric sta- 
don - 041301; Latitude - 45~ Longitude - 76~ Drainage basin - 5150 km2; Data period - 
1927-1980; Population density - 0.4 capi ta~m 2 

G(x; (z, k) = 1 - (1 - kx/(z)  k-1 (6) 

where o~ > 0 and k is arbitrary; the range of  x is 0 < x < oo if  k < 0, 0 < x < odk if k > 0. 
The case k = 0 is interpreted as the limit k ---> 0, i.e. the exponential distribution with 
mean tz. In this paper, crude approximations will be used to simplify the modeling of the 
complexe phenomena of floods. 

To provide an example, we shall consider a 54 year record of the Coulange River 
(Quebec - Canada) at station number 41301 (Figure 2). Flood data cover the period 
1927-1980. 

This watershed drains from north to south and i t ' s  a part of the Ottawa river 
watershed. The total drainage area is 5232 km 2 and 98.4% of  this area forms the drained 
basin of the hydrometric station. The winter is a low-flow season because winter precipi- 
tation is largely in the form of snow; and spring is a high-flow season due to the contribu- 
tion of  snow melt to river runoff. Data for the hydrometric station is in the form of mean 
daily flows. The accuracy of  the data is good (less than 10 percent error), and in the 
period of ice effect it is fair (less than 15 percent error). The mean annual temperature in 
the watershed is 4.5~ with 81 cm mean annual precipitation. 

Different truncation levels were chosen corresponding to mean numbeF;of peaks per 
year between 0.8 and 5.3. In practice, it is often recommended (for example in the Flood 
Studies Report, N.E.R.C., 1975) that the threshold be chosen to fix a value between one 
and five peaks per year. For the truncation level x 0 = 197.60 rnB/s (which corresponds to 

2.2 peaks per year), we noted that the assumption of  the Poisson distribution of  the ran- 
dom variable number of annual exceedances 1] is valid, that is 11 7"P(2.2). We assume 
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Figure 3. Q - Q plot of Exp(1) versus exceedances when the truncation level x 0 = 197.60 

Figure 4. Q - Q plot of Exp(1) versus durations 
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Figure 5. Plot of duration versus exceedance 

Figure 6. Q - Q plot of the triangular flood volume V' versus observed flood volume V 

also that the exceedance X in m3/s and duration T in days fol low 

X - Exp(115) ; T - Exp(l  l.3) 

when the truncation level )Co = 197.60 m3/s. To check whether X and T fol low an 

exponential  distribution, we applied quanfile probability plots (Q - Q), presented in Fig- 
ures 3 and 4, which were proposed by Wilk and Gnanadesikan (1968) and are commonly  
used in hydrology. In Figure 3 (and similarly in Figure 4) i r e  - Exp(1) a n d X  - Exp(oO, 
then the variables E and X are related by 

X = 0~E (7) 

In figure 3, we note that at the value E = 1, there is a jump in the graph (with a 
change in slope). For  values o f X  > 100 and except  for some large values the assumption 
of  the exponential  distribution with a parameter value of  115 seems valid, while for 
values of  X < 100 the assumption of  the exponential  distribution with a parameter value 
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of  90 seems good; but given that we are mainly interested in large values of  the 
exceedances, so we accept with some doubt the assumption ( X -  Exp(ll5)). Figure 4 
shows that, except for some large values of  the duration, the assumption of  the exponen- 
tial distribution ( T -  Exp(ll.3)) seems valid. There is no doubt, that the distributions of 
the exceedances and the durations depend on the choice of  the threshold value, but if the 
distributions are chosen carefully, the choice of the threshold level should not have a sig- 
nificant effect on the estimation of  large exceedance values. The choice of  the threshold 
value x 0 = 197.60 m3/s in the present study was done empirically. 

Very few of  the numerous papers written on flood hydrology deal with volume pred- 
iction. Various models of unit hydrographs or instantaneous unit hydrographs, as well as 
curve fitting models, assume that the runoff volume of  each individual storm is known or 
predictable. For example, the objective of  the study done by Chiang (1975), was to 
develop storm runoff volume prediction equations through a process by which watershed 
wetness can be calibrated. Another approach requiring a direct correlation between runoff 
volume and its causal factors was developed also by Chiang (1975). Todorovic (1978) 
and Ashkar and Rousselle (1982) provide also, some remarks about the flood volumes. 
Todorovic models the flood volume over a threshold with the assumption of  the stochas- 
tic independence of the exceedances X and durations T. Our modeling of the flood 
volume over a threshold supposes no such restrictive assumption. In the sequel, flood 
volume will mean flood volume over a threshold. 

3 Bivariate exponential distribution 
In this section, we study the simultaneous behaviour of  the exceedance and duration 
(X, T) to model their joint distribution h(x, t). 

Figure 5 represents the plot of  bivariate data (exceedance, duration). The data exhibit 
a linear trend with the following properties 

S2(X/t) and X/t are increasing functions of t 

S2(T/x) and T/x are increasing functions of x (8) 

where S2(X/t) and X/t are respectively the variance and the mean of the exceedances con- 
ditional upon duration. 

The value of the linear coefficient of  correlation between exceedance and duration is 
p = corr(X ,T) = 0.887 calculated from the whole sample; this value is too high because 
it is affected by the point-swarm near the origin. We recalculate p = 0.667 after eliminat- 
ing points with exceedances < 100; after all quantities are calculated to serve some pur- 
'pose and in this case, it is to emphasize the large values of the exceedances and of the 
durations. Later on, we shall see that an optimal value of p = 0.70 shall be obtained by 
minimizing the Kolmogorov distance. 

The bivariate exponential distribution of the exceedance and duration that we shall 
use is 

1 x + t ) ]  1 pxt ]~ 1 
h(x, t) =exp[-~_p( -~  I 5 ot (1 n~ "y'[ (9) 13 - ,- ,  k_>0 ~I3(1-P) 2 (k!) 2 

for (x ,t) ~ R+xR + and ct,[~ ~ R § and corr(X, T) = p e [0, 1]. 
An extensive discussion of  (9) is found in Nagao and Kadoya (1971). Johnson and 

Kotz (1972, Vol. 4, Ch. 41, pp 260-263) review bivariate distributions for which both 
marginal distributions are exponentials; there are half a dozen of them. Equation (9) 
seems to satisfy (8). Note that the Marshall-Olkin bivariate exponential distribution satis- 
fies also (7). It is worthwhile in future studies to compare the two bivariate exponential 
distributions of  Marshall-Olkin and (9) for the modeling of the flood volume. 

Bivariate exponential density (9) has the following characteristics: 



222 

1) hl(X) = Sh(x, t)dt = le-x/a 
o o~ 

forx  ~ R + 

h 2 = Sh(x, t)dx = 1 -t/f~ for t ~ R + (10) 
o 13e 

That is the marginal distributions of X and T are exponential; the estimated values of the 
parameter ot and 13 are 115 and 11.3 respectively. We saw in Figures 3 and 4 that the 
exponential distribution fitted quite well the marginal series of the exceedances and the 
durations so Equations (10) seem to be adequate for the data. 

2) E(T/x) = 13(1 - 19 + px ) is an increasing function of x 
o~ 

1 3 t  
E(X/t)  = or(1 - p + x~_) is an increasing function of t (11) 

The E(T/x) and E(X/t) are estimated from the data by T/x and X/t which have been 
s.hown'in-,(8) to be increasing functions of t and x respectively. So we can assume that the 
data satisfy (11). 

3) Var(T/x) = 132[(1-9) 2 + 2 9 ( 1 - p ) x  ] is an increasing function of x 

Var(X/t) = ot2[(1-p) 2 + -~9(1-p) t ]  is an increasing function of t (12) 

The Var(T/x) and Var(X/t) are estimated from the data by s2(T/x) and s2(X/t) which 
were shown in (8) to be increasing functions of t and x respectively. So we can also 
assume that the data satisfy (12). 

4) h(t/x) = 1 1 p0r t ) ]  y, [ pxt 2 ]k 1 
13(1-9) exp[- (~-9)  ( a + v k>_o 0t13(1-p) (k[) 2 

oxtail h(x/t) - l ~ e x p [ -  ( + -=-)] ~ [  . . . .  2 (13) 
or( l -p)  [5 k_>00~IS(I--P) (k!) 2 

It is difficult to see if the bivariate data satisfy (13). 
So on an overall basis, it seems valid to assume that the bivariate exponential distri- 

bution (9) fits the data. 

4 Distr ibut ion of the flood volume 

By denoting ~k the time of occurrence of the k-th upcrossing of the base level x 0 by pro- 

cess ~(t), then the flood volume will be equal to 
O~k+Tk 

Vk= I ~(s)ds-xo 'Tk (14) 
c~k 

where as usual T k represents the duration of the k-th exceedance. The flood volume V k 

will be estimated by the triangular flood volume 

vs = Xk'rk/2 (15) 

where as usual xt represents the k-th exceedance level. Let v k and vs represent the sample 

values of the flood volumes V k and V2. 
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Table 1. Kolmogorov-Smimov criterion sup e i, expected and standard deviation of the lriangular flood 
volume for some values of p, c~ = 115 and 13 = 11.3 

p 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 
E(v3 907 942 975 1007 1040 1072 1105 1137 1170 
Var(v') 1958 2045 2130 2214 2295 2376 2455 2532 2609 
Sup e i 0.1121 0.1063 0.1001 0.9416 0.8952 0.8682 0.8612 0.9025 0.1091 

Figure 6 displays the Q - Q sample plot of the flood volume V and the triangular 
flood volume V'; it is evident that the flood volume V and the triangular volume V' 
almost have the same distribution; that is Pr[V<v] = Pr[V'<v]. To calculate the distribu- 
tion of the triangular flood volume V', we use the bivariate distribution h(x, t) of the 
exceedance and duration given by (9). 

In the remainder of this section, we present the distribution function of the triangular 
flood volume V' and its moments E(V "n) for n ~ N (set of natural numbers). The proofs 
of the propositions and other related mathematical results are given in the Appendix. 
Proposition 1: The distribution function of the flood volume V' in (15) using (9) is 

~T 
G(v) =Pr[-:-~- < vl 

.pf_ k 1 
= I - - ( 1 - - P ) Z  kl Z i - i  -[ 2v ~])Se_Yexp[ 2v 1]yk_Jdy (16) 

k_>o "j=oJ" ~13(1-P) ~ 0 ~13(1-P) z y  

which might be reexpressed as modified Bessel function. 
Corollary 1: In (16), when P --> 0, that is when the r.v exceedance X and duration T are 
independent, then 

G(v) = 1 - [.e Yexp(---~a. )dy (17) 
o txpy 

Proposition 2: For n e N 

E ( v ' n ) = E ( ~  n n ) =  O~n~jn2 n l-^)2n+l~-" I(k+n)' } . k' ( P s  Ok (18) 

0~2~ 2 
Corollary 2: 8(1/') = (l+p) ; Var(g')  = (3p 2 + 14p + 3) 4 (19) 

We apply the above results to the Coulonge River data. Let us designate by 

i - 1/3 
GN(V)= N + 1/3 for v(i) --< V <V(i+I), i = 1 ..... N (20) 

the sample or the empirical cumulative distribution function (ecdf) of the flood volume; 
v(i ) are the ordered sample values of the observed flood volume data for i = 1 ..... N. G(v) 
is the theoretical cumulative distribution function. Define e i = IGN(V ) - G(v)l for v(i ) <_ v 
< v(i+l); then the Kolmogorov-Smirnov test criterion is taken to be sup e i (Lindgren, 

1976), which are displayed in Table 1 for some values of P and a = 115, [3 = 11.3. It is to 
be noted that for almost all cases sup e i is attained at the flood volume = 1476 

m3days/second. The Kolmogorov-Smimov critical values for 5%, 10%, 15% and 20% 
are respectively 0.1245, 0.1118, 0.1045 and 0.0981. For (x = 115 m3/s, 13 = 11.3 days, 
0.50 < p < 0.75, the G(v) of (18) is widely acceptable. But our aim is to find an optimal 
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Figure 7. a) Comparison of the empirical Go(v) and theoretical G(v) cumulative distribution functions of 
the flood volume for p = 0.70, 13 = 11.3 and ct = 115. In b), the same plot, but the volumes are plotted in 
logarithmic scale 

value of p. 
Table 1 displays also the expected value and standard deviation •(V') for some values 

of p calculated by applying (19). While from the sample, we get V = ~vi/N = 1122.4 

m3d/s and s(V) = 1919.3 m3d/s, V' = 1151.3 m3d/s and S(V') = 1944.6 m3d/s, from 
Table 1, we deduce an optimal value of p = 0.70 when 0~ = 115 m3/s and 13 = 11.3 days. 
We note that ~(V') overestimates s(V'). 

The optimal value of a = 0.70, by minimizing the Kolmogorov distance given 0~ and 
13, is far from the moment estimate of p = 0.89 calculated in section 3. These two values 
of p are different because the criteria of estimating them are different. Of course, other 
estimating procedures also can be used, such as maximium likelihood, see Nagao and 
Kadao (1971). 

The distribution of the flood volume is highly skewed; the first quartile = 33 m3d/s, 
the median = 245 m3d/s and the third quartile 1553 m3d/s. Figure 6 compares the empiri- 
cal GN(V) and the theoretical G(v) distribution functions of the flood volume for p = 

0.70, ~ = 11.3 days and 0~ = 115 rn3/s. The plot (v(i), G(vi) ) in Figure 7a) emphasizes the 

large values of the flood volume, because of the extreme skewness for the distribution; 
for this reason, in the lower right hand comer, we have presented the plot (v(i), G(v)) 
where the volumes are plotted in logarithmic scale (Figure 7b)), to emphasize small 
values of the volume; the conjunction of the two plots makes the 'comparison of GN(v) 
and G(v) interesting for all values of the flood volume. 

5 Conc lus ion  

In this article, we presented a bivariate exponential density to fit the joint distribution of 
the discharge exceedances and the discharge duration over a base level. We also modeled 
the distribution of the flood volume over a threshold using the bivariate exponential den- 
sity. It was shown that many of the observed characteristics of flood exceedance and 
duration, as well as flood volume were well represented by the proposed model. It is also 
interesting to note that the results of Todorovic (1978), can be used in conjunction with 
the results of the present study to calculate the distribution of the maximum of the flood 
volumes over a threshold. 
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A p p e n d i x  

We need the following results for later on, 

Lemma 1: for k ~ N, 
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2vlt  k x k ~+1 2v 2v . 1 
e x p ( - ~ ) x  dx = k!([~(l-p)] [ 1 - e x p ( - ~ ) E ( ~ y  ,.-71} (A1) 

~, -P ( - P )  j=o t - P )  J . 

Proof: integrating by parts, it is easily proved. In (A1) when 2v/ t - -~ ,  then 
2vii  

x k -- [a(1-p)]k+lk! (A2) exp(- or(l-p) )x dx - 

Proof of  Proposition I 
2vlt 

G(v) =Pr[-.~-v" < v] =Pr[XT < 2v]=S( S h(x, t)dx)dt 
x., 

0 0 

2vlt  

Pl : p  1 1 t k = ~Ct~(  2)]* (k!)2 ~ l ] ( l _ p ) ! e x p [ - ~ ] t  { !~vxp[- ('-~-~_p) ] x X  I~dx}dt 

pk 1 1 ~ t k 
= ~o [00(1-p)2] k (k!) 2 ~ e x p [ -  ~("~-9) It 

o~( -p)  )=oJ. ( -p)t  

1 ~ t k k pk 1 -~.t [!exp(-~(--~_p))t {1-  2v 1 2v " t 
k_>~O 13 k+a ( l -p)  k 

: 

pk 1 ~_.T [[[3(l_p)]k+lk ! _ = t k 2v k 1 2V i ~ e x p ( - - - ) t  e x p ( - - - )  y:-:-. ( - - )  dr] 
k~ol ]k+l (I-P) k 0 ~(1-p) ot(1-p)t j=oJ] ot(1-p)t 

and finally by changing of variable t/(~(1-p)) = y, we get (16). 

Proof of corollary 1 

Using the fact that, when k = 0 limp k = 1 and when k > 0 limp k = 0, (17) follows easily from (16). 
p-~O p~O 

Proof of proposition 2 

E(V,.)=E(_.~_7~)= ] ~ ( ~ ) 1 ,  1 1 ~exp(_._...7~)xk+.dx~exp(_t._gz~)tk+.dt 
k~o Pt -P) (k!) 2 2"~ o etU-p) o PU-P) 

= ~-,r P ~k 1 1 
k_>~' O0(1-P) 2" (k!) 2 2"o0(1-9) [(1-p)ot]k+"+l[(1-P)~]k+"+~((k+n)[)2 

using (A2) and after some simplification (18) is obtained. Let us denote by, for n c N, 

1.(9) = Z ( ~ ) 2 p  k (A3) 
k->0 ' " "  

1 
It follows that lo(p) = . The next lemma gives a recurrence formula to calculate l,(p) as a function of 

1 p 
partial derivatives of 1,_1 (p). 

Lemma 2: For n E N and n_>l 

bl._:(p) a21,_a(p) 
l"(P) - Op + p - - o p  2 (A4) 

proof: By induction. 

Proof of corollary 2: by (A2). 
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