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Abstract. This paper examines the location of duopolists 
on a tree. Given parametric prices, we first delineate nec- 
essary and sufficient conditions for locational Nash equi- 
libria on trees. Given these conditions, we then show that 
Nash equilibria, provided they exist, can be reached in a 
repeated sequential relocation process in which both facil- 
ities follow short-term profit maximization objectives. 

Zusammenfassung. In der Arbeit werden die Standorte 
yon Duopolisten in einem Baum untersucht. Unter der 
Annahme festgesetzter Preise werden notwendige und 
hinreichende Bedingungen ftir Nash Gteichgewichte ftir 
Standorte auf B~iumen hergeleitet. Unter Verwendung die- 
ser Bedingungen wird dann gezeigt, dab - angenommen 
Nash Gleichgewichte cxistieren - diese in einem wieder- 
holt angewandten sequentiellen Standortfindungsprozel3, 
in dem beide Duopolisten ats Zielfunktion kurzfristige Ge- 
winnmaximierung haben, auch erreicht werden. 

"Equilibrium is a place in heaven, but how do we get there 
from here ?" 

Key words: Competitive location model, Nash equilibria, 
stability, reachability 

SchliisselwiJrter: Wettbewerbsmodelte in der Standort- 
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1 Introduction 

Competitive location models were introduced by Hotel- 
ling (1929) who studied the price-setting and locational 
behavior of two duopotists, who compete for a common 
market in the shape of a line segment. Results of the model 
and their implications were of immediate interest to econ- 
omists, geographers, political scientists, marketing re- 
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searchers, and, more recently, operations researchers. Ap- 
plications of competitive location models range from 
brand positioning problems and political positioning to 
models that examine locations of competing facilities 
within an industry, such as fast-food chains. The main 
interest in these models is based on their explanatory 
power. A survey of competitive location models is pro- 
vided by Friesz et al. (1988) and a framework and taxon- 
omy is found in Eiselt et al. (1993). 

Hakimi (1983) was the first to consider competitive lo- 
cation models on a network and hence bring them to the 
attention to management scientists. The simplest scenario 
involves two decision makers who locate a fixed, but not 
necessarily equal, number of facilities each in some given 
space. One of the solution concepts for this problem is the 
Nash equilibrium; a locational arrangement in which nei- 
ther decision maker has an incentive to unilaterally relo- 
cate any of his facilities. Nash equilibria are well studied 
in economic game theory. In the Iocational context, some 
aspects of Nash equilibria were investigated by Labb6 and 
Hakimi (1991). Two major questions arise when consid- 
ering Nash equilibria. The first concerns their existence 
and their uniqueness. In general, the existence of locational 
Nash equilibria depends highly on the specific model 
under consideration, thus reaffirming the well-known sen- 
sitivity of Hotelling models. As an example, given fixed 
and equal prices, a locational Nash equilibrium exists on 
trees, but may not exist on general graphs. Assuming that 
at least one Nash equilibrium exist, the second question is 
then: given arbitrary initial locations of the competitors 
and a set of objectives followed by the duopolists who re- 
locate according to a given set of rules, will they ever reach 
any one of the equilibria? If this question can be answered 
in the affirmative for at least on pair of equilibrium loca- 
tions, we will refer to the equilibria as reachable. Some 
progress on reachability has been made in the context 
of voting theory (see, e.g., Tovey 1993). Hakimi (1990) 
shows that reachability is guaranteed on trees in the case 
of fixed and equal prices, given a specific demand alloca- 
tion rule. Using the same rule, Hakimi shows that in a gen- 
eral graph where facilities are permitted to locate any- 
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where, equilibria may not be reached even if each deci- 
sion maker locates only one facility and the graph is as 
simple as a cycle with three vertices. Similarly, he shows 
that an equilibrium may not even be reachable on a tree 
network in case one decision maker locates one and the 
other two facilities. In our research, we investigate the sim- 
ple case of duopolists who each locate a single facility at 
a vertex of a tree network, and each facility charges a fixed 
price. This paper will answer the question whether or not 
equilibria exist and, if so, if  they are reachable. 

This paper is organized as follows. In the next section 
we state some useful results concerning Nash equilibria 
along with some basic concepts that are used later in the 
paper. In Section 3, we then investigate the reachability of 
equilibria given two facilities that charge fixed, but un- 
equal, prices. 

2 Nash equilibria on trees 

In this section we first introduce our basic model. We then 
restate some useful results on trees and locational Nash 
equilibria as well as their relations to medians. Consider 
atree T = ( V ,  E), where V= {v 1, v z . . . . .  v,, } is the set of  ver- 
tices and E={ei j :  v i, v i ~ V  } symbolizes the set of un- 
directed edges. By d~j we denote the length of edge e(i in 
case v i and ~) are connected by an edge, and the length of 
the (unique) path between v~ and vj in case these two 
vertices are not connected by an edge. Customers are as- 
sumed to be located at the vertices of  the tree. Their de- 
mands are wi>O V vg~ V which are satisfied by the facil- 
ity that offers the lowest full price, i.e., mill price plus 
transport cost. The reason for requiring positive rather than 
nonnegative weights at the vertices is that allowing zero 
weights renders the analysis quite messy without provid- 
ing further insight. Furthermore, without loss of realism 
we require that I VI > 2. As in many competitive location 
models, transport costs are assumed to be linear with unit 
transport cost normalized to one, so that it costs dii dollars 
to ship one unit from v i to v). Two facilities A and B are 
assumed to supply customers. The facilities are restricted 
to locate at vertices of the tree and their current locations 
are denoted by v a and v B, respectively. The mill prices 
charged at facilities A and B are PA and PB; since Hakimi 
(1990) has already dealt with the case of equal prices, we 
restrict ourselves to unequal prices PA and p~. Without loss 
of  generality let PA <PB. Whenever customers at a vertex 
v i purchase from facility A, we will say that facility A "cap- 
tures" v i, a concept first introduced by Stackelberg (1943) 
and later rediscovered by ReVelle (1986). Formally, facil- 
ity A captures all demand at vertex vi, i f  pA + dAi <PB + dBi. 
Thus A's market area is M(A) = { vi:Pa + dai<_ PB + dBi } and 
M (B) = { vi: PB + dBi <PA + dai }- Note that we have assumed 
that ties are broken in favor of the less expensive facility 
A. This tie breaking rule is somewhat arbitrary; we have 
modeled it after the "incumbent advantage" rule that has 
been used, yet stirred controversies, for a long time (for a 
short survey see, e.g., Tirole 1995). The demands (or sales) 
captured by the duopolists can then be expressed as 
S(A)  = ~ w i and similar for S(B),  and the profits are 

i: vie M(A) 
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gO (A ) = PA S (A ) and go (B) = PB S ( B), respectively. As prices 
in this paper are parametric, maximization of go(A) and 
go(B) is equivalent to maximizing S(A)  and S(B).  

In this paper, we investigate a process, in which two de- 
cision makers sequentially relocate their facilities so as to 
maximize S(A)  and S(B),  respectively. This process is re- 
peated until it converges. In particular, we employ three 
rules in the individual optimization process: 

(1) A facility, when given the option to relocate, will do 
so by maximizing its profit given its opponent 's current 
location. The result is refen'ed to as a (111) medianoid (see, 
e.g., Hakimi 1983). Note that this is a short-term view as 
it pays no attention to the potential reactions of the com- 
peting facility. 
(2) The facilities move in a sequential manner. The idea 
is that it takes a certain amount of time for a facility to 
react to its opponent 's  action, so that a facility planner has 
an opportunity to maximize its profit now. 
(3) Location at the same vertex is prohibited. While this 
rule sounds somewhat restrictive, there are good reasons 
for employing it. One reason is that in the case of  fixed 
and unequal prices, if location at the same vertex were al- 
lowed, then the less expensive facility could always com- 
pletely annihilate its opponent by locating at the same ver- 
tex. Moreover, due to the discrete nature of space avail- 
able for location, it is not realistic to assume that facilities 
can actually co-locate. 

In the following we restate a few definitions and lemmas 
regarding trees which are used in this paper. 

Definition 1. The weight of a subtree T k = ( V  k, E k) with 
Vkc_V and E~= {e~i: e~ie E and v i, v i e  V k } is defined as 
the sum of weights of its vertices, i.e., w(T~)= ~ w i. 
The weight of  the entire tree is w(T) .  i:v,~ v ~ 

Definition 2. Given some vertex v k, the subtrees spanned 
by v k are obtained by deleting from T the vertex v k as well 
as all edges incident to it. The subtrees can then be num- 

k k k k bered as T 1 , T~ . . . .  with w (T l )  > w (T~) > . . .  where ties are 
broken arbitrarily. A subtree T[  is called heavier  than a 
subtree Tf ,  i< j .  

It is also useful to restate the classical. 

L e m m a  3 (Goldman 1971 ). A vertex Vq is a median, if  and 
only if w(Tj q) _< ~%,(T), i.e., the largest subtree spanned by 
vq has a demand that is no more than half of  the total 
market 's  demand. 

Lemma 3 implies immediately 

Corollary 4 (Median Location Corollary). For any vertex 
Vk e V with w(T~)  > ~ w ( T )  the median vqe  T( .  

We are now able to formally define Nash equilibria. 

Definition 5. A Iocational Nash  equil ibrium is a pair of  
locations (v A, VB)=(v*, v**), such that 

go(A: VA=V*, VB=V**) >- go(A: VagkV* , VB=V** ) 
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and 

go(B: ~ = v * ,  vB=v**) > go(B: V A = V *  , VBZ;lzV** ) . 

In other words, a locational Nash equilibrium is a loca- 
tional arrangement in which neither facility can gain an 
advantage by relocating unilaterally. In some cases, it is 
easy to find locational Nash equilibria. For instance, the 
case of  equal prices has an easy solution (see, e.g., Wen- 
dell and McKelvey 1981, Hakimi 1990). 

Consider now the case of unequal but fixed, i.e., para- 
metric, prices. Here, it will be useful to consider for any 
pair of  locations va~v  B the subdivision of the given tree 
into three subsets: the hinterland o f  A, the hinterland o f  B, 
and the competit ive region. Facility A's hinterland consists 
of  vertices which can be reached from v A only via %. The 
vertices v a and v a are assumed to be included in their own 
respective hinterlands. All vertices that are not included 
in either of  the two hinterlands are said to be in the com- 
petitive region. For the analysis of this case, we need to 
restate a definition introduced by Eiselt (1992). 

Definition 6. Two vertices v A and v a are said to be suffi- 
ciently spatially separated (SSS), if dAa > SSS = I PA-Pal.  
Furthermore, a vertex v i is said to be edge-protected, if 
dij> SSS 'g/ eij E E. 

In essence, both, the concept of  sufficient spatial separa- 
tion and that of edge-protection guarantee, given our tie 
breaking rule, that the weaker, i.e., more expensive, facil- 
ity B is protected from the stronger, i.e., less expensive, 
facility A. Here, protection refers to the fact that a facility 
is located so as to enable it to capture its own hinterland. 
This is somewhat reminiscent of  predator - prey models 
with A preying on B, where B is temporarily protected if 
it locates SSS away from A (who, in its next move, will 
attempt to cut out B), and B is permanently protected (at 
least as long as it does not relocate) if it locates at an edge- 
protected vertex. The concept of  protection is one of the 
major differences between Hotelling's linear market and 
models on trees with facilities allowed to locate only at 
vertices, as linear markets allow facilities to locate arbi- 
trarily close to each other and thus provide no protection 
whatsoever. 

We are now ready to delineate conditions for locational 
Nash equilibria on trees given differential parametric 
prices. For convenience, define now a "circle" around v A 
with radius SSS by C A = { vi: diA< SSS } and similar circles 
CB, C.,  and C** around vertices Va, v*, and v**, respec- 
tively. These circles are designed, so that if facility B were 
to locate anywhere inside C a then it is cut out and A cap- 
tures the entire market. Similarly, i fA locates in C a facil- 
ity B is again cut out. Observe that generally, C B c M ( B )  
and similar tor CA and M(A) .  

In the following we characterize locational Nash equi- 
libria. Lemmas 7 and 9 provide necessary and sufficient 
conditions for a Nash equilibrium to exist. The proofs of  
both lemmas are provided in the appendix. 

L e m m a  7. Let at least one edge-protected vertex exist in 
T. Then a pair of locations (v*, v**) is a locational Nash 
equilibrium, if and only if 
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(a) v** is edge-protected 
(b) v** has the heaviest hinterland of any vertex out- 

side C,. 
(c) M ( A ) = T { ' * .  

For the discussion in the next section, it is useful to prove 
the following 

L e m m a  8. Assume that there exists at least one edge-pro- 
tected vertex in T, but none of the medians Vq is edge-pro- 
tected. Furthermore, let Cq, resp. C., be a circle around 
%, resp. v*, with radius SSS. Then 

(a) v* �9 Cq 
(b) v** ~ Cq 
(c) v** ~ C,.  

Consider now the case in which there exist no edge-pro- 
tected vertices in the given tree. We can then prove 

Lernma  9. Suppose that there exists no edge-protected 
vertex in T. Then a (degenerate) locational Nash equilib- 
rium exists if and only if there exists at least one vertex v i 
such that C i= V. 

Proof. Sufficiency of the condition is easily proved. Let 
VA = Vi, then the condition implies that regardless of  B's 
location, S ( A ) = w ( T )  and S(B)=0.  Neither facility can 
improve, implying that v* =v i and v** anywhere else is a 
locational Nash equilibrium. 

To prove necessity, assume that there exists no vertex v i 
satisfying the above condition. Then either S ( A ) = w ( T )  
and S(B)=0  in which case facility B can locate at some 
v i ~ C A and obtain at least wi> 0 thus improving its current 
sales; or S ( A ) < w ( T )  and S(B) >0  in which caseA can re- 
locate adjacent to B. As v a cannot be edge-protected as, 
by assumption, no edge-protected vertices exist, A cuts out 
B and captures the entire market. This contradicts the ex- 
istence of a locational Nash equilibrium. 

It is worthwhile to point out that at equilibrium, the two 
facilities may not be adjacent. A counterexample is given 
in Fig. 1, where the double-digit weights and the single- 
digit distances are shown next to vertices and edges, re- 
spectively. Furthermore, SSS=6,  and v * = v  3, v * * = v  7 is 
the unique Nash equilibrium. 

10 

~ ' - , .  2 10 2 

Fig. 1 
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There are two special cases that can be dealt with eas- 
1 ily. For this purpose, define Vq as the vertex adjacent to a 

median Vq that is located in the heaviest subtree spanned 
by Vq. In other words, v 1~ T q and the edge (Vq, vie) ~ E. 
Then the two special cases are summarized in 

Corollary 10. If  one of  the medians Uq is edge-protected, 
then v* = Vq 1 and v** = Vq is a locational Nash equilibrium. 
Similarly, if Vq 1 is edge-protected, then v* --vq and v** = Vq 1 
is a locational Nash equilibrium. 

The proof  of  Corollary 10 is done by checking the condi- 
tions of  Lemma 7 for the two special cases and is omitted 
here. Note that in both cases v* and v** are generally not 
interchangeable. 

The problem investigated in the next two sections can 
now formally be stated as follows. Given two facilities A 
and B that are located arbitrarily at v A, and v B, respectively. 
An equilibrium exists at vertices v* and v**, respectively. 
The question is then: given that the decision makers of  
both facilities use short-term profit maximizing objectives 
and relocate in a sequential manner, will A and B relocate 
so that after a finite number of  steps v a = v* and vg= v** ? 

3 Reachability of equilibria in case of unequal prices 

In order to stimulate the discussion, we will first provide 
a numerical example in which both competitors behave as 
assumed above, but a locational Nash equilibrium may not  
be reached despite its existence. 

For convenience, we represent the profits or payoffs of  
the two competitors in a matrix. For that purpose, denote 
by pa the profit of  facility A given that vA =v  i and Ve=V,, 
and similar for p~. Then the matrix P = [(pa], pi~)] is the p@- 
off  matrix of  the associated bimatrix game. In our case of  
unequal, but fixed, prices the game is not a constant-sum 
game, but there is a constant-sum game with payoffs equal- 
ing market capture, which is equivalent to the revenue- 
maximizing original game in the sense that a Nash equilib- 
rium in one game is also a Nash equilibrium in the other. 

20 30 60 20 70 

Fig. 2 

With prices PA = 2 and p~ = 3, the payoff  matrix P for the 
problem in Fig. 2 is: 

V 1 V 2 V 3 V 4 v 5 m i n  

VI 

V 2 360; 60 
V 3 360; 60 
V 4 360; 60 
V 5 300; 150 

rain 60 

40; 540 40; 540 40; 540 220; 270 40 
- 400; 0 220; 270 220; 270 220 

400; 0 - 220; 270 220; 270 220 
180;330 180; 330 - 260; 210 180 
180; 330 180; 330 140; 390 - 140 

0 0 270 210 
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The row and column minima have been added to indicate 
the players '  worst-case scenarios. Here, a saddle point ex- 
ists: the location pairs (v 2, v4) and (v 3, v4) are indeed Nash 
equilibria as neither facility has an incentive to move out 
of  its current location. 

Suppose that the current locational configuration is 
(v 4, v2) and it is A 's  turn to relocate. A will move to (v 3, v2), 
where B now has the choice between (v 3, v4) and (v 3, vs). 
Assume that B chooses to relocate to (v 3, vs). At that point, 
A has no choice but to move to (v 4, vs). Here, B may ei- 
ther relocate to (v 4, v2) or (v 4, v3), and we assume that B 
moves to (v 4, v2). Now the two facilities have moved in 
cyclical fashion, and as long as B does not change his strat- 
egy to pick a new location in case of  a tie, they will con- 
tinue on this cycle without ever reaching of  the equilibria 
at (v2, v4) and (v 3, v4). Inspection reveals that in this ex- 
ample, randomization among the best strategies will lead 
to an equilibrium, a property similar to absorbing states in 
Markov chains. The question is whether or not conver- 
gence to an equilibrium can be proved in general. 

Tackling the problem as a general bimatrix game sug- 
gests that equilibria, if they exist, may not necessarily be 
reached. As an example, consider the fol lowing payof fma-  
trix of  a constant-sum game, where the strategies of  the 
two l~layers are shown as s A, s A, and sA3 for player A and 
s B, s~', and s B for player B. 

B < d ,3 

s~ ( / , / )  (~, / )  (/, ~) 
s~ (l, o) (o, l) (~, ~) 
s~ (o, 1) (1, o) (/, ~) 

The element (s a, s~) is the unique Nash equilibrium. How- 
ever, suppose that the initial strategy mix is (s A, sf) .  Now 
facility A will change strategy to (s A, s f ) ,  then B changes 
to (s A, s28), a subsequently changes to (s~, s B) and then B 
changes to (s3 a, s~) and we have reached the initial strat- 
egy mix. Here, randomization in case of  a tie does not help 
and the above example illustrates that in general bimatrix 
games Nash equilibria may not be reached at all, not only 
by virtue of  the "wrong"  choice of  tie breaking rule. 

In order to analyze the teachability problem with se- 
quential moves in our location model, it is useful to first 
examine the basic moves of  the two facilities. Suppose that 
facility B is located at some vertex v e. Then we must dis- 
tinguish between two cases. 

Case 1. Vertex v e is edge-protected. Then A cannot cut out 
B and will locate in B T~. One o fA  s optimal strategies is to 
locate at v~ although other choices may exist. One such ex- 
ample is shown in Figure 1, given SSS < 7 and v 8 = v 7. Here, 
A may locate at v 6 or v 3 , capturing w (T) - w 7 in both cases. 

Case 2. Vertex v e is not edge-protected. Now A can cut out 
B and will do so by locating at some vertex v a so that 
daB< SSS.  As by assumption v e is not edge-protected, such 
a vertex v a always exists. Facility A then captures the en- 
tire market w (T). This leads to 
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Relocat ion Rule RR1. Given the locat ion of  a ver tex v 8, 
faci l i ty  A wil l  a lways  locate at a vertex v A, so that if  v 8 is 
edge-protec ted ,  A locates  so as to capture  its own hinter-  
land as well  as the entire compet i t ive  region;  o therwise  v a 
is chosen,  so that daB< SSS. 

Suppose  now that faci l i ty  A ' s  locat ion is t emporar i ly  f ixed 
at some vertex v a . As def ined in Sect. 2, a circle  C A around 
v a consists  of  all vert ices that are no farther  than SSS from 
v a. If  B were to locate at any vertex in C A, it would  be cut 
out and its marke t  share would  drop to zero. Clearly,  i f  
CA=V, faci l i ty  B must  accept  defeat  and l ive with zero 
sales. It cannot  do better, and nei ther  can A, so that a Nash  
equi l ib r ium is reached.  Suppose  now that there exists  at 
least  one vertex v i ~ C A. Faci l i ty  B will  now locate at one 
such vertex,  so as to max imize  its market  share. Note  that 
B can a lways  do so by  locat ing at a ver tex %, so that all 
vert ices on the path Iv a . . . . .  re [  are in C A. Otherwise ,  
B could  s imply  move  closer  to A without  los ing any de- 
mand  in its h inter land and poss ib ly  gain in the compet i -  
t ive region.  This impl ies  

Relocat ion Rule RR2. Given  that faci l i ty  A locates  at a 
ver tex v a faci l i ty  B will  a lways  locate jus t  outs ide C A at 
a vertex v 8 that maximizes  the demand  in its own hinter-  
land. 

In order  to prove  reachabi l i ty ,  we first deal with the easy 
case in which no edge-pro tec ted  vertex exists  and a loca-  
t ional  Nash  equi l ibr ium,  if  it exists,  must  be degenerate .  
As  per L e m m a  9, there must  exis t  a vertex v*, such that 
C,  = V. Suppose  that at present ,  B is loca ted  op t imal ly  with 
respect  to A and it is now A ' s  turn to relocate.  I f  VA=V*, 
and equi l ib r ium has been reached.  Let  now v a ~ v*. If  B is 
loca ted  at some v 8, so that M ( B ) = 0 ,  then nei ther  faci l i ty  
can improve  its market  area and an equi l ib r ium has been 
reached.  Suppose  now that B captures  M ( B ) >  0. As  by as- 
sumpt ion  no edge-pro tec ted  vert ices exist,  A can re locate  
so as to cut out B. In part icular ,  if  current ly  % ~ v * ,  then 
A can locate at v*, thus reaching an equi l ibr ium.  If  v 8 = v*, 
then A can locate at some v A and cut out  B; in the next  step 
B moves  out of  v* (if  it cannot  improve ,  we have again 
reached an equi l ibr ium),  so that A can then locate  at v* 
when it is its turn. This demonst ra tes  the reachabi l i ty  of  a 
Nash  equi l ib r ium in case no edge-pro tec ted  ver tex exists.  

Cons ider  now the case in which at least  one edge-pro-  
tected vertex exists  and assume that VA, V B ~ Cq. Let  A be 
temporar i ly  f ixed  at v a and B re locates  to some ver tex  v b. 
We can then prove 

L e m m a  11. I f  v A, v B ~ Cq then v b ~ Paq = ]VA . . . . .  Vq], such 
that dab> SSS and there exists no other ver tex v k ~ PAq with 
da~<dab, i.e., faci l i ty  B locates  on the path PAq jus t  out-  
side C A . 

Proof .  The fact  that v A ~ Cq impl ies  Vq ~ C A and thus v b must  
be located in A ' s  h inter land or in the region be tween  Vq and 
v a . Now corol la ry  4 impl ies  that Cq c_ T A and RR2 then in- 
dicates  that B will  not locate in A ' s  hinter land.  Fur ther-  
more,  i f  there were a ver tex v k, such that v k s  Pab and 
v~ ~ C A then B would  capture at least  S(/))  + w k by  loca t ing  
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at v~ which is no less than i f  B had loca ted  at v b. Hence  we 
can conclude  that B locates  o n  PAq jus t  outs ide  C A. [] 

Cons ider  now faci l i ty  A ' s  move.  F rom vb~ C A fol lows 
VA~ C b. If  vbis  edge-pro tec ted ,  then Cb= {vb} and A ' s  op- 
t imal  locat ion (or at least  one of  its op t imal  loca t ions)  is 
at vA=v ~. Then corol la ry  4 impl ies  that Vq ~ T1 ~ and the dis-  
tance be tween  the median  and A ' s  new loca t ion  is 

d~q = daq - dAb - d ~  < dAq 

imply ing  that faci l i ty  A has moved  c loser  to the median.  
If, on the other  hand, vertex v b is not edge-protec ted ,  

faci l i ty  A wil l  locate  at some ver tex v A so that dAb<SSS 
and B is cut out. Then 

d~q = dAq - dAb .4- dA b < dA q (as  dAb > SSS >_ dab) 

and again,  A is loca ted  closer  to the median  Vq than in the 
previous  i teration.  Def in ing  a relocation round as two suc- 
cess ive  moves  by the compet i tors ,  one by  A and one by  B, 
then the above  d iscuss ion  implies .  

Lemma 12. Af ter  at most  n re loca t ion  rounds,  faci l i ty  A 
or B will  locate  in Cq. 

By vir tue of  L e m m a  12, we can now assume that faci l i ty  
A or  B (or both) is (are) loca ted  in Cq. Cons ider  first  the 
special  case of  an edge-pro tec ted  median ,  i.e., Cq= {Vq}. 
As per  L e m m a  12, A or B will  eventuall~r locate  at Vq. Sup- 
pose  v A ~ Vq. Then B wil l  locate  at ve = gq where  it is not cut 
out. I f  Vq is edge-pro tec ted ,  the condi t ions  o f  L e m m a  7 are 

l is not sat isf ied and an equi l ib r ium has been  reached.  I f  Vq 
edge-pro tec ted ,  then A can cut out B by  re loca t ing  at some 
ver tex  vA=v ~, k ,  1, so that dAs<SSS.  Fac i l i ty  B 's  opt imal  
react ion is then to re locate  at vb~ Vq, a move  that protects  
B and leads A to locate  at Vq. The pair  of  locat ions  
(v A, % ) = ( v q  j, %) sat isf ies the condi t ions  of  L e m m a  7 and 
thus const i tutes  a Nash  equi l ibr ium.  On the other  hand, i f  
vs=  Vq occurs ins tead of  v a = Vq, then faci l i ty  A responds  

/ and again,  an equi l ib r ium is reached.  by  loca t ing  at Vq 
Another  special  case  occurs  if  Vq is not  edge-pro tec ted ,  

1 is. Clearly,  v ~  Cq. Again  invoke  L e m m a  12. I f  but  Vq 
1 v a ~ Cq then faci l i ty  B 's  best  response  is to locate  at Vq as 

there it captures  w (T q) whereas  e l sewhere  at a d is tance  of  
at least  SSS f rom A, it can never  get  more  than w ( T  q) for 
some k. One of  faci l i ty  A ' s  opt imal  responses  is, in turn, 
to locate  at Vq. Accord ing  to L e m m a  7, this pair  of  loca-  
t ions is a Nash  equi l ibr ium.  On the other  hand, if  ve ~ Cq, 
and as, by assumpt ion,  Vq is not  edge-p ro tec ted  and 
I Cql > 2, A can locate  at one of  the ver t ices  in Cq and cut 
out  B. Whereve r  A locates  in Cq, B 's  best  response  is to 
locate  at v s =  Vq ~ which,  again  by vir tue of  L e m m a  7, then 
const i tutes  a pair  of  Nash  equi l ibr ia .  This  proves  

1 is  Corollary 13. I f  the median  Vq o r  its ad jacent  ver tex Vq 
edge-pro tec ted ,  then a Nash  equi l ib r ium wil l  be reached  
in a sequent ia l  re loca t ion  process  with shor t - term prof i t  
max imiza t ion  object ive .  

In the fo l lowing  we assume that nei ther  Vq n o r  Vq 1 is edge-  
protected.  Accord ing  to L e m m a  12, one of  the two faci l -  
i t ies will  locate inside Cq after no more  than n re loca t ion  
moves .  We can now dis t inguish  be tween  two cases.  
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Case 1. v B ~ Cq, i.e., facility B is the first to locate in Cq. 
As by assumption Vq is not edge-protected, ]Cq] > 2 and Cq 
cannot include any edge-protected vertices, so that v~ is 
currently not edge-protected. This leaves two subcases for 
consideration. 

Case la .  VB=V q. Then A in its next move can cut out B 
by locating at v* as v * ~  Cq by virtue of Lemma 8 a. Now 
facility B's best response is to locate at v** which then 
satisfies the conditions of Lemma 7b and a locational Nash 
equilibrium has been reached. 

Case 1 b. p q:;t: V B E Cq. One of facility A's optimal moves is 
to cut out B by locating at Vq. Now, VA=V q and it is B's turn 
to relocate at some vertex v~?. Clearly, B will not locate in 
Cq as it would be cut out (and, by assumption, at least one 
edge-protected vertex exists, so that Cq ~V) .  

(i) v h~ C. .  In this case, A can cut out B by locating at 
vA= v*, and in the next step, B will respond by relocating 
to v** as per RR2. This is a Nash equilibrium. 
(ii) vh~ C. .  By virtue of Lemmas 8b, 8c, and 7b, v** is 
B's best option to locate. Subsequently, A will move to v* 
and again, an equilibrium has been reached. 

Case 2. v a ~ Cq, i.e., facility A is the first to locate at some 
vertex v a ~ Cq. In order to obtain a positive market share, 
facility B must move to a vertex vhe  V\Cq.  This is the same 
situation as that discussed in subcase (ii) under 1 b above 
which was already shown to lead to a Nash equilibrium. 

The above discussion implies 

Theorem 14. Given two facilities that locate at different 
vertices of a tree and the facilities charge fixed, but differ- 
ent mill prices. Then sequential relocation on the basis of 
short-term profit maximization, with rules as specified in 
cases 1, 2, and 3 above, will lead to Nash equilibrium lo- 
cations. 

4 Conclusions 

In this paper we have examined the problem of conver- 
gence of duopolists towards their respective equilibrium 
locations, given that decision makers at both facilities ap- 
ply a short-term maximization objective. It was shown 
that, given some additional rules in case of ties, the duop- 
olists will reach equilibrium locations in the process. 

The results presented in this paper open up a number 
of new avenues. One such possibility is the examination 
of "forbidden regions", a subject that was first studied by 
Katz and Cooper (1981). In our model, such forbidden 
zones could be vertices at which the competitors may not 
locate. Restrictions of this nature could be due to local zon- 
ing laws. It is apparent that the introduction of forbidden 
zones in a problem may dramatically change the results. 
Take, for example, the graph in Fig. 1 and assume that lo- 
cation at vertex v 7 is prohibited. In this case, given SSS = 6, 
the only edge-protected vertex is now no longer available 
for location and a locational Nash equilibrium no longer 
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exists. (In contrast, if in the original Hotelling model with 
variable prices and location and a linear market that 
stretches from 0 to L, we were to introduce a forbidden 
zone between �88 and 3/4L, then the model would indeed 
have a subgame perfect Nash equilibrium.) Results con- 
cerning competitive location models and forbidden zones 
have not been reported in the literature. 

A number of other research directions is also possible. 
For instance, one may examine scenarios in which one or 
both of the planners at the facilities make their decisions 
with foresight. Another possibility is to investigate mod- 
els in which customers do not patronize the facility with 
the lowest delivered price, but use other (deterministic) 
utility functions, such as proportional models, similar to 
that used by Bauer et al. (1993). 
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Appendix 

Proo f  o f  Lemma 7. (i) We first prove necessity of each of 
the three conditions by contradiction. Suppose that v** is 
not edge-protected. Then either (i) S(B)=0 and B could 
increase its sales by locating at any edge-protected vertex 
(irA were to be located at the only edge-protected vertex, 
then B would capture its own vertex and S(B)>  0). Alter- 
natively, (ii) S (B) > 0 in which case A could relocate so as 
to cut out B; hence the current arrangement is not an equi- 
librium. 

Suppose now that v** does not satisfy condition (b). 
Then B could relocate to the vertex with the heaviest hin- 
terland outside C. and capture a larger share of the mar- 
ket. 

Finally, let M(A)C:TI**.  Then either (i) v*~Tl** 
but there exists in the competitive region a vertex 
v ie  TI** • M ( B ) ,  in which case A could move towards B 
and capture v i as well, thus increasing its market area, or 
(ii) v* ~ Tj**, in which case A either cuts out B, which is 
not possible as v** is edge-protected, as per condition (a), 
or A could improve by locating, so that M(A)=Tl** .  This 
demonstrates that each of the three conditions is necessary 
for (v*, v**) to be an equilibrium. 

(ii) We now prove sufficiency of conditions (a)-(c).  
Conditions (a) and (c) ensure that facility A has no incen- 
tive to move, as per (a) facility A cannot cut out B, and by 
way of (c) A captures all of the market except B's hinter- 
land. Condition (c) also implies that A's market share is 
maximal, given B. Furthermore, given that A locates at 
v a = v*, B's  market share is maximal by way of condition 
(b). [] 

Proo f  o f  Lemma 8. (a) We first prove that Vq E C. .  Suppose 
not. Then by Lemma 7b, v** must be located just outside 
C. on the path p .q=]v* . . . . .  Vq]. By virtue of Lemma 7a, 
v** is edge-protected, but by the above assumption Vq is 
not, hence v** ~ Vq, so thatp.q = [v* . . . . .  v** . . . . .  Vq]. Thus 
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facility A located at v* captures strictly less than ~w(T) 
(strictly less, as A's  market share cannot exceed 
w(Tq)<gw(T) by Lemma 3, but as it does not capture 
w ( v * * ) > 0 ,  the inequali ty is strict). On the other hand, 
Lemma 3 also implies that if facility A were to locate at vq 
it would capture at least ~w(T) which contradicts the 
assumption that Vq~ C.. Hence Vqe C. which, in turn, im- 
plies that v* ~ Cq. 

(b) By definition, the circle Cq cannot  include edge- 
protected vertices. However, Lemma 7a states that v** is 
edge-protected; which is a contradiction. 

(c) Vertex v** is edge-protected as per Lemma 7a, thus 
it cannot  be in C. .  [] 
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