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Approximations of Pseudo-Boolean Functions; 
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Applications to Game Theory 

B y  P . L .  H a m m e r  2 a n d  R .  H o l z m a n  3 

Abstract: This paper studies the approximation of pseudo-Boolean functions by linear functions and 
more generally by functions of (at most) a specified degree. Here a pseudo-Boolean function means 
a real valued function defined on {0, 1} n, and its degree is that of the unique multilinear polynomial 
that expresses it; linear functions are those of degree at most one. The approximation consists in 
choosing among all linear functions the one which is closest to a given function, where distance is 
measured by the Euclidean metric o n  R 2n. A characterization of the best linear approximation is ob- 
tained in terms of the average value of the function and its first derivatives. This leads to an explicit 
formula for computing the approximation from the polynomial expression of the given function. 
These results are later generalized to handle approximations of higher degrees, and further results 
are obtained regarding the interaction of approximations of different degrees. For the linear case, 
a certain constrained version of the approximation problem is also studied. Special attention is given 
to some important properties of pseudo-Boolean functions and the extent to which they are preserved 
in the approximation. A separate section points out the relevance of linear approximations to game 
theory and shows that the well known Banzhaf power index and Shapley value are obtained as best 
linear approximations of the game (each in a suitably defined sense). 

Zusammenfassung: In dieser Arbeit wird die Approximation Pseudo-Boole'scher Funktionen durch 
lineare Funktionen bzw. allgemeiner durch Funktion kleiner/gleich eines festen Grades studiert. Da- 
bei ist eine Pseudo-Boole'sche Funktion eine reellwertige Funktion definiert auf {0, 11 n und ihr Grad 
ist jener des eindeutig bestimmten multilinearen Polynoms, durch die sic dargestellt werden kann. Li- 
neare Funktionen sind jene mit einem Grad kleiner oder gleich Eins. Die Approximation besteht dar- 
in, dab unter allen linearen Funktionen jene mit dem kleinsten Euklidischen Abstand in R an gewghlt 
wird. Es wird eine Charakterisierung der besten linearen Approximation durch den Mittelwert der 
Funktion und ihrer ersten Ableitungen angegeben. Sic ftlhrt auf eine explizite Formel, um die Appro- 
ximation aus der Polynomform gegebenen Funktion zu berechnen. Diese Ergebnisse werden sp~ter 
verallgemeinert, um Approximationen h6heren Grades zu behandeln. Ferner werden Ergebnisse be- 
ziaglich des Zusammenhanges von Approximationen verschiedenen Grades gewonnen. Im linearen 
Fall wird auch eine im gewissen Sinne eingeschr~inkte Approximationsaufgabe behandelt. Spezielle 
Betrachtung wird jenen wichtigen Eigenschaften Pseudo-Boole'scher Funktionen gezollt, die bei der 
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Approximation erhalten bleiben. Ein weiterer Abschnitt zeigt die Relevanz linearer Approximationen 
in der Spieltheorie auf und zeigt Verbindungen zwischen den hier erzielten Ergebnissen und dem 
wohlbekannten Banzhaf Index auf. 

Key words: pseudo-Boolean functions, linear approximations, least squares, best kth approxima- 
tions, power indices. 

1 Introduction 

When a function describing some complicated relationship is given, one often 
seeks to replace it by a simpler functional form, usually linear, which approx- 
imates the given one. Examples of this classical theme are: (i) the local approx- 
imation of a differentiable function of several real variables by a linear function, 
and (ii) the global approximation of statistical data by a linear relationship 
(regression analysis). 

Here we intend to study this sort of operation for pseudo-Boolean functions; 
these are functions f :  B " ~ R ,  where B n is the n-fold product of B = {0, 1} and R 
is the set of real numbers. Such functions can express statistical data when the 
explanatory variables are Boolean while the explained variable is real. Many 0 - 1 
optimization problems admit natural formulations in terms of pseudo-Boolean 
functions. Furthermore, the main objects of cooperative game theory are 
pseudo-Boolean functions. Thus, these functions are a natural topic of study. 

Any pseudo-Boolean function has a unique expression as a multilinear 
polynomial in n variables: 

f ( x ) =  ~ [ar rI xi 1 
TC_N L i ~ r  A 

0.1) 

Here N =  {1 . . . . .  n}, the aT are real coefficients and x = (Xl, . . .  , x n ) ~ B ' .  (See 
Hammer and Rudeanu (1968) for the derivation of this expression and more on 
pseudo-Boolean functions.) We let deg (f) denote the degree of the polynomial 
(1.1). A pseudo-Boolean func t ionf i s  linear if deg (f)  _< 1, i.e., if it can be written 
in the form 

f ( x )  = ao+ ~ aixi �9 (1.2) 
i~N 

(We write a0 for a0 and a i for all}. ) 
Our purpose is to approximate an arbitrary pseudo-Boolean function by a 
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linear one. Following common practice in regression analysis, we shall use the 
least squares criterion to choose a best approximation. In other words, we shall 
approximate a function by the linear function that is closest to it in the Euclidean 
metric on R 2n (identifying a function with the vector listing its 2 n values). 

The main feature that distinguishes our approach from standard regression 
analysis is that we regard the polynomial expression (1.1) as the canonical 
description of the function, rather than referring to a table description. Thus, 
while the definition of the best approximation refers to the 2 ~ values f(x), we 
are ultimately interested in finding an expression of the best approximation in 
terms of the coefficients ar  of the given function. This will permit a quick com- 
putation of the approximation when all but a few of these coefficients vanish 
(which is the case in many applications). Another benefit of focusing on the 
polynomial expression is that it suggests looking at approximations of degree 
higher than one. For instance, we may (and will) consider the best approximation 
of an arbitrary pseudo-Boolean function by a quadratic one. 

Linear approximations will be studied in Section 2, and those of higher 
degrees in Section 4.  Meanwhile, in Section 3, we shall interpret linear approx- 
imations in the context of game theory. It will be shown how they can offer 
new insights into known solution concepts as well as suggest new solution con- 
cepts. 

The literature on pseudo-Boolean functions has already dealt with the associ- 
ation of linear functions with given functions of higher degree. In particular, we 
have in mind the roof duality concept of Hammer et al. (1984). That theory dif- 
fers from the one we develop here in at least two ways: it considers approxima- 
tions by majorants only, and it uses the least sum of deviations criterion (rather 
than least squares). Both differences reflect a basic distinction of objectives: roof 
duality is geared towards the solution of maximization problems, whereas the 
present study aims at an unbiased approximation of a function. 

The game theoretic literature has dealt extensively with the association of 
payoff vectors with cooperative games. Yet the approach discussed here, namely 
the identification of payoff vectors with linear games and the minimization of 
distance to the given game, has received little attention. We refer to Charnes et 
al. (1985) and some works mentioned there for previous attempts along such 
lines. 

Finally we mention another body of literature that is relevant to our work. 
This is the study of switching functions in the context of the design of electrical 
circuits. Essentially, switching functions are just Boolean functions f :  Bn~B 
(thus, a subclass of pseudo-Boolean functions), but sometimes the set B = {0, 1} 
is replaced in the domain and/or the range by {- 1, + 1}. Using one of these for- 
malizations an expression for the coefficients of the best linear approximation 
(by the least squares criterion) was obtained in Coleman (1961). It was pointed 
out in Kaplan and Winder (1965) that these coefficients are identical to a set of 
parameters of the switching function, known as the Chow parameters. This 
observation is essentially equivalent to our Corollary 3. I, concerning the Banz- 
haf power index in game theory. 
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2 Linear Approximations: Theory and Computation 

Def in i t ion  2.1: Let f :  B n ~ R  be a pseudo-Boolean function. The best linear ap- 
proximation of  f is the linear func t ion / :  B ' ~ R  which minimizes ~ xEB" [f (x)  
--/(X)] 2 among all linear functions. We write l = A (f).  

Existence and uniqueness of  the best linear approximation follow f rom the 
theory of  orthogonal  projections in Euclidean spaces. Indeed, if  we identify 
pseudo-Boolean functions with vectors in R 2n (assuming a fixed ordering of the 
2 n elements of  B ") and denote by L the subspace of  R 2n corresponding to linear 
pseudo-Boolean functions, then A is the orthogonal projection onto L. It  follows 
also that A is a linear operator,  i.e., 

A ( 2 f + / 2 g )  = )~A ( f )  +/2A (g) (2.1) 

for all pseudo-Boolean functions f and g and all real numbers 2 and/2. In par- 
ticular, A is covariant with respect to addition of linear functions: if l is linear 
then 

A ( f  + l )  = A ( f ) + A ( t )  = A ( f ) + l  . (2.2) 

We proceed now to characterize the best linear approximation of  a function. 
We shall use repeatedly the following well known fact. 

L e m m a  2.2: Let '~1, ~2 . . . . .  i'm be a sequence of real numbers.  Then the expres- 
sion ~ ~= l ( )~ t -x)  2 is minimized uniquely by x = Ave{)~t}, i.e., the arithmetical 
average of ~-1 . . . . .  ;~m. 

Let l = A (f) .  Since l+  a is a linear function for all real a, the expression 
~ x e B , [ f ( x ) - l ( x ) - a ]  2 is minimized by a = 0. Hence by the lemma 0 = 

Ave i f (x )  - l(x):  x e Bn}, or equivalently 

Ave [l(x) :x  e B n } = Ave I f ( x )  : x ~ Bn} . (2.3) 

Next, let i ~ N .  Since l + a x  i is a linear function for all real a, the expression 
~ x ~ B ,  [ f ( x ) - l ( x ) - a x i ]  2 is minimized by a = 0. But a affects only the terms 
where xi = 1, so ~ xi= l[ f ( x )  - l ( x ) -  a] 2 is minimized by a = 0. Hence by the 
lemma 0 = Ave I f (x)  - l ( x )  : xi = 1], or equivalently 

Ave [l(x): x i = 11 = Ave If(x)  : xi = 1} . (2.4) 
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From (2.3) and (2.4) it follows that 

Ave [l(x) : xi = 0} = Ave If(x) : xi = 0} . (2.5) 

We recall that the (first) derivative of  a pseudo-Boolean function f with respect 
to xi at the point x ~ B n is defined as 

A i f ( x )  = f ( x l  . . . .  , x i -  1, 1 ,Xi+ 1 . . . . .  Xn)  - f ( x l  . . . . .  x i -  1, O,x i+ 1 . . . . .  Xn)  �9 
(2.6) 

Note that A i f  depends only on the components xj for j g: i, but we still regard 
it as a function on B ~. From (2.4) and (2.5) it follows that 

A v e [ A i l ( x ) : x ~ B  n} = A v e { A i f ( x ) : x ~ B  n} . (2.7) 

For l ( x ) = a 0 +  2 i e N a i X i  we have Ail=~a i, i e N ,  so that the Equations (2.7) 
determine ai, i E N.  Once these are determined, (2.3) determines ao. Thus we 
have the following. 

Theorem 2.3: Given a pseudo-Boolean function f :  Bn--*R, its best linear approx- 
imation is characterized as the unique linear function l: B n ~ R  that agrees with 
f in average value and in average first derivatives (as in (2.3) and (2.7)). 

This result can be interpreted by analogy with the approximation of  a func- 
tion f"  Rn---~R by a hyperplane in the neighborhood of  a point x ~ R n where f is 
differentiable. The latter is obtained as the unique linear function that agrees 
with f in value and in first derivatives at x. Our approximations have a similar 
characterization, except that agreement holds on average rather than at a point, 
which is due to the fact that we are doing global, not local, approximation. 

Let us now use the characterization to derive an explicit formula for the ap- 
proximation. Suppose first that f is of  the form f ( x )  = ]-Ii~TXi �9 Then for i e T, 

1 
Zif(x)= I'[jeT~{i}Xj and therefore A v e { A ] ( x ) : x e B n } - 2 1 r l _ f ;  for all i e  

1 
N \ T ,  A . f (x )=-O.  Thus we conclude from (2.7) that l ( x )=ao-~21r l_ l  

a +ITI 
x ~ i e rX i ,  with a0 to be determined. Since A v e { l ( x ) : x e B n } =  o ~ and 

1 
Ave I f (x )  : x e B n } = 2-]- ~ ,  it follows from (2.3) that a 0 = I TI - 1 21 rl Summing 

up, we have shown that 
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f ( x )  = I I  x i = ( A f ) ( x )  - I TI - 1 1 ~ xi �9 (2.8) 
leT 2 ITI k ~  isT 

The formula for general f follows from this by linearity of A, namely: 

f (X)=T~NIaTIIxi l  =*(Af)(x) 
- L i ~ T  J 

TeN 2 ITI ~- ~ X i . (2.9) ieN T T2 ITT-1 

Example: Let f :  B S ~ R  be given by 

f ( x )  = 8 - x  1 + 5x2 - x l x  5 + 4x3x 5 - 6x2x4x 5 + 2x lx2x3x  4 . 

Using (2.8), we approximate 

xlx5 
1 1 

by --~ + -~ (xl + xs) , 

X3X5 by "L+L(x3+x,), 
4 2 

X2X4X5 
1 1 

by - -~ + -~ (Xz + X4 + Xs) , 

3 1 
XIX2X3X 4 by - - - + - ( X ~ + X 2 + X 3 + X 4 ) .  

16 8 

(2.10) 

The linear part of f is its own approximation. Putting things together and using 
linearity we get: 

( A f ) ( x ) = 8 - X l + S X z - [ - 1 - + l - ( x ~ + x s ) ] + 4 [  - 1 - + l - ( x 3 + x S ) ] 4  2 J 4 2 J 

4 4 --"~+-8 (XI+X2+X3+X4) 

67 5 15 9 5 
--  X~ + ~ - X z +  X 4 . 8 4 ~X3--~ (2.11) 
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It is often the case that a pseudo-Boolean function is given by an expression 
that involves also complemented variables. That  is, the function f : B n ~ R  is 
given as a sum of  terms of  the form as, T I-[iesXi 1-Ij~r2j, where S c__ N and 
To_ N a r e  disjoint and 2j = 1 - x / .  It is of  course possible to substitute 1 - x j  for 
2j and rearrange terms so as to obtain the canonical expression (1.1). In order 
to compute the approximation, however, we need not go through the canonical 
expression. Instead, we may compute the approximation of such a mixed term 
as though none of  the variables were complemented, and then complement those 
variables in the linear expression which are complemented in the original term. 
This procedure is valid because the complementation of a subset of the variables 
preserves the distance between functions. 

Example: Let g : B S ~ R  be given by 

g(x) = 8 -21  + 5x2 -x125 + 4)?325 - 622x4x5 + 2x122x324 �9 

Observing that, upon ignoring complementation, g(x) is the same as f ( x )  of  
(2.10), we can use the term-by-term approximations obtained there and carry 
over the complementation. Thus, we get: 

- 6  + + x4 + x 9  +2 + + x3 + 

79 3 25 7 7 
F4Xl+ . . . .  -X4-- 3X 5 . 8 4 x2 4 x3 4 

We go on to observe that the best linear approximation preserves some im- 
portant  properties of  the approximated function. In the following definitions 
and propositions f is an arbitrary pseudo-Boolean function and I (x)= ao+ 

i~N aixi is its best linear approximation. 
We say that the variable xi is a dummy for f if for all x e B" 

f ( x l  . . . . .  Xi- l ,0 ,Xi+l  . . . . .  Xn) = f ( x l  . . . . .  x i - l , l , x i+ l  . . . . .  xn) . (2.12) 

Proposition 2.4: If  xi is a dummy for f t h e n  x/is a dummy for l (or equivalently 
a i = 0). 
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P r o o f "  From Theorem 2.3, ai = A v e { A ~ f ( x ) : x e B n } ,  but A i f ( x ) = O  so a i = O. 

We say that a permutat ion n of  N is a symmetry of  f for all x e B n 

f ( x 1 ,  X2 . . . . .  X n ) =- f ( x n ( 1 )  , Xn(2) . . . . .  Xn(n)) �9 (2.13) 

P r o p o s i t i o n  2 . 5 :  I f  zr is a symmetry of  f then rc is a symmetry of l (or equivalently 
a i = an(i) for all i e N) .  

P r o o f "  I f  ~r were not a symmetry of l then /(Xn(1) . . . . .  Xn(n) ) would define 
another linear approximation of  f that  is as good as l, contradicting uniqueness. 

We say that f is nondecreasing in the variable x i if for all x e B n 

f ( x a  . . . . .  x i - 1 ,  O,x i+ l . . . . .  Xn)  < - f ( x l  . . . . .  x i -  l ,  1 , x i +  l . . . .  ,Xn )  . (2.14) 

P r o p o s i t i o n  2 . 6 :  I f  f is nondecreasing in x / t h e n  l is nondecreasing in x i  (or 
equivalently a i >_ 0) .  

P r o o f "  A i f ( x ) > _ O  for all x e B  n, hence a i = A v e { A i f ( x ) : x e B n } > _ O  . 

For two distinct variables x i  and xj, we write x/_>xj for f i f  for all x e B n such 
that  x / =  xj = 0 

f ( x l  . . . . .  x i - l , l , X i + l  . . . . .  x n ) > - f ( x l  . . . . .  X j - l , l , x j + l  . . . . .  x n )  �9 (2.15) 

P r o p o s i t i o n  2 . 7 :  I f  x i >_ x j  for f then x i >_ x j  for l (or equivalently a i >_ a j ) .  

P r o o f "  By averaging over the 2 n-2 inequalities (2.15) we obtain A v e { f ( x ) : x i  

= 1, x j =  O } > A v e { f ( x ) : x i  = O, x j  = 1}. Hence 

2 a  i = 2 Ave { A i f ( x  ) : x e B n} 

= 2 A v e { f ( x ) : x i  = 1 } - 2 A v e { f ( x ) : x  i = 0} 

= A v e l f ( x ) : x i  = 1, x j  = l } + A v e { f ( x ) : x  i = 1, x j  = 0} 

- A v e  [ f ( x )  : x i = O, x j  = 1 } -  A v e  { f ( x )  : x i = O, x j  = 0} 
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>_AveI f ( x ) : x i=  1, x j=  l}+ A v e I f ( x ) : x i =  O, x j=  11 

- Ave If(x)  : xi = 1, xj = 0} - Ave If(x) : xi = O, xj = 01 

= 2 A v e i f ( x ) : x j  = l l - 2 A v e i f ( x ) : x j  = 0} 

= 2 Ave {Aj f (x)  :x eBn] = 2aj . 

In conclusion of  this investigation of properties, we note that the converses 
of  Propositions 2.4 - 2.7 are false; the example function (2.10) is a counterexam- 
ple to all converses. This is not surprising. Indeed, / has a property if f has that 
property "on  average", which may happen without f having the property point- 
wise. 

In certain applications of the theory developed here, one may be interested 
only in linear approximations that coincide with the given function at x = 0 and 
x = 1 (where 0 and I are shorthand for (0 . . . . .  0) and (1 . . . . .  1) respectively). One 
such field of  application is game theory, on which we shall elaborate in the next 
section. Another field that we have in mind is the theory of  subjective probability 
(see for example Shafer (1976)). There, one considers n mutually exclusive and 
exhaustive events indexed by 1 . . . . .  n; f ( x )  is the degree of  belief that the true 
event lies in {i:xi = 1}. f is a pseudo-Boolean function and is required to satisfy 
f (0)  = 0, f (1)  = 1 and some other properties, but it need not be linear (as an ob- 
jective probability has to be) .  It makes sense to approximate such a subjective 
probability function by an objective one, which of  course has to agree with the 
given function at 0 and at 1. 

With this motivation, we introduce the notation L f for the set of  all linear 
functions l : B n ~ R  that satisfy l ( 0 ) = f ( 0 )  and l ( 1 ) = f ( 1 ) ,  where f is a given 
pseudo-Boolean function. 

Definition 2.8: Let f : B n ~ R  be a pseudo-Boolean function. The best faithful 
linear approximation of  f is the function [~ L f which minimizes ~ xeS, [ f ( x ) -  
l(x)] 2 among all functions l ~ L f. We write/-= A (f) .  

As in Definition 2.1, existence and uniqueness follow from the observation 
that A ( f )  is the orthogonal projection of f o n  L f, when the latter is viewed as 
an affine space in R 2n. Furthermore, it can be checked that A is a linear 
operator (but note that this checking takes more care than for A, since L f is not 
in general a subspace and it varies with f ) .  Next we observe that since L f C L,  
the projection o f f  on L f may be realized by first projecting f on L and then pro- 
jecting the obtained function on L f. Thus we have the following. 

Lemma 2.9." Let f be a pseudo-Boolean function. Then [ =  A ( f )  minimizes 
x~B~ [ ( A f ) ( x ) -  l(x)] 2 among all functions l e L  f. 
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We proceed now to characterize the best faithful linear approximation of a 
function. Let l = A (f).  We shall derive information on the difference [ -  A f;  for 
the moment we note that this is a linear function and introduce a notation for it: 

( { - A f ) ( x )  = f(x) = ao+ ~ aixi �9 (2.16) 
i~N 

Let i , j e N ,  i c j .  Since f + a ( x i - x j ) e L  f or all real a, it follows from Lemma 
2.9 that the expression ~ x e B n [ ( A f ) ( x ) - f ( x ) - a ( x i - x j ) ]  2 is minimized by 
a = 0. But a affects only the terms where xi :/: xj, so ~ xl = 0 xj = 1 [/(x) - a] 2 + 

xi = l,xj = o [ - l ( x ) -  a] 2 is minimized by a = 0. Hence using Lemma 2.2, 

0 = Ave{[ (x ) :x i= O, xj = 1}+Ave{-[ (x) :x i - - -  1, x i = O} 

1 
=a0Faj +-1 E ~ k - a O - ~ i - - Z  E s  �9 

2 k~N\{i,j} "2" k~Nk{i,j} 

As i , j  are arbitrary, we conclude that al = a2 . . . . .  fin. Once A f  is determined 
(by Theorem 2.3), this fact completely determines [ e L  f. Thus we have the 
following. 

Theorem 2.10: Given a pseudo-Boolean function f : B n ~ R ,  its best faithful 
linear approximation is characterized as the unique linear function [: Bn--,R that 
agrees with f at 0 and at 1 and whose coefficients 01, ~2 . . . . .  an differ from the 
corresponding average first derivatives of f by a fixed amount. 

Example (continued): Let us return to the function f given by (2.10), and com- 
pute ( A f ) ( x )  = ao+ ~ i~NaiXi. First a0 = f (0 )  = 8. Next, ~ ieNai = f ( 1 ) - f ( 0 )  

7 (from (2.11)), = 3; since the sum of the corresponding coefficients of  A f  is ~- 

each of them has to be decreased by ( ~ . 3 ) / 5  =--.101 T h u s w e g e t :  

( j l f ) ( x ) = 8 + (  5 1 )  //15 1 )  ( 9  y~ )  
4 1-0 x l + ~ - ~ - -  xz+ ~-- X3 

4 0 1 

~8--- -  27 73 43 27 1 
20 xl +2"oX2+2"oX3--2"O X4--"~  X 5 �9 
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As regards the preservation of  properties, it is easy to see that the counter- 
parts of  Proposit ions 2.5 and 2.7 (concerning symmetries and the relation 
xi-> xj) hold true for the best faithful linear approximation.  The other two prop- 
erties, however, are not preserved. Indeed, consider the expression (2:10) as 
defining a function f :  B6~R.  Then x6 is a dummy for f ,  and f is nondecreasing 
in x 6. A f  is still given by (2.11), and to obtain A f  each coefficient has to be 

decreased by - 3  6 = - - .  In particular, the coefficient of  x6 in A f  
1 12 

becomes - - - .  Thus, we see that the best faithful linear approximation is not 
12 

quite faithful when it comes to preservation of properties. 

3 Linear Approximations and Game Theory 

In game theory, the set N = {1 . . . . .  n} stands for the set of players, and its subsets 
are called coalitions; 2 N denotes the set of  all coalitions. A game (more precise- 
ly, a side-payment game in characteristic function form) is a function v : 2:V~R 
with v(0) = 0. One thinks of  v(S) as the worth of  the coalition S. 

Through the natural identification of  coalitions with their characteristic vec- 
tors in B n, a game is seen to be a pseudo-Boolean function that  assumes the 
value 0 at 0. We shall henceforth make this identification. 

The polynomial expression (1.1) was introduced in game theory (Owen 
(1972)) as the multilinear extension of  a game. When this reduces to a linear func- 
tion as in (1.2) - with a0 = 0 by assumption - the game is said to be additive 
(or also inessential). 

A simple game is a game v that satisfies v(S)~{0,1} for all Sc_N and 
moreover  S C Timplies v (S) < v (T). Coalitions with v (S) = 1 are called winning, 
the rest are losing. Simple games model the allocation of  power in committees: 
a coalition is winning if it controls the decisions. 

Given a simple game, one would like to assign to the players nonnegative 
numbers Pl . . . . .  Pn which indicate their individual power in the game. Such an 
assignment is called a power index. A particular power index that has been 
studied theoretically as well as applied to settle constitutional issues in the courts 
is the Banzhaf (1965) index. It  is defined through the notion of  a swing, which 
occurs when a player, by joining a coalition, turns it f rom losing to winning. The 
(normalized) Banzhaf  index assigns to player i the probabili ty Pi that a swing oc- 
curs when i joins a coalition picked at random from among the 2 n- 1 coalitions 
not including i. 

Clearly, div(x  ) el0,  1} for a simple game v (see (2.6)), and a swing for i oc- 
curs if and only if Air at the corresponding x is 1. Thus the Banzhaf index is 
rendered by 
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Pi  = A v e { A i r ( x )  : x ff Bn}  �9 

Now, from Theorem 2.3 we have the following. 

(3.1) 

Corollary 3.1: For a simple game v, the Banzhaf power index assigns to each 
player i the coefficient of xi in the best linear approximation of v. 

This result offers a new justification for the use of the Banzhaf index as op- 
posed to other power indices that have been suggested. 

A major problem in game theory is how to distribute the worth v(N) of the 
total coalition among its members in a way that takes into account reasonably 
the worths of the various coalitions. Formally, such a distribution is a payoff  
vector: (al . . . . .  an) e R n satisfying ~ i e N a i  = v(N). Various solution concepts 
that associate with every (not necessarily simple) game a payoff vector have been 
suggested and studied. 

A payoff vector (a 1 . . . . .  an) may be identified with the additive game 
l(x) = ~ ieNaiXi in which the worth of every coalition is the sum of payoffs to 
its members. Thus we have a one-to-one correspondence between the payoff vec- 
tors for a given game v and the functions in L v (see the notation preceding 
Definition 2.8). This suggests to treat the game theoretic problem of associating 
a payoff vector to a game as a problem of approximating the game v by another 
game that lies in L v. This point of view is not new to game theory, but it has 
not played a central role in it. 

One way to associate a payoff vector to a game is known as the Banzhaf 
value. It consists of generalizing the Banzhaf index via (3.1) to handle nonsimple 
games, and renormalizing it to obtain the payoff vector 

I Pe~ ~ v(N), . .  P_____A_n v(N) 1 
Pi  ~ Pi  

i~N 

(3.2) 

provided that ~ ieNPi ~ O. If however we take the approximation point of view 
and recall Theorem 2.10, we are led to the payoff vector 

Ip V (N) - 2 Pi v (IV) - ~eNp 1 
1 -~ i~N , . .  �9 , P n  q- i 

n n 
(3.3) 

We see that (3.3) differs from (3.2) in that the normalization is by an additive 
amount instead of by a multiplicative factor. A serious drawback of (3.3) as a 
solution concept in game theory is its failure to preserve dummies and 
monotonicity as discussed at the end of the previous section. The better known 
(3.2) also has its problems. 
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A much more popular solution concept in game theory is the Shapley value 
(1953). It associates with a game v the payoff  vector r v whose components are 
given by 

((~v)i= ~ s I ( n - s - 1 ) !  [v(Su[i}) -v(S)]  , (3.4) 
s c_ ~li} n ! 

where s = [S]. Comparing to (3.1), we see that the Shapley value replaces the 
arithmetical average by a certain weighted average. 

The Shapley value is obtained with an axiomatic approach. It is natural to 
ask whether it can also be obtained with the approximation approach. Indeed it 
can, but the least squares criterion in choosing a best approximation has to be 
replaced by a suitable weighted least squares criterion. The precise result, which 
is not new, is quoted here without proof. 

Theorem 3.2: Charnes et al. (1985). For any game v, the additive game w that 
corresponds to the Shapley value of v (i.e., w(S)=  2i~s(~Ou)i) minimizes 

SC_Nl~s[v(S)-w(S)] 2 among all additive games w satisfying w ( N ) =  v(N); 

p r ~  - I  _ f o r S g : 0 , N .  

4 Approximations of Arbitrary Degree 

If  one is willing to accept polynomial expressions which are not necessarily 
linear, but are of low degree, as simple enough, one is led to the idea of approx- 
imating a pseudo-Boolean function by a function of degree at most k. 

Definition 4.1: Let f :  B n ~ R  be a pseudo-Boolean function, and let k be an in- 
teger, 0<  k <  n. The best k-th approximation of f is the function g : B n ~ R  of 
degree < k which minimizes ~ x~B" Dr(x) - g(x)] 2 among all functions of degree 
___k. We write g = A k ( f ) .  

When k = 0, the definition gives the best constant approximation; when 
k = 1, it coincides with the definition of the best linear approximation given in 
Section 2; when k = 2, it gives the best quadratic approximation; finally, every 
f :  Bn--*R is its own best n-th approximation. 

As in the linear case, existence and uniqueness of the best k-th approximation 
follow from the fact that Ak is the orthogonal projection onto the subspace V~ 
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of R 2n consisting of the pseudo-Boolean functions of degree < k. Thus A k is a 
linear operator, and in particular is covariant with respect to addition of func- 
tions of degree < k (in the sense of (2.1) and (2.2)). Since the subspaces Irk are 
nested, the operators Ak commute in the following sense: 

k < - k ' = A k ( A k , f )  = A k ( f )  for all f . (4.1) 

Towards the characterization of the best k-th approximation of a function, 
we recall that the m-th order derivative of a pseudo-Boolean function f with 
respect to xil,xi2 . . . . .  xi,, at the point x e B n is defined inductively as 

Ail i2.." imf(X) = A il (A i2.. .ira f )  ( x )  , (4.2) 

where A ~ ( x )  is the (first) derivative defined by (2.6). For completeness, the 0-th 
order derivative of f is f itself. Note that A ill2.. " imf depends only on the com- 
ponents x i such that j~.{il ,  i2 . . . . .  im}, but we regard the derivatives of  all orders 
as functions on B n. The definitions of higher order derivatives may be made ex- 
plicit in the manner of (2.6). For instance, 

A lz f (x )  = f ( 1 ,  1, x3 . . . . .  xn) - f ( 1 , 0 ,  x3 . . . .  , xn) 

- f ( O ,  1,x3 . . . .  , x n )  + f (O ,  0, x 3 . . . . .  Xn) �9 

By considering such expressions it is obvious that 

A i ( A j f ) ( x ) = A y ( A i f ) ( x )  for all x e B  n , (4.3) 

and by repeated applications of (4.3) it is seen that Aili2.. im f is independent of 
the ordering of the subscripts i l , i  2 . . . . .  i m. Finally, observe that 

deg (A if) -< deg (f)  - 1 (4.4) 

whenever f ~  0, and therefore all k-th order derivatives of a function of degree 
_<k are constant. Explicitly, if deg (f)_<k and i a, i 2 . . . . .  i k are distinct then 
Aili2...if=--atil,i2 . . . . .  i~l, the latter being the corresponding coefficient in the 
polynomial expression of f .  

By imitating the proof of the characterization of the best linear approxima- 
tion, arguing successively about orders 0, 1 . . . . .  k, the following generalization 
of  Theorem 2.3 is established. 
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Theorem 4.2: Given a pseudo-Boolean function f :Bn~R  and an integer k, 
0 _< k_< n, the best k-th approximation of f is characterized as the unique function 
g: Bn~R of degree < k that agrees with f in all average m-th order derivatives 
for m = 0 , 1  . . . . .  k. 

The analogy that we pointed out between Theorem 2.3 and linear approxima- 
tions of differentiable functions carries over to an analogy between Theorem 4.2 
and k-th order Taylor expansions. 

The above characterization can be used to derive explicit formulae for k-th 
approximations. We shall consider here the case of quadratic approximation, 
i.e., k = 2. It will be clear that formulae for higher k can be derived by the same 
method. 

Suppose first that f i s  of the form f(x)  = I l i ~ r X i  . Then for any pair of dis- 
tinct i,j such that {i,j} c_ T, Aijf(x) = 1-Ih~7"\{i,j}xh and therefore Ave{Aijf(x): 

1 
x ~ B  n} = 2-T~-25_2; for {i,j} ~ T, Aijf(x)~O. By the equality of average second 

order derivatives, the best quadratic approximation of f must take the form 

1 
g(x) = a o +  ~ a i x i  4 2ITI_ 2 ~ XiXj  �9 

i~N i , je  T 
i<j  

From here 

I a  1 
ai+21rl_----- 5 ~ xj if i ~ T ,  

A ig  ( x )  = j e  T\{i} 

i if i ~ T .  

Hence 

Iai+ IT]-1 
Ave{Aig(x):x~Bn }= 21TI-1 if ie T , 

L_ai if i~ T . 

However 

Ii 1 
Ave{Aif(x):x~Bn]= IVl-1 if i ~ T  , 

if ir . 



18 P.L. Hammer and R. Holzman 

By the equality of average first derivatives, ai are thus determined and we can 
rewrite 

g ( x )  = ao I TI-2 ~rx~+~l E x~xj . 
- -  i , j  e T 21TI-1 i 

i<j  

From here 

A v e  {g(x) : x e B n} = a o 
ITI(ITI-2) ITI(ITI-1) ITI2-31TI 

21Tt t -- a0 2lrl+l 21rl+l 

, Since Ave {f(x): x e B n} = ~ the equality of average values requires that 

a 0 - 
I Tt2-31TI 1 (ITI- 1)(I TI-2) 

21Tt+l ~ 2IT! = 21T1+1 

Summing up, we have shown that 

f ( x )  = l'I xi = ( A z f )  (x) 
i eT  

= (I TI - 1 ) ( ITI  - 2 )  
21rl+l 

I T I - 2  1 
2ITI-1 ~ Xiq 21TI-2 ~ XiXj  �9 

i eT  i , j~T  
i<j  

(4.5) 

The computation of the best quadratic approximation for general f is done by 
linearity of A2, using (4.5) for each basic monomial. 

Example  (continued): Let us compute the best quadratic approximation of the 
function f given by (2.10). Using (4.5), we approximate 

1 1 1 + XaXs) X2X4X 5 by - ~ - ~ ( x 2 + x 4 + x s ) + ~ ( x 2 x 4 + x 2 x 5  , 

3 1 1 
Xl  X2X3X 4 by - -~-  -~ (xl -t- X2 + X3 -t-)t74) -b~ (XI X2-[- X1X 3 -[- Xl X 4 -'}- X2X 3 + X2X4-}- X3X4) �9 
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The quadratic part of f is its own approximation. Putting things together and us- 
ing linearity we get: 

(A2f)(x)  - 8 - x  I + 5 x  2 - x l x  5 + 4 x 3 x  5 

1 1 +_1 ] 
- 6  -8--'4 (X2"}-X4 + x5) 2 (X2X4-}-X2Xs + X4X5) 

+ 2 [ 3 - ~  (Xl + X2 + X3 + X4) 

1 
-'}---? (X1X2-[- X1X 3 -[- XI X4 q- X2X 3 + X2X4-k X3X4) 

4 

61 3 1 3 
. . . .  8 2x l+6x2- -2x3  +x4+~x5 

1 1 1 1 
"k ~ X1X 2 -[- ~ X1X 3 -b ~ Xl X 4 -- X1X 5 q-~ X2X 3 

5 1 
_ _  x2x4 - 3x2x 5 + ~ x3x4 + 4x3x 5 - 3x4x  5 . 

2 

The reader is invited to compare this to the best linear approximation o f f ,  given 
by (2.11). Note that (2.11) is not the linear part of Azf, but it is its best linear 
approximation (as it should be by (4.1)). 

We have considered here two families of linear operators on pseudo-Boolean 
functions: approximations and derivatives. For each family we have a com- 
mutativity law: (4.1) for the former, (4.3) for the latter. Do members of the two 
families commute with each other? In other words, does d i ( A k f  ) ----Ak(Aif) 
hold? Since the degree of the right hand side is in general k, whereas that of the 
left hand side, by (4.4), is at most k -  1, this cannot be true. But once this prob- 
lem is taken care of, we have the following 

Proposi t ion 4.3: A i ( A k f )  = A k_ 1 (Ai f ) ,  k = 1 , . . . ,  n. 

Proof." According to (4.4), d e g [ A i ( A g j O ] < _ k - l .  Hence by Theorem 4.2 
A i ( A k f )  must be the best (k -1) - th  approximation of A i f i f  it agrees with it in 
all average m-th order derivatives, rn = 0 . . . . .  k - 1 .  But m-th order derivatives 
of  Ai(Alcf )  and A i f  are (m + 1)-th order derivatives of A k f  and f respectively, 
and as m + 1 _ k the required agreement follows from Theorem 4.2 applied to f .  
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Clearly, higher order derivatives can be handled by repeated use of Proposi- 
tion 4.3. For instance 

AijA k = Ai(AjAk)  = Ai(A k_ 1A j) = Ak_z(AiAj)  = Ak_2Aij �9 

To complete our study of k-th approximations, we consider the question of 
preservation of properties. 

Proposition 4.4: If  xi is a dummy for f then xi is a dummy for Akf .  

Proof." If  k = 0 there is nothing to prove, so assume k___ 1. Since A~f----0, also 
A k - l ( A i f )  =--O. Hence by Proposition 4.3 A i ( A k f ) ~  0, which means that xi is a 
dummy for Akf .  

Proposition 4.5: If  n is a symmetry of f then n is a symmetry of Akf .  

Proof." By uniqueness, just as in the proof of Proposition 2.5. 

The other two properties discussed in Section 2 are not preserved in general. 
Indeed, let f :  B 4 ~ R  be defined by f ( x )  = xix2x3. By (4.5) 

1 1 1 
(Az f ) (x )  = - - -  (xt + x2+ x3)+-  (xlx2+ xlx3 + x2x3) �9 

8 4  2 

Clearly A2f  is nondecreasing in xl, even though f is, and moreover X 1 ~-~X 4 is 
false for Aaf, even though it is true for f .  Thus, while A a f  gets closer to f than 
A f ,  it is less faithful than A f i n  terms of preserving the properties o f f .  This can 
be explained as follows. All Akfpreserve these properties "on average", as seen 
by Theorem 4.2, but only for linear functions is satisfaction "on average" of 
these properties the same as pointwise satisfaction. 
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