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This paper addresses complexity issues for important problems arising with 
disjunctive logic programming. In particular, the complexity of deciding whether a 
disjunctive logic program is consistent is investigated for a variety of well-known 
semantics, as well as the complexity of deciding whether a propositional formula 
is satisfied by all models according to a given semantics. We concentrate on finite 
propositional disjunctive programs with as well as without integrity constraints, i.e., 
clauses with empty heads; the problems are located in appropriate slots of the poly- 
nomial hierarchy. In particular, we show that the consistency check is E~-complete 
for the disjunctive stable model semantics (in the total as well as partial version), 
the iterated closed world assumption, and the perfect model semantics, and we show 
that the inference problem for these semantics is II2e-complete; analogous results are 
derived for the answer sets semantics of extended disjunctive logic programs. 
Besides, we generalize previously derived complexity results for the generalized 
closed world assumption and other more sophisticated variants of the closed world 
assumption. Furthermore, we use the close ties between the logic programming frame- 
work and other nonmonotonic formalisms to provide new complexity results for 
disjunctive default theories and disjunctive autoepistemic literal theories. 

1. Introduction 

Disjunct ive logic p r o g r a m m i n g  is a genera l iza t ion  o f  logic p r o g r a m m i n g ,  
where  the heads  o f  clauses m a y  consist  o f  dis junct ions  o f  a toms.  This  genera l iza t ion  
has  recent ly  a t t r ac ted  m u c h  interest  by  the research  c o m m u n i t y ,  and  several alter-  
nat ive semantics  have  been p roposed .  A comprehens ive  survey can be f o u n d  in 
the recent  b o o k  by  Lobo ,  Minker ,  and  Ra jasekar  [34]. 1 

* Parts of the results in this paper appeared in form of an abstract in the Proceedings of the Twelfth 
ACM SIGACT SIGMOD-SIGART Symposium on Principles of Database Systems (PODS-93), 
pp. 158-167. Other parts appeared in shortened form in the Proceedings of the International 
Logic Programming Symposium, Vancouver, October 1993 (ILPS-93), pp. 266-278. MIT Press. 

i We use the term disjunctive logic program for what is elsewhere called a normal disjunctive logic 
program with integrity constraints (which are disregarded in [34]). This terminology may differ 
from that used elsewhere. 

�9 J.C. Baltzer AG, Science Publishers 
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The aim of this paper is a complexity analysis of various semantics for 
disjunctive logic programming in the propositional case. We consider the following 
semantics. 

�9 The Disjunctive Stable Model Semantics (DSM) defined by Przymusinski 
[49], which adapts Gelfond and Lifschitz's Stable Semantics [24] to disjunc- 
tive logic programming. 

�9 The Answer Set Semantics (ANSW) of Gelfond and Lifschitz [25] for the 
extension of disjunctive logic programming by classical negation, which is 
an adaptation of the stable model semantics to deal with negative literals. 
Informally, an answer set can be seen as a kind of stable model of an extended 
disjunctive logic program. 

�9 The Partial Disjunctive Stable Model Semantics (PDSM) by Przymusinski 
[49], which extends the Well-Founded Semantics of van Gelder, Ross, and 
Schlipf [65]. 

�9 The Iterated Closed World Assumption (ICWA) by Gelfond, Przymusinska, 
and Przymusinski [28]. 

�9 The Perfect Models Semantics (PERF) by Przymusinski [48]. 

�9 Various forms of the Closed World Assumption (CWA) including the 
Generalized CWA (GCWA) by Minker [43], the Extended GCWA 
(EGCWA) by Yahya and Henschen [67], the Careful CWA (CCWA) by 
Gelfond and Przymusinska [26], and the Extended CWA (ECWA) by 
Gelfond, Przymusinska, and Przymusinski [28], which coincides in the 
finite propositional case with McCarthy's circumscription (CIRC) [41, 42], 
and further variants such as the Disjunctive Database Rule (DDR) of Ross 
and Topor [55], which is equivalent to the Weak GCWA (WGCWA) of 
Rajasekar, Lobo, and Minker [51], and the Possible Models Semantics 
(PMS) of Sakama [56], which is equivalent to Chan's Possible Worlds Seman- 
tics (PWS) [13]. 

For each semantics S, we consider the following problems. Given a finite 
propositional disjunctive logic program P, decide whether P has a model under 
semantics S (S-Consistency), and deciding whether a given propositional formula 
F is satisfied by all legal models of P according to the semantics S (S-Entailment). 

Basic complexity results for the last group (various forms of the CWA) have 
already been derived in [60, 11, 13, 21]. In the present paper we sharpen some of the 
known results and state, for the sake of completeness of the analysis, some minor 
new results. All other results are novel. 

This paper complements recent surveys on complexity results for non- 
monotonic reasoning and logic programming [12, 59]. By the work of Apt, Blair, 
Cholak, Chomicki, Marek, Nerode, Remmel, Schlipf, and Subrahmanian [1, 9, 
7, 36, 35, 58, 59, 16] the complexity of general logic programming is quite 
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well-understood today. Practical methods for coping with complexity in disjunctive 
logic programming have been investigated in [17, 18]. The main results of the 
present paper state that S-Consistency is E~'-complete for DSM, ANSW, PDSM 
and PERF while the problem is less complex for the other semantics (NP-complete 
or, in case of ICWA, even polynomial) and furthermore that S-Entailment is II~'- 
complete for all considered semantics except for some versions of CWA. 

E~'-hardness of S-Consistency in case of DSM, ANSW, and PDSM may be 
intuitively explained by an additional source of complexity in terms of a fixpoint 
condition on a model which interacts with an independent minimality criterion. 
PERF similarly imposes a nonmonotonic minimality condition on models. 

An intuitive explanation for II2e-hardness of S- Entailment is that due to some 
minimality criterion, the problem of identifying a disjunctive model is difficult and 
involves an (at least) coNP-hard test. This constitutes a source of complexity 
"orthogonal" to the source given by the potentially exponentially many candidates 
for a (disjunctive) model of P. As a consequence of the results, under the widely 
accepted hypothesis that the polynomial hierarchy does not collapse to some 
class below II2 e, polynomial inference algorithms using an oracle for classical infer- 
ence do not exist. 

Inference of a formula under GCWA or CCWA is an interesting problem: the 
best upper bound we can provide by a nontrivial membership proof is A~'[O(log n)], 
which is "mildly" harder than II2 e or ~ ' .  Completeness for this class would entail 
E2e-hardness; however, it is not clear how to reduce a E~'-complete problem to 
this problem. Inference of a literal under GCWA is in II~', as it suffices in this 
case to check a restricted set of models. 

Chan [13] shows that inference under DDR, WGCWA, PWS, and PMS is 
tractable if integrity clauses (i.e. clauses with empty heads) are not allowed; this 
in fact constitutes the only cases of tractability for the considered semantics. 

In addition, based on the complexity results for disjunctive logic program- 
ming, we are able to derive new complexity results for nonmonotonic logics such 
as disjunctive default logic [27] and autoepistemic logic [45]. 

The paper is organized as follows. After introducing basic concepts and 
notation in Section 2, the analysis starts in Section 3 with PSM and PDSM. In 
Section 4, we deal with the different versions of the CWA, and in Section 5 we 
analyze the ICWA-semantics for stratified programs. After treating the Perfect 
Models Semantics in Section 6 and the Answer Set Semantics for programs 
extended with classical negation in Section 7, we establish in Section 8 new 
complexity results for disjunctive default logic and autoepistemic logic. Section 9 
concludes the paper. 

2. Prefiminaries and notation 

A comprehensive treatment of disjunctive logic programming is given in [34], 
to which the reader is referred for unexplained concepts. A disjunctive logic 
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program clause (DLP clause, or simply clause) C is a formula 

al V .-. V an ~-- h i , " ' ,  bk, not bk+l,- �9 �9 not bin, m, n > 0, 

where all ai and bj are atoms from a (fragment of  a) first-order language,","  denotes 
conjunction, and "not" is a negation-by-default operator. An extension to DLP 
clauses, which will be considered in Section 7, allows literals under classical negation 
instead of atoms. 

Notice that we also allow clauses with empty head (i.e. n = 0), which we call 
integrity clauses. 2 Integrity clauses without "not" are also called negative clauses. 

Permitting integrity clauses does not affect the complexity of inference under 
the considered semantics in the general case, but most likely makes deciding whether 
a program is consistent under a certain semantics more complex. We will highlight 
the difference of  allowing/disallowing integrity clauses in the analysis. 

A disjunctive logic program (DLP) P is a finite collection of DLP clauses. A 
DLP P is normal if "not" is allowed to occur in its clauses, and not-free if "not" 
does not  occur in P. A DLP P is positive if it is not-free and it contains no integrity 
clauses. A DLP in which each clause has one (resp. at most one) atom in the head 
(n = 1 resp. n < 1) is called definite (resp. nondisjunctive). 

Example 2.1. Consider the following propositional D L P  P: 

P =  a V b ~ c b ~ not a, not c 

P contains no integrity clauses but is not positive, as "not" occurs in P. 

In the rest of this paper, we restrict our considerations to finite propositional 
DLPs, i.e. (finite) DLPs where the atoms are propositions. We omit the phrase 
"finite propositional" when referring to a propositional DLP. 

The various semantics of disjunctive logic programs we consider, as well as 
others not treated here, can be alternatively characterized proof-theoretically, by 
fixpoints, or in terms of models, cf. [34, 22]. We refer to model theoretic character- 
izations, which are most useful for the purpose of this paper. 

Interpretations and models of DLPs are restricted to Herbrand interpreta- 
tions resp. Herbrand models; thus "interpretation" and "model" refer to 
"Herbrand interpretation" and "Herbrand model" throughout  the text. 

For  any DLP P, we denote by A(P) the set of propositional atoms of P and 
by M (P) the set of all models of P if "not" is interpreted by classical negation. I ~ F 
resp. C ~ F denotes satisfaction of a propositional formula F by an interpretation I 
resp. a collection C of interpretations. Cn(~)  denotes the set of all logical conse- 
quences from the set of formulae ~'. 

2 If some designated atom f representing falsity is used, clauses in which the only atom in the head is f 
are equivalent to integrity clauses. 
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The models of a DLP P under a semantics S are a subset of M(P), which we 
denote by S(P).  P is called S-consistent iff ,_q(P) ~ 0. A DLP P entails a proposi- 
tional formula F under semantics S iff S(P) ~ F. 

Example 2.2. For the above program 

P =  a V b +-- c b ~ not a, not c 

we have M(P) = {{b}, {a}, {a,b}, {a, c}, {b, c}, {a ,b ,c}} .  Hence, M(P) ~ a V b and 
M(P) ~ ~c. 

For every DLP P, the partial order < on M(P) is defined by M < M' iff 
M C_ M', i.e., all atoms true in M are also true in M'. M < M' stands for 
M < M' and M' :~ M. For any partition 1/5; Q; z)  of A(P),  the preorder <A2 is 

M' M' defi~ed by M <A2 ^ iff M fq Q = f3 Q and M fq/5 c_ M' f)/5. Note^ ^ t h a t  -<P,2 
coincides with < if P = A(P). Model M E M(P) is minimal(resp. (P; Z)-minimal) 
iffno M' E M(P) satisfies M' < M, (resp. M' <A2 M and M ~P.2 M'). The collec- 
tion of all minimal (resp. (/5; Z)-minimal) models of P is denoted by MM(P) (resp. 
MM(P; P; 2)). 

Example 2.3. Consider the above program 

P =  a V b ~-- c b ~ not a, not c 

again. Then, MM(P) = {{a}, {b}}, and for  the partition ({a}, {b}, {c}), we have 
MM(P; {a}; {c}) - {{b}, {b, c}, {a}, {a, c}}. 

We assume that the reader has some background on the concept of NP- 
completeness [23, 30]. Upon the class NP, the polynomial hierarchy (PH) has 
been defined as a subrecursive analog to the Kleene arithmetical hierarchy. For 
any complexity class C, let pC (resp. NP c) denote the decision problems for 
which there exists a polynomial-time bounded deterministic (resp. nondeterministic) 
Turing-reduction to any problem 7r E C, i.e. the decision problems solvable in poly- 
nomial time by some deterministic (resp. nondeterministic) oracle Turing machine 
with an oracle for any problem in C. The classes A~', E e, and II~" of PH are 
defined as follows: 

and for all k > 0, 

P P 

A~'+t = pZk, E~+I = NP~k, HLl  = c o ~ l .  

In particular, NP = E~, coNP = II~', E~' = NP ye, and II~' = coNP NP. The classical 
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NP-complete problem is to decide if a collection C = {Li,1 V -.. V Li,n, : 1 < i < m} 
of propositional clauses is simultaneously satisfiable (SAT). This problem is still 
NP-complete if each clause L;,1 V.- .  V Li,,,, in C contains only positive literals or 
only negative literals (MSAT) [23]. The most prominent E2e-complete problem is 
to decide the validity of a formula from QBF2,?, the set of quantified Boolean 
formulae of the form 3x l . . .  3xnVyl"" "VymE, where E = E(xL,.. .  , xn,Yl,... ,Ym) 
is a propositional formula built from atoms Xl, . . . ,  xn,yl , . . . ,  y~. 

The classes Ak e have been refined by bounding the number of queries to the 
oracle [66, 30]. Af+ 1 If(n)], k >_ 1, denotes the class of decision problems that are 
polynomially solvable with at mostf(n)  calls to a E~" oracle, wheref(n) is a function 
in the size n of the problem instance. In particular, A~'+I [O(log n)] allows logarith- 
mically many oracle queries. 

In this paper, we consider the following problems on DLPs for different 
semantics S. 

S-Consistency: Given a DLP P, decide if P is S-consistent. 

S-Entailment: Given a DLP P and a propositional formula F, decide whether 
S(P) ~ F. 

The restriction of S-Entailment to the case in which F is a literal is of parti- 
cular importance. It appears that for each semantics the presented lower complexity 
bound applies to this case. 

The notion of entailment in terms of consequence from all models under S is 
commonly called cautious reasoning or skeptical reasoning. An alternative version 
of entailment is in terms of consequence from some model under S, which is 
known as brave reasoning or credulous reasoning. Complexity results for brave 
reasoning under the considered semantics can be straightforwardly derived from 
our results on cautious reasoning. Hence, we will not consider brave reasoning in 
our analysis: 

3. Stable model semantics 

The Stable model semantics for logic programs [24, 5] has been widely 
acknowledged and is one of the most important semantics for logic programs. 
Concerning the computational properties, Marek and Truszczyfiski [38] and inde- 
pendently Bidoit and Froidevaux [6] showed that deciding whether a definite 
logic program has a stable model is NP-complete. Marek and Truszczyfiski 
further showed that deciding whether an atom belongs to every stable model of a 
definite logic program is coNP-complete [39]. 

The stable model semantics was generalized in a natural way to disjunctive 
logic programs by Przymusinski [49] and independently by Gelfond and Lifschitz 
in terms of answer sets in the more general framework of extended DLPs (see 
Section 7). Besides the generalization of total (i.e. 2-valued) stable model semantics, 
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Przymusinski presented in [48] also a generalization of partial (i.e. 3-valued) stable 
semantics from definite programs to disjunctive logic programs. Przymusinski 
demonstrated that the partial stable model semantics coincides for definite 
programs with the well-founded semantics of van Gelder et al. [65], and can be 
thus seen as proper generalization of  the well-founded semantics to disjunctive 
programs. Other generalizations of the well-founded semantics which we do not 
examine here are presented in [54, 3]. We study in this section both total and 
partial stable model semantics. 

We start with total stable model semantics. Given a DLP P and an interpre- 
tation I, the Gelfond-Lifschitz transformation pI of P with respect to I is defined as 
follows. 

(i) if a 1 V . . .  V a  n +--- b l , . . . , b k ,  n o t b k + l , . . . , n o t b  m E P 
and for all k < i < m, bi~I, then al V . . .  V a n +-- b l , . . .  , bk E pI  

(ii) nothing else is i n / d .  

Notice that P / i s  not-free, and that p t  coincides with P if P is not-free. 
An interpretation I is called a (disjunctive) stable model of P iff I E MM(P/ )  

[49]. DSM(P) denotes the collection of  all stable models of P, i.e. 

DSM(P) = { I :  I E MM(Pt)}.  

Example 3.1. Let 

P =  a V b ~-- c b ~ nota, notc a V c +--- notb. 

Consider I = {b}. Then, 

p 1 =  aVb~-- -c  b*-- .  

Check that I is a minimal model o f  td  ; thus, I is a stable model o f  P. 

Each stable model is in fact a model of P and has the following property. 

Proposition 3.1. cf. [49] 3 Every stable model o f  a D L P  P is a minimal model o f  P, i.e. 
DSM(P) C_ MM(P). 

Notice that DSM- Consistency is trivial i fP  is a positive DLP, since each such 
P has a stable model. (M(P) ~ 0 and P / =  P for any I holds in this case, hence the 
existence of  a stable model can be easily seen from the definition.) If the heads in the 
rules are allowed to be empty, we obtain the following. 

3 Although this proposition is formulated only for programs without integrity clauses, the proof 
applies to the general case. 
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Proposition 3.2. DSM-Consisteney restricted to instances o f  P which are not-free is 
NP-complete. 

Proof. Let C be an instance of SAT. Each such C can be trivially rewritten as a logi- 
cally equivalent not-free DLP P and vice versa, such that C is satisfiable iff 
M(P) # 0. It holds that P has a stable model iff MM(P)#  0, which is equivalent 
with M(P) # 0. From this, the result follows. �9 

The complexity of checking DSM-consistency remains unchanged if we allow 
nondisjunctive programs besides not-free programs in the input. (Membership for 
nondisjunctive programs in NP follows as PJ is a collection of Horn clauses.) For 
DLPs which allow disjunction in the head and simultaneous occurrence of "not", 
we obtain the following result. 

Theorem 3.1. DSM-Consisteney is E~-hard. This holds even i f  P contains no integrity 
clauses and "not" has a single occurrence in P. 

Proof. We show this by the following reduction of deciding the validity of a quan- 
tified Boolean formula 

= 3 X l ' ' "  3 X n ~ / Y l " ' V y m E  , n , m  >__ 1. 

We may assume that E = D1 V . . .  V Dr and each D i = Li, 1 A Li, 2 A Li,  3 is a conjunc- 
tion of literals L;j over atoms x l , . . . ,  xn, Yl,- . . ,  Ym; deciding if such a �9 is valid is 
still E~'-hard [63]. Let Vl , . . . ,  Vn and z l , . . . ,  Zm, w be new propositional atoms and 
define the following DLP P: 

X i V 2~ i 

y~ V zj ~ yj ~ w 

w +-- yj,zj 

w o(Lk,1), o(Lk,3) 
W +-- nOt  W 

z j ~ w  

for each i = 1 , . . . , n  

for e ach j  = 1 , . . . , m  

for each k = l , . , . , r  

where a maps literals from atoms Xl, . . .  , Xn, Yl , ' . . ,  Ym to atoms as follows: 

vi 

L 

i f L  = ~xi for some i -  1 , . . . , n ,  

if L = --,yj for some j --- 1 , . . . ,  m, 

otherwise. 

4 Intuitively, vi corresponds to ~x  i and zj corresponds to ~yj. 

4 Actually the clauses w *-- yj, zj are not needed and could be omitted. We include them for intellig- 
ibility and ease of argumentation. 
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If  M is a stable model of  P, then w E M must hold (this is assured by the 
clause w +-- not w). Thus pU  consists of  all clauses of  P except w +--- not w. Conse- 
quently, for every 1 < j < m, y] and zj must be in M, which follows from the 
clauses yj ~ w, zj ~ w. Further,  for every i = 1 , . . . ,  n it must hold that x i E M 
or vi E M ,  which follows from the clause xi V vi ~ ; from the condition 
M E MM(PU) ,  however, it follows that not  both xi E M and vi E M hold, for 
otherwise M '  = M -  {vi} is a model of  p~t such that M ' <  M. Consequently, 
exactly one of  xi E M and vi E M must be true. 

We show that P has a stable model iff the formula ~ is valid. 
"=~": Let M be a stable model of  P. Let the truth assignment qo to the atoms 

Xl , . . . ,  Xn be defined by 

< t r u e  

~(x,) = L false 
if xi E M ,  

if vi E M ,  
for i =  1 , . . . , n .  

Notice that ~ is well-defined. Since M is a minimal model of  pU,  it follows that each 
interpretation I that coincides with M on xl, v l , . . . ,  xn, v, and contains exactly one 
of  yj, zj for each j = 1 , . . . ,  m, and does not  contain w, is not  a model of  pM. For  
otherwise I would be a model of  pM such that I < M, which contradicts that M 
is a stable model of  P. Since I is not  model of  pM, there must exist some 
i = 1 , . . . ,  r such that I ~ ~r(Lij), for 1 < j < 3. It follows that for every extension 
of  qa to the atoms Yl , - . . ,  Ym, D~ is true for some i = 1 , . . . ,  k. Thus E evaluates to 
true. Consequently, 3xl . . .  3XnVYl "'" VymE, i.e. ~, is valid. 

" ~ " :  assume that ~ is valid. That  is, there exists a truth assignment cp to the 
atoms xt , .  �9 �9 xn such that every extension of  qa to Yl,. .  �9 Yrn satisfies E. Let I be the 
following interpretation: 

I -~{Xi: ~9(Xi) --- true, i =  1 , . . .  ,n} U {vi :  qo(xi) = f a l s e ,  i = 1 , . . . , n }  U 

{Yl,Zl, . . .  ,Ym, Zrn, w}. 

Notice that P / a r e  the clauses of P except w .-- not  w and that I is a model of  
P/. We show that I is a minimal model of  P/, which implies that I is a stable model of  
P. Assume to the contrary that I~MM(P/ ) ,  i.e. there exists M E M ( P  s) such that 
M < I. We observe that M must coincide with I on Xl, v l , . . . ,  xn, Vn, that w ~ M, 
and that exactly one ofyj,  zj is in M for every j  = 1 , . . . ,  m. By the extension property 
of  ~, however, it follows that for the extension of  ~ to Yl , . . . ,  Ym defined by ~(Yi) = 
true if M ~ Yi and qo(yi) = f a l s e  if M ~ zi, 1 < i < m, there must exist some 
i = 1 , . . . ,  k such that M ~ tr(Lij ), for 1 < j < 3. But this implies w E M, contradic- 
tion. Thus I is a minimal model of  pS, and consequently I is a stable model of  P. 

Since P is constructible from ,I, in polynomial time, the theorem follows. �9 

We obtain as a corollary the following result. 
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Corollary 3.1. DSM-Entailment is II~-hard. 

Proof. Let/Y be the DLP obtained by adding to DLP P the clause p ~ ,  where the 
atom p does not occur in P. Every stable model of P' satisfies p but does not satisfy 
~p. Hence, DSM(P') ~ ~p if and only if DSM(U) = 0, which is equivalent to 
DSM(P) = 0. Theorem 3.1 implies that deciding DSM(P) = 0 is 1-If-hard, from 
which the result follows. �9 

It is important that this hardness result can be noticeably strengthened. In 
fact, the result holds even if P is a positive DLP. 

Theorem 3.2. DSM-Entailment is Yl~-hard, even if P is positive and F is a literal. 

Proof. Consider the DLP P from the proof of Theorem 3.1 and let P' be the 
program P except the clause w ~ not w. Recall that every stable model M of P 
must contain w. Since pM = / i ,  it holds that M is a minimal model of P'. On the 
other hand, every M E MM(P') such that w E M, is a stable model of P. Conse- 
quently, P has a stable model iff P' has a minimal model M such that M ~ w. 
Since P' is positive, DSM(P') = MM(P'); thus it holds that DSM(P') [~ ~w iff P 
is DSM-consistent. Since deciding the latter is by Theorem 3.1 E2e-hard, the result 
follows. �9 

Notice that disjunction in the heads of clauses is essential for our proof of this 
result. If P is nondisjunctive, then DSM-Entailment is in coNP (notice that for any 
I, P / i s  a collection of Horn clauses in this case), and by the well-known results for 
definite programs coNP-complete. 

Corollary 3.2. Let P be a positive D L P  and let p be an atom. Deciding whether 
MM(P)~ ~p is II~-hard. 

Proof. As P is a positive DLP, DSM(P) = MM(P). 

This result sharpens the result of Lemma 3.1 in [21] that deciding whether a 
literal ~u follows from the minimal models of a collection of propositional clauses is 
II~-hard. The proof of the cited result involved integrity clauses. 

Using these results, we establish the following complexity characterization of 
disjunctive stable model semantics. 

Theorem 3.3. DSM-Consistency & E~-complete. 

Proof. By Theorem 3.1 it remains to show membership in E~. 
A guess for M c DSM(P) can be verified in polynomial time with an NP 

oracle: Indeed, it is easy to see that / ~  is computable in polynomial time. 
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Testing M E M M ( P  M) is in coNP (cf. [10]) and hence decidable with one query to 
an NP  oracle. Consequently,  DSM-Consisteney is in E~'. �9 

Theorem 3.4. DSM-Entai lment  is II~-complete. 

Proof By Theorem 3.2 it remains to show membership  of  the problem in II~'. 
A guess for M E DSM(P)  such that  M [~ F can be verified in polynomial  

t ime with an NP  oracle (cf. p roo f  of  Theorem 3.3). This means that  the complement  
of  DSM-Entai lment  is in E~, which implies that  DSM-Entai lment  is in II~'. �9 

Now let us turn at tention to partial stable model  semantics. We need to intro- 
duce the concept of  partial (i.e. 3-valued) Herbrand  interpretat ion for a definition, 
cf. [49]. 

A partial (Herbrand) interpretation I is a consistent set of  literals. Pos(I) 
(resp. Neg(I)) denotes the set of  positive (resp. negative) literals in I. The a toms 
of  positive literals in I are considered to be true in I,  while the a toms of  negative 
literals are considered to be false in I. All other a toms are considered to be undefined 
in I. The set of  a toms is extended by three distinguished a toms t,f,u, which are 
respectively true, false, and undefined in every interpretation. Occurrence of  these 
a toms in the head of  any program clause is not permitted.  5 

Each interpretat ion I can be seen as a function A ---, {0, 0.5, 1 }, where A is the 
set of  a toms including t,f, and u, such that  I(p) = 0 (resp. I(p) = 0.5, I(p) = 1) iffp 
is false (resp. undefined, true) in I. 

The t ruth value VI(F) of a proposi t ional  formula in I is defined by recursion 
as follows. I f F  is an atom, then VI(F) = I (F) ;  i f F  = ~G, then VI(F) = 1 - V/(G); 
if F = F 1 A F2, then VI(F ) = min(V1(F1), VI(F2) ), if F = F 1 V F2, then VI(F) = 
max(Vi(F1), VI(F2)); and i f r  = F1 *-- F2, then VI(F) = 1 if VI(F1) > VI(F2) and 
VI(F) = 0 otherwise. Here the max imum (resp. min imum)  of  the empty set is 
defined as 0 (resp. 1). 

A partial interpretat ion I is a partial model of formula  F iff VI(F) = 1, i.e. I 
satisfies F. The collection of  all partial models  of  a D L P  P is denoted by Mp (P). The 
partial order _< is defined on Mp(P) by M1 _< M2 iff Pos(M1) C_ Pos(M2) and 
Neg(M1) ~_ Neg(M2); < and minimal  partial models  are defined in the obvious 
way. MMp(P) denotes the set of  minimal  partial models  of  P. 

A partial interpretat ion I is called total if no a tom (except u) is undefined in I. 
The projection of  such an I to the nondist inguished a toms corresponds to a stan- 
dard Herbrand  interpretation. For  convenience, we will identify I with this s tandard 
interpretat ion and vice versa. 

Let P be a D L P  and I be a partial interpretation. Przymusinski  defines the 
quotient ~ of P modulo I as follows. Each occurrence of  a literal notp in P is substi- 
tuted by its t ruth value in I where "not" is interpreted classically, i.e. if V~(notp) = 0 
(resp. 0.5, 1), then notp is replaced with f (resp. u, t). 

5 As Przymusinski remarks, this assumption is not essential and could be dropped. 
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This t ransformat ion properly generalizes the Gelfond-Lifschitz transforma- 
tion; if I is total and u does not  occur in P, then ~ is equivalent to the Gelfond- 
Lifschitz t ransformat ion pt .  

A partial interpretat ion I of  a D L P  P is called a (disjunctive) partial stable 
model o f P  i f f I  E MMp(~). Then,  define 

P D S M ( P )  = { I :  I E MMp(~)}. 

Of  course, partial stable models of  P are models  of  P. 

Proposition 3.3. cf. [49] 6 Every partial stable model o f  a D L P  P is a minimal partial 
model o f  P. 

Example 3.2. Let 

P =  a V b V c ~-- b ~-- nota c ~-- notb a ~-- notc 

and let I = {a}. It is easily checked that I is a partial model o f  P. Consider 

P 
- =  aVbVc~- - -  b ~ - - f  
I 

c~---u a~---u. 

I is not a minimal partial model o f  ~, however, since M = {a, ~b) is a model o f  ~ and 
M < I. Thus I is not a partial stable model o f  P. In fact, P has no such model. 

Partial stable models of  a D L P  P can be forced to be total models. Denote  
by T(P) the p rogram obtained f rom P by adding for each a tom p the clause 

p, not p. 

Proposition 3.4. Let P be a D L P  in which u does not occur. 7 Each partial model o f  
T(P) is total, and, moreover, the partial stable models o f  T(P) are the stable 
models o f  P. 

Proof. It is easy to see that  each partial model  of  T(P) is total. Hence the result 
follows f rom Proposit ions 3.1 and 3.3. �9 

Thus,  if integrity clauses are permitted,  DSM-Consisteney and DSM- 
Entailment are polynomially reducible to PDSM-Consisteney and PDSM- 
Entailment, respectively. No t  much  surprising, consistency checking and entailment 
have for partial stable model  semantics the same upper  bounds  as for stable model  

6 Again, this proposition is formulated only for programs without integrity clauses, but the proof 
applies to the general case. 

7 Since we defined (total) stable models in a 2-valued context, this assumption is necessary. 
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semantics. The question remains what happens if integrity clauses are excluded. As 
we will show, this does not lead to a decrease in complexity. 

Theorem 3.5. PDSM-Consisteney is E~-complete.  E~-hardness holds even i f  P does 
not  contain integrity clauses. 

Proof.  Membership in E~ is shown as follows. For any partial interpretation I and 
any formula F, VI (F)  is efficiently computable and hence I ~ F can be decided effi- 
ciently. A guess for M E PDSM(P) can be verified in polynomial time with an NP 
oracle for the following: ~ can be computed efficiently. Furthermore, testing 
whether M E MM~(~) can be done by using an NP oracle to decide whether 
there exists no M '  E Mp(--~) such that M' < M. 

Hardness is shown by a polynomial transformation of deciding whether the 
DLP P in the proof of Theorem 3.1 has a (total) stable model. Let P' be the DLP 
which consists of the following clauses. 

(1) w ~ not  w. 

(2) w ~ r for every atom r distinct from w. 

(3) C~ = al V . . .  V an ~--- b l , . . . , b m ,  nOtw foreachclause 

C = al V . . .  V a n ~ b l , ' " ,  bm from P. 

We show first that in any partial stable model M of P', w must be undefined and no 
(nondistinguished) atom can be true. Clearly, w cannot be false in any model of P'. 
Assume that w is true in M. Then -~ is equivalent to the program that consists of all 
clauses w ,--- r from P'. M is not a minimal partial model of this program, however. 
Hence, M is not a partial stable model of P', contradiction. Consequently, w is 
undefined in M. The clauses w ~ r enforce that no atom r from P can be true in 
M; hence we are done. 

Because not  w occurs in the body of each rule C', the partial stable models of 
P' intuitively correspond 1-1 to the stable models of P, where "undefined" (resp. 
"false") in partial models corresponds to "true" (resp. "false") in total models. 

We show that if M is a stable model of P then the partial interpretation 
M '  = N e g ( M )  (recall that we identify M with the corresponding partial interpreta- 
tion) is a partial stable model of P'. As M is a stable model of P, w E M. Hence, w is 
undefined in M'. Notice that ~ contains each clause C from P except w ~ no t  w, 
augmented by u in the body. Since M satisfies C, it follows that M' satisfies C'. 
Thus, M' is a partial model of ~,. We show that M ' E  MMp(~).  Assume 
that there exists a partial model I of ~ such that I < M'. w must be undefined in 
I,  and hence no atom is true in I. Let J be the total interpretation that satisfies 
Neg(J )  = Neg( I ) .  It follows that J is a model of P ~  such that J < M. Hence, 
M r MM(pM), thus M is not a stable model of P, contradiction. Consequently, 
M' E MMp(M~--7). It follows that M' is a partial stable model of P'. 
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In the same way it can be shown that if M is a partial stable model of P', then 
the total interpretation M t such that Neg(M')  = Neg(M) is a stable model of P. 

Consequently, P' is PDSM-consistent iff P is DSM-consistent. Since P' is 
constructible in polynomial time, the result follows. �9 

We conclude this section by considering the entailment problem. The 
following lemma, which is among the results in [48], relates minimal and stable 
models of positive DLPs. 

Lemma 3.1. Let  P be a positive D L P  in which u does not occur. Then all partial stable 
models are total, and PDSM(P) = DSM(P) = MM(P). 

We use this lemma for the following characterization of inference from 
partial stable models. 

Theorem 3.6. PDSM-Entailment is II~-complete, and 1-l~-hard even i f  P is positive and 
F is a literal. 

Proof. The hardness part follows immediately from Lemma 3.1 and Corollary 3.2. 
The membership part is as follows. A guess for M E PDSM(P) such that 

M [~ F can be verified in polynomial time with an NP oracle (cf. the proof of 
Theorem 3.5). Consequently, deciding PDSM(P) ~ F is in E~', from which the 
result follows. �9 

4. Closed world reasoning and extensions 

One of the first and most well-known rules for inferring negative information 
was Reiter's Closed World Assumption (CWA) [52] for positive definite programs. 
Informally, CWA adds to P each literal -~x such that M(P) ~ x. This is not suitable 
for disjunctive logic programs, since the result of applying CWA may be 
inconsistent. 8 Several generalizations and extensions of CWA to disjunctive logic 
programs have been proposed in the literature, e.g. [43, 26, 67, 28], as well as 
improvements to some of those extensions [55, 51, 56, 13]. Complexity results for 
these semantics in the case of finite propositional theories have been derived in 
[60, 11, 21, 13]. In this section, we succinctly introduce various semantics and 
apply results of the previous section to slightly sharpen known results, and, for 
the sake of completeness, we collect some easy new results. 

Minker adapted the CWA for disjunctive logic programs by introducing the 
Generalized C W A  (GCWA) in [43], which adds all literals -~x to P such that atom x 
is false in all minimal models of P. The respective models of P can be characterized 

8 It is interesting to note that deciding whether CWA-Consistency is coNP-hard and in A 2P[O(1Og n)], 
but not in coD e (coD e _~ NP U coNP) unless the polynomial hierarchy collapses [21]. 
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as follows. 

GCWA(P) = {M C M(P) :  Vx C A(P) .MM(P)  ~ ~x =v M ~ -~x}. 

The Careful Closed Worm Assumption (CCWA) of Gelfond and Przymu- 
sinska [26] generalizes the GCWA as follows. For any partition (̂/5̂ ; Q; 2)  of the 
atoms A(P), each literal ~x, x E P, is added to P such that MM(P;P,'Z)b ~x. Thus, 

CCWAp;z(P ) = {M C M(P) :  Vx C A(P). MM(P; aft; 2)  ~ -~x =v M ~ -~x}. 

Notice that if/5 = A(P), then CCWA is identical to GCWA. 
The Extended GCWA (EGCWA) was introduced by Yahya and Henschen 

[67] for inferring negative clauses. P is augmented by each clause 

~-- al~ . . . ,a n 

that is true in every minimal model of P. It holds that 

EGCWA(P) = MM(P). 

The EGCWA is generalized by the Extended CWA (ECWA) of Gelfond et al. [28] in 
the following way. For any partition (/5; Q; 2) of A(P), 

ECWAAz(P ) = MM(P;/5; 2).  

ECWA reduces to EGCWA in case Q = Z = 0. ECWA is equivalent to circum- 
scription (CIRC) of McCarthy [41, 42] as defined by Lifschitz in [32]. For 
(/5; Q; Z), define the following formula 

CIRC(P; /5; Z) = P[/5; Z] A -~3iV2'(P[ff; 2 '] A (/~ </5)) 

(cf. [32] for details). Then CIRCp;2(P) is the collection of models of CIRC(~/5; 2). 
In case of finite propositional DLPs, it holds that CIRCp;2(P ) = MM(P; P; Z)} [28]. 

It follows from the definitions that each of these semantics ,5 is independent 
of the syntactical representation of a program. Thus it may be assumed that P is 
not-free. (In fact, e.g. GCWA was originally defined for such programs.) Further- 
more, it is well-known that for each such ,5, P is ,5-consistent iff P is consistent. 
Consequently, 

Proposition 4.1. I f  a DLP P contains no integrity clauses, then P is ,5-consistent for 
every semantics ,5 among GCWA, CCWA, EGCWA, ECWA, and CIRC. 

In this case, S-Consistency is trivial. It becomes most likely more complex if 
integrity clauses are permitted. 
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Proposition 4.2. S-Consistency/s NP-complete for every semantics S among GCWA, 
CCWA, EGCWA, ECWA, and CIRC. 

The following result has been established previously. 

Proposition 4.3. [21] S-Entailment is in II~ for S among EGCWA, ECWA, 9 and 
CIRC and in A~'[O(log n)] for S among GCWA and CCWA. 

Furthermore, II~'-hardness was shown in [21] as a lower bound of S-Entail- 
ment for each of these semantics. This improved on previous coNP-hardness and 
NP-hardness results [60, 11]. From Corollary 3.2, we obtain the following slight 
sharpening of this result. 

Theorem 4.1. S-Entailment where P is a positive DLP is II~-hard for every S among 
GCWA, CCWA, EGCWA, ECWA, and CIRC. 

The GCWA has the undesirable feature that it interprets, if possible, the 
disjunction p V q *-- exclusively, i.e. adopts the models in which exactly one of p 
and q is true and rejects the inclusive interpretation, i.e. the model in which both 
p and q are true. Ross and Topor introduced in [55] a semantics called Disjunctive 
Database Rule (DDR), which interprets disjunction inclusively. Independently, 
Rajasekar et al. developed the Weak GCWA (WGCWA) [51] to cope with the 
same problem. It turned out that DDR semantics and the WGCWA are equivalent 
[51]. 

We need an additional concept for a definition of DDR. Given a DLP P and 
an interpretation I of P, define 

Te(I) = {al , . . . ,an : a 1 v . . .  v an ~ b l , . . . ,bk  E P 

and b/E I, for all j = 1 , . . . ,  k}, 

and 

oo 

TpTO=O, T p T n + l = T e ( T e T n ) ,  and T p T ~ = U T e T n .  
n=O 

The Disjunctive Database Rule (DDR) can be characterized as follows. Assume that 
P is a not-free DLP. Then, 

DDR(P) = {M E M(P) :  Vx E A(P) - TpTw. M ~ ~x}. 

9 In [11] a proof of membership of ECWA-Entailment in 112 e is already sketched. 
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Informally, D D R  adds to P all literals ~x where atom x does not occur in T T w. 
Notice that, unlike the above semantics, D D R  is syntax-dependent. 

Example 4.1. Consider the logically equivalent programs P1 and P2: 

e l  : a~--- 

P2 = a V b ~  a ~  . 

Then, Tp, Tw = {a} and Te2 Tw = {a,b}. Hence, DDR(P1) ~ whileDDR(P2) 
~b. 

The complexity of consistency checking is easily determined. Ross and Topor 
show that P is DDR-consistent if P is consistent. Since the converse is obvious, 
DDR-Consisteney and WGCWA-Consistency are trivial if P does not contain 
integrity clauses, as P is consistent in this case. In the general case, we obtain by 
the NP-hardness of MSAT the following simple result. 

Proposition 4.4. DDR-Consisteney and WGCWA-Consistency are NP-complete. 

Next we consider entailment. It is not hard to see that Tp T ~ can be computed 
efficiently; hence, the complexity of DDR-Entailment and WGCWA-Entailment is 
also easy. 

Proposition 4.5. DDR-Entailment and WGCWA-Entailment are coNP-complete. 

Notice that Chan proved that if F is a literal, then DDR-Entailment is coNP- 
complete in general, but polynomial if no integrity clauses are present [13]. 

Chan improved the DDR semantics by taking care of negative clauses in P, 
which are not respected by DDR. 

Example 4.2. Consider the program 

P =  a V b * -  ~--a,b c~--a,b. 

Then DDR(P) ~ ~c, which is not very intuitive. 

Under Chan's Possible Worlds Semantics (PWS), however, P W S ( P ) ~  ~c as 
suggested by intuition. 

Independently, Sakama developed his Possible Models Semantics (PMS) 
[56] for disjunctive programs. Chan showed that PMS and PWS are in fact 
equivalent. 

For space reasons, we provide here only a characterization of the PMS. A 
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spl i t  p r o g r a m  of a DLP P is any program obtained if every clause 

al V . . . V a n ~ bl , . . . , bm, n >__ 2, 

in P is replaced for some nonempty N c_C_ { 1 , . . . ,  n} by the Horn clauses 

a p ~ - - b l , ' " , b m ,  for al lp  E N. 

Let S P ( P )  be the family of all split programs of P. Let P be a not - f ree  DLP. Then, 

PMS(P) = {M E MM(P ' ) : /Y  E ST'(P)}. 

Notice that the PMS coincides with the D D R  if P is positive; hence, PMS and PWS 
are syntax dependent. Chan has shown [13] that if P is consistent, then P is PWS- 
consistent; the converse follows from the definition. From the NP-hardness of 
MSAT, we thus obtain the following. 

Proposition 4.6. PWS-Consistency and PMS-Consistency are N P - c o m p l e t e .  

Concerning entailment, Chan has shown [13] that if F is a literal, then PWS- 
Entailment is coNP-complete in general, but is polynomial if integrity clauses are 
excluded. We obtain the following. 

Theorem 4.2. PWS-Entaihnent a n d  PMS-Entaihnent are c o N P - c o m p l e t e .  

Proof .  It remains to show the membership part, which can be done as follows. A 
guess for M E PMS(P) can be verified in polynomial time as follows) ~ Guess 
/Y E SP(P)  to verify M. Since P' is a collection of Horn clauses, P' has in case of 
consistency a unique minimal model M', which is efficiently computable. If 
M '  = M ,  then M E PMS(P) holds. Thus, deciding PMS(P) [~ F is in NP, which 
implies membership of the problems in coNP. �9 

5. Stratified disjunctive programs 

The concept of stratification, which had been discussed by Chandra and 
Harel [14], was introduced for logic programs independently by Apt, Blair, and 
Walker [2] and by van Gelder [64]; Przymusinski generalized it to DLPs (without 
integrity clauses) [48]. A DLP P without integrity clauses is s t r a t i f i e d i f f  it is possible 
to partition the atoms into strata (S1, . . . ,  Sr),  such that for every clause 

al V . . .  V an +--- b l , ' ' '  ,bk, n o t c l , . . . ,  nOtCm 

l0 Chan follows a different proof. 
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in P there exists a constant c, 1 < c < r, such that 

Stratum(a/) = c, for all 1 < i < n, 

Stratum(bj) < c, for all 1 < j < k, 

Stratum(ct) < c, for all 1 < l < m, 

and 

where Stratum(x) = i i f fx  E Si. Any such ( S 1 , . . .  , St) is a stratification of  P. 11 It is 
well-known that a stratification of  a DLP P can be efficiently found. In particular, 
every positive DLP is stratified by choosing S = (A(P)). 

Gelfond et al. [28] defined the Iterated CWA (ICWA) as iterated application 
of  ECWA to a stratified DLP. Let (/5; Q;Z)  be a partition of  A(P) and 
S = (S1 , . . . ,S r )  a stratification of  P, and let Pi be the clauses from P that 
contain only atoms from Sj, j < i in their heads . Furthermore,  let/5i =/5 fq Si, 
2i = 2n(s1 u . . .us i ) .  

The ICWA of  P can be characterized as follows (of. [28]). 

ICWAf,;21 (P1) = ECWAp I ;21 (el), 

ICWAel >,..>~,+1 ;2.+1 (Pn+l) = 

ECWAp,§ 1 (P,+I U a~(ICWAPl>...>p,;2,(P,))), 

ICWAbl>...>pr;2(P ) = ICWAp1>...>L;2r(Pr ), 

n > 0 ,  

where ~'(A4) is some DLP P' such that M(P')  = .M. 
Stratifiability of  a program assures consistency; this is maintained for ICWA 

under arbitrary partitions of  A (P). 

Proposition 5.1. [28] Let P be a DLP P (without integrity clauses) stratified by S. 
Then; for any partition 7r = (P; Q ;Z)  of  A(P), P is ICWA-consistent with respect 
to S and ~r. 

Thus ICWA-Consisteney is trivial) 2 Now let us consider entailment of  a 
formula. Recall that a positive DLP P is stratified by taking S = (A(P)). Thus 
for any partition (/5;Q;Z), we have ICWAp;2(P ) = E C W A p ; 2 ( P  ). F rom 
Theorem 4.1 we hence obtain the following. 

Theorem 5.1. ICWA-Entailment, given a stratification S and a partition (P; Q; Z) of  
A (P), is H~-hard, even if  P is positive and F is a literal. 

n It is not clear how to extend the concept of stratification to programs with integrity clauses in a 
reasonable way. Hence, we do not consider such an extension. 

12 However, notice that integrity clauses are not permitted, and that S-Consistency is trivial for many 
other semantics in this case, too. 
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By results in [28, section 6], the models under ICWA can be described by the 
intersection of certain applications of ECWA. 

Lemma 5.1. [28] For any D L P  P stratif ied by S and any part i t ion (/5; Q; Z) ,  

r 

ICWAp~>'">Pr;2(P) : N ECWAk,;Pi§ 
i=l 

The next lemma, which is implicitly used in [21], immediately follows from the 
results on circumscription in [10] and the equivalence of CIRC and ECWA in the 
propositional case. 

Lemma 5.2. Let  P be a D L P ,  let (/5; Q.; Z)  be a parti t ion o f  A(P) ,  and let M E M(P). 
Deciding whether M E ECWAp;2(P ) is in coNP. 

We thus obtain the following result. 

Theorem 5.2. ICWA-Entailrnent, given a stratification S = ($1,. . . ,  Sr) and a parti- 
tion (/5; Q; Z) o f  A(P) ,  is 1-I~-complete. 

P r o o f  By Theorem 5.1 it remains to show the membership part. 
A guess for a model M E ICWAp~> >L;2(P) such that M [~ F can be verified 

in polynomial time with an NP oracle: Indeed, from Lemma 5.1 M E  
ICWAkl > >kr;2(P) iff M E ECWAL;L+Iu  uLu2(P) ,  for all 1 < i < r. Each of 
these membership tests is by Lemma 512 possible with a query to an NP oracle. 
Hence, membership of ICWA-Entailment in II~' follows. I 

6. Perfect model semantics 

Perfect model semantics was proposed by Przymusinski in [48] to  capture the 
meaning of normal logic programs which are not stratifiable. It involves a prefer- 
ence relation among models based on the structure of the clauses which is, like 
ICWA, in the spirit of minimal model semantics. 

For a DLP P without integrity clauses, the priority relation < on atoms [48] is 
defined using an auxiliary relation -< as follows. For each clause 

al V �9 �9 �9 v a n .-- bl, �9 �9 �9 bk, nOt Cl , �9 �9 �9 nOt Crn 

from P, it holds that 

(i) ai < cj, for all l < i < n, l _< j < m, 

(ii) a i -<bj ,  f o r a l l l  < i < n ,  1 < j < k ,  and 

(iii) a i ~_ aj, for all 1 < i, j < n. 
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Now < and _ are the smallest extensions to (i)-(iii) which satisfy a < b =~ a ___ b 
and which are closed under transitivity, i.e. a _ b, b _ c =,- a _ c and a _ b, b < c 
(resp. d < a) ~ a < c (resp. d < b). Intuitively, x < y means that y has higher 
priority than x. 

We naturally extend this definition to general DLPs, in which integrity 
clauses are simply ignored for defining _ and <. Notice that this generalization 
has no effect on the complexity of the considered problems in the general case. 

Definition 6.1. The preference order << on M(P) is defined by M 1 << ME iff M1 yA M2 
and for  each x E M1 - M2 there exists y E ME -- M1 such that x < y. 

Notice that M1 < ME ~ M1 <~ M2. It is not hard to find an algorithm that, 
given a pair of atoms x, y, decides x < y efficiently. Consequently, 

Proposition 6.1. Given P and M1, ME E M(P), M 1 << M 2 /S efficiently decidable. 

A model M of P such that no M' E M(P) is preferred over M, i.e. M' << M, is 
called perfect. The perfect model semantics is defined as follows. 

PERF(P) = {M ~ M(P) :  VM' E M(P). M' ~< M}. 

Przymusinski has shown the following properties. 

Proposition 6.2. [48] PERF(P) C_ MM(P), and M E MM(P) isperfect iffthere exists 
no M' E MM(P) such that M'  << M. 

Notice that the program 

P =  p , - -  notp 

which is not stratifiable, has the perfect model {p}. However, not every consistent 
(and hence MM-consistent) program P has a perfect model. 

Example 6.1. The program 

P =  q ~ -~p p ~ -,q 

has no perfect model: MM(P)= {{p}, {q}} and {p} << {q}, {q} << {p}. 

To our best knowledge, no complexity results for PERF-Consisteney and 
PERF-Entailment have been derived so far, for the general case as well as for the 
restrictions to definite and nondisjunctive programs. 

The following result provides a lower bound for the problem of consistency 
checking in the general case. 
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Theorem 6.1. PERF-Consisteney is E~-hard, even i f  P does not contain integrity 
clauses. 

Proo f  We show this by a reduction of  deciding the validity of  a quantified Boolean 
formula 

= 3 X l ' ' "  3 X n V Y l " ' V y m E  , n , m  >_ 1, 

where E = D 1 V . . .  V Dr and each Di = Li,1 A Li, 2 ALi,  3 is a conjunction of  literals 
Li j  over atoms xl, �9 �9 �9 Xn, Y l , . " ,  Ym. The reduction is similar to the one in the proof  
of  Theorem 3.1. Let Vl , . . . ,  vn and Z l , . . . ,  Zm, w, w' be new propositional atoms and 
define the following DLP P: 

X i V ~3 i +--- 

yj V zj ~ yj ~ w, w' zj ~ w, w' 

w ~ yj ,z j  w' ~ yj, zj 

w V w' ~-- a(Lk,1), a(Lk,2), tr(Lk,3) 

W ~-- n o t  W t W t ~-- n o t  W 

for each i =  1 , . . . , n  

for e a c h j  = 1 , . . . , m  

for each k = 1 , . . . , r  

where cr is as in the proof  of  Theorem 3.1, i.e. it maps literals from atoms Xl , . . .  , Xn, 
Yl,. .- ,Ym to atoms as follows: 

V i if L = -~xi for some i = 1 , . . . ,  n, 

a ( L ) =  zj i f L = - ~ y j f o r s o m e j = l , . . . , m ,  

L otherwise. 

Again, vi intuitively corresponds to ~x; and zj to ~yj. 
We make the following observations (1)-(3). (1) For  any model M of  P, if 

M ~ yj A Zj for some 1 < j < m or M ~ w A w', then M b w A w' and M ~ yj A Zj 
for all 1 < j < m. (2) I f  M E MM(P),  then M satisfies exactly one of xi and vi, 
for every 1 < i < n. (3) For  every 1 < i < n, there exists no a tom p such that 
x i < p  or vi < p ,  and for each a tom q from { w , w ' , y l , z l , . . .  ,ym, Zm}, q < w and 
q <  w'. 

We show that P has a perfect model iff the formula cI, is valid. 
"=~": Let M be a perfect model  of  P. Then, since M E MM(P) ,  from (2) M 

satisfies exactly one o f x  i and vi, for every 1 < i < n. It holds that M ~ w A w '. For  if 
not, then assume, since M ~ w V w', that M ~ w. The symmetry between w and w' 
in P implies that M'  = M - {w} t3 {w'} is another  minimal model of  P. This model 
satisfies M'  << M, hence M is not  a perfect model of  P, which is a contradiction. The 
case M ~ w' is analogous. Thus M ~ w A w', and hence yj, zj E M,  for each 
1 < j < m. Let the truth value assignment qo to X l , . . . ,  x n be defined by 

[ t ~ e  i f x i E M ,  f o r i = l  .. n. 
qo(xi) = I. false i f v i E M ,  ' "' 
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Since M is a perfect (and hence a minimal) model of P, for every extension of ~ to 
Y l , . . .  ,Ym, there must exist a k from 1, . . .  ,r  such that qa satisfies Lkj, for each 
1 < j < 3. For otherwise, there would exist a model M' of P such that M' < M 
and hence M' << M. (M' is straightforwardly constructed from ~p and assigns w 
and w' false.) This M' invokes a contradiction that M is a perfect model of P. 
Consequently, ff is valid. 

"r Suppose e~ is valid. Let ~ be a truth value assignment to x l , . . .  , Xn 
such that every extension of ~o to Yl,.-.,Ym satisfies E. Let I be the following 
interpretation: 

I ~- {X  i : ~O(Xi) -~ t rue ,  1 < i < n} U {vi : qa(xi) = false, 1 < i < n} U 

{Yl, Zl , ' ' " ,  Ym, gin, W, W'}. 

Then, I is a model of P, and in fact a minimal model of P. Let M be any minimal 
model of P distinct from I. (2) implies that there must exist an i from 1 , . . . ,  n such 
that xi E M - I  or vi E M - I .  From (3) it follows that M ~< I. Thus from 
Proposition 6.2 it follows that I is a perfect model of P. 

Since P can be constructed in polynomial time, the result follows. �9 

We obtain the following complexity characterization of PERF-Consistency. 

Theorem 6.2. PERF-Consistency is E~-complete. 

Proof. By Theorem 6.1 it remains to show membership in this class. 
A guess M for a perfect model of P can be verified with an NP oracle in poly- 

nomial time. Indeed, deciding whether there exists no M ' E  M(P) such that 
M' << M is in coNP as deciding << is polynomial. �9 

An interesting issue is the complexity of PERF-Consisteney for nondisjunc- 
tive DLPs. Recall that it is NP-complete to decide whether a nondisjunctive 
program (with or without integrity clauses) has a stable model. If integrity 
clauses were permitted, then, under the above definition of <, PERF-Consisteney 
would be still E2e-hard. (The program P in the proof of Theorem 6.1 can be easily 
rewritten such that the transformation works in this case.) However, the complexity 
of this problem is unclear if integrity clauses are not permitted. The problem 
remains intractable (coNP-hard), but it is questionable whether it is still E~'-hard. 
We provide a result that gives some evidence that for such programs the problem 
is not in NP U coNP. 

We show this by a reduction from UMINSAT, which is the problem to decide 
if a collection C = {C1,. . . ,  Cn} of propositional clauses has a unique minimal 
satisfying truth assignment, i.e. whether a logically equivalent DLP P has a 
unique minimal model. The following has been shown in [21]. 
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Proposition 6.3. UMINSAT is coNP-hard and, unless the polynomial hierarchy 
collapses, UMINSAT does not belong to coD e. 

coD e is a complexity class that contains -most  likely properly- NP U coNP 
[15]. We note the following lemma. 

Lemma 6.1. UMINSAT/s polynomially transformable to deciding whether a definite 
DLP has a unique minimal model. 

Proof. Let a, b, and c be new atoms not occurring in C. Let P be a DLP logically 
equivalent to C U {~c}. Clearly, P has a unique minimal model iff C has a unique 
minimal satisfying truth assignment. Let the DLP P' contain the following clauses: 

(1) a ~ notb, c 

(2) x ~ c for each atom x occurring in C, and 

(3) c ~ - ~ C i  for e a c h C i E C ,  

where ~Ci is the conjunction of the opposites of all literals in C;. Notice that 

M(/~) = {I, IU {a}, IU  {b}, IU  {a,b}:  I E M(P)} U 

{A(P) U {a}, A(P)U {b}, A(P) U {a,b}}. 

Thus it follows that P' has a unique minimal model iff P has a unique model, and the 
lemma follows. �9 

Theorem 6.3. PERF-consistency for definite DLPs is coNP-hard and, unless the poly- 
nomial hierarchy collapses, not in NP U coNP. 

Proof. Let P be a DLP as in Lemma 6.1. Let p be a new atom not occurring in P, 
and let P' be the DLP obtained from P by adding for each pair of atoms q, r that 
occur in P the clause 

q +-- not r, p. 

This clause assures that q < r holds in P'. Notice that no minimal model of P' 
contains p. Thus, for any distinct minimal models M and M' of P', M << M' and 
M' << M holds. Hence it follows from Proposition 6.2 that P' has a perfect model 
iff/Y has a unique minimal model. It holds that P' has a unique minimal model 
iff P has a unique minimal model. Consequently, P' has a perfect model iff P has 
a unique minimal model. Thus the result follows. �9 

Now let us consider the complexity of entailment. For the lower bound of 
PERF-Entailment, we make use of the following property. 
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Proposition 6.4. [48] I f  P is a positive DLP,  then PERF(P) = MM(P). 

Theorem 6.4. PERF-Entailment is II~-cornplete. II~-hardness holds even i f  P is posi- 
tive and F is a literal. 

Proof. Membership in II~' holds as a guess for M E PERF(P) such that M ~ F can 
be verified in polynomial time with an NP oracle (cf. proof of Theorem 6.1). Hard- 
ness for II2 P under the asserted restriction follows from Corollary 3.2 and 
Proposition 6.4. �9 

As for PERF-Consistency, it is open whether the complexity of PERF-Entail- 
ment is for definite DLPs the same as in the general case. (If P is nondisjunctive, the 
problem remains 1-I~',hard.) The problem is trivially coNP-hard if F is an arbitrary 
formula; whether this applies to the case where F is a literal remains unclear. From 
Theorem 6.3, we obtain the following interesting lower bound. 

Theorem 6.5. PERF-Entailment where P is definite and F is a literal is NP-hard and, 
unless the polynomial hierarchy collapses, not in NP U coNP. 

Proof  Let P be a definite DLP P and p an atom not occurring in P. Then, 
PERF(P U {p +--}) ~ ~p iff P is not PERF-consistent. Since deciding the latter is 
coNP-hard and not in NP U coNP by Theorem 6.3, the result follows. �9 

7. Classical negation 

Gelfond and Lifschitz [25] pointed out that traditional logic programming 
does not allow to deal directly with incomplete information, which is a shortcoming 
for convenient knowledge representation. In order to overcome this limitation, they 
introduced extended definite logic programs, which permit classical negation 
besides negation as default. They defined the answer set semantics for such 
programs, which is in the spirit of stable model semantics. Moreover, they consid- 
ered also the generalization of extended definite logic programs by allowing for 
disjunction in the rule heads, and suitably generalized the answer set semantics 
for the resulting extended disjunctive logic programs (EDLPs). Przymusinski 
proposed in [49] an extension of DLPs which is basically equivalent to EDLPs 
with answer set semantics. 

Gelfond and Lifschitz emphasized that the answer set semantics of extended 
definite programs can be equivalently described by a reduction of such programs 
into a fixpoint nonmonotonic formalism, and described such a reduction to Reiter's 
default logic [53]. The view of extended definite programs as default theories led 
Ben-Eliyahu and Dechter to apply techniques developed for answering queries on 
default theories to EDLPs [4]. They showed that answer set semantics for the 
large class of headcycle-free EDLPs can be efficiently expressed in propositional 
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logic in polynomial time. Generalizing the results of Marek and Truszczyflski [38, 
39] and Bidoit and Froidevaux [6], they obtained that for this class the problems 
of deciding whether an answer set exists and whether a set of  literals occurs in 
any (resp. every) answer set is efficiently reducible to deciding satisfiability (resp. 
provability) of a propositional formula. A similar eff• reduction for the class 
of all propositional EDLPs was left as an open issue in [4], which has been resolved 
(unless the polynomial hierarchy collapses at its first level) in [20]. 

An extended disjunctive logic program (EDLP) is a collection of rules of the 
form 

Ll l - . .  ILk +- Lk+l, . . .  ,Lm, not Lm+l,. . . , not Ln, 

where n _> m > k > 0 and each L i is a literal under classical negation "-7", and "not" 
is a negation-by-default operator. The symbol "l" is used to distinguish the non- 
standard "effective" disjunction in the head of a rule from standard logical disjunc- 
tion. A rule with empty head (k = 0) is called integrity rule. An EDLP P in which 
"not" does not occur is called not-free. We consider here finite propositional EDLPs 
in which all atoms are propositions, and omit the phrase "finite propositional" in 
the sequel. 

Answer sets of  EDLPs are defined as follows. Let a context [4] be any subset 
of Lit, the set of literals under ~ from the atoms of P. Let P be a not-free EDLP. 
Call a context S closed under P [40] iff for each rule LI[ . . .  ILk ~- Lk+l , . . . ,  Lm in 
P, if Lk+l , . . . ,  Lm E S, then for some i = 1 , . . . ,  k, Z i E S. An answer set of P is 
any in terms of C_ minimal context S such that (1) S is closed under P and (2) if 
S is inconsistent, then S = Lit. 

An answer set of a general EDLP P is defined as follows. Let the reduct o f  P 
with respect to context S (denoted by Red(P, S)) be the EDLP obtained from P by 
deleting 

(i) each rule that  has not L in its body for some L E S, and 

(ii) all subformulae of the form not L of the bodies of the remaining rules. 

Any context S which is an answer set of  Red(P, S) is an answer set of P. By 
ANSW(P) we denote the collection of all consistent answer sets of an EDLP P. 
An EDLP P is ANSW-consis tent  iff ANSW(P) ~ ~), and P entails a propositional 
formula F (P ~ F) iff F E Cn(S) for each S E ANSW(S). 

Example 7.1. Consider the following E D L P  borrowed f rom [49], which states that 
everyone is pronounced not guilty unless proven otherwise." 

innocent[guilty +-- charged 

--,guilty ~ not proven 

charged 
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P has the single answer set {-~guilty, innocent, charged}. Neither proven nor ~proven 
appears in the answer set, which informally means that nothing is known about proven, 
and both notproven, not (~proven) are assumed by default. 

The problems ANSW-Consisteney and ANSW-Entai lment  are defined analogous to 
the problems S-Consistency and S-Entailment for s tandard DLPs.  Notice that  the 
complexity of  these problems for general EDLPs,  the latter stated for instances 
where F is a conjunction of  literals, was left open in [4]. 

We provide the solution using the correspondence between stable models  of  
disjunctive logic programs and answer sets of  EDLPs.  Let for every D L P  clause 

C = al V . . .  V a n +--- b l , ' '  ", bk, no tbg+l , . . . ,  notbm 

be e(C) the rule 

all '"  lan ~- bl, .  ,. ,bk, no tbk+l , . . . ,  notbm, 

and denote by e(P) the collection of  all e(C) for C C P. 

Lemma 7.1. Let  P be a D L P  and M be an interpretation. Then, M is a stable model o f  
P i f f M  is a consistent answer set o fe(P) .  13 

Proof. Notice that  for any interpretat ion I,  e(P/)  = Red(e(P),  I) ,  and that  each 
answer set of e(P) contains only positive literals, i.e. corresponds to some interpre- 
tation. Since negation does not  occur in PJ resp. Red(e(P),  I) ,  it follows for every 
interpretat ion J c_ I ,  that  J is closed under  Red(e(P), I) if J is a model  o f / ' I  and 
vice versa. Consequently,  J is a minimal  model  of  P/  iff J is a minimal  context 
which is closed under  Red(e(P), I). Hence it follows that  I is a stable model  of  P 
iff I is a consistent answer set of  e(P). �9 

Theorem 7.1. ANSW-Consistency is EP-complete. E~-hardness holds even i f  '%" does 
not occur in P and P contains no integrity clauses. 

Proof. Membership  in E~' is shown as follows. A guess S for a consistent answer set 
S of  P can be verified in polynomial  t ime with an N P  oracle: Red(P,  S) is efficiently 
computable,  and deciding whether  S ' C  S exists such that  S' is closed under  
Red(P, S) is possible with a call to the NP  oracle. Hardness for EP under  the 
asserted restriction follows f rom Lemma  7.1 and Theorem 3.1. �9 

Theorem 7.2. ANSW-Entailment is II~-complete. P . . . . .  I-I 2-hardness holds even i f  -~ does 
not occur in P, P contains no integrity rule, and F is a literal. 

13 M is seen as a subset of the Herbrand base, i.e. as a set of positive literals. 
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Proof. Membership in II~ follows since a guess S for a consistent answer set S of P 
such that S [~ F can be verified in polynomial time with an NP oracle (cf. proof  
of Theorem 7.1). Hardness for I12 e under the asserted restriction can be easily 
derived from Theorem 7.1. Let P' be the program resulting from a "-~"-free 
program P that contains no integrity clauses by adding the clause p V q ~ ,  where 
p and q are new atoms. Then, clearly ANSW(P')  ~ p iff ANSW(P) = 0; hence, 
the result follows. �9 

We conclude this section with a remark on implications of our results to a 
recent extension of logic programming. Marek, Rajasekar, and Truszczyfiski 
propose in [37] an extension of EDLPs in which the atomic formulae L i in a rule 
are from a class O r of  propositional formulae (which includes all atoms) instead 
from Lit, and define the concept of answer set (in their terms stable answer set) 
accordingly. They report that deciding whether a program P has a stable answer 
set is in E~', and that deciding whether every stable answer set of P entails a 
formula F E Or is in H e. They conjecture that the problems are E~-complete resp. 
II~'-complete if Or consists of  all atoms only. Their framework, however, reduces 
in this case to EDLPs and answer sets as above. Thus from Theorem 7.1 this conjec- 
ture is easily proved. 

8. Application to nonmonotonic logics 

It is well-known that logic programming is closely related to various forms of 
nonmonotonic  reasoning, and that logic programs can be equivalently expressed in 
nonmonotonic  formalisms by use of  transformations, cf. [46]. We exploit this 
relation to obtain new complexity results for nonmonotonic  logics. 

In particular, we consider in this section applications of  the above complexity 
results for disjunctive logic programming to disjunctive default logic [27] and auto- 
epistemic logic [45, 38]. We assume that the reader is familiar with Reiter's default 
logic [53] and Moore's autoepistemic logic [45]. 

8.1. DISJUNCTIVE DEFAULT LOGIC 

Disjunctive default theory has been proposed in [27] as a generalization to 
default logic to overcome difficulties of  default logic in handling disjunctive infor- 
mation. A disjunctive default is a rule of the form 

7 1"" 17. ' 

where ~,/31,... , 3m, 71, �9 �9 �9 %, (n, m _> 0) are quantifier-flee first-order formulae. 
is the prerequisite, the/3 i are the justifications, and the 7j are the consequents. The 
familiar default rule of Reiter's formalism is obtained for n = 1. A disjunctive 
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default rule allows to effectively conclude one of the "),i's (rather than their disjunc- 
tion) if a is derivable and ~/~l,...,-~/3m are not derivable. The symbol "1" denotes as 
in EDLPs effective disjunction. A disjunctive default theory is a set of disjunctive 
defaults. The semantics of a disjunctive default theory is defined in terms of its 
extensions, which are deductively closed sets of formulae defined analogous to 
extensions of Reiter's default logic (cf. [27] for details). We consider in the following 
finite disjunctive default theories over a propositional language. 

The main reasoning tasks for disjunctive default logic are the following. 
Given a disjunctive default theory D, decide (i) whether D has an extension; (ii) 
whether a given formula qo belongs to some extension of D; and (iii) whether a 
given formula qo belongs to every extension of D. 

By very recent results in [37], (i) and (ii) are in E2 p and (iii) is in II~ ~ Notice 
that the same upper bounds have been established for the corresponding problems 
in Reiter's default logic [29, 62]. 

Since disjunctive default logic properly generalizes Reiter's default logic, it 
follows from the results in [29, 62] that (i) and (ii) are E~'-hard and that (iii) is 
II~'-hard if arbitrary propositional formulae are permitted to appear in the defaults. 

Our results on EDLPs allow to sharpen these lower bounds considerably, 
namely to disjunctive default theories where a and all/5/and 7j are conjunctions 
of literals. Notice that for classical default logic, under this restriction (i) and (ii) 
are in NP and (iii) is in coNP (this can be easily shown from the constructive 
fixed-point characterization of extensions). Moreover, by the results in [31], the 
problems are also hard and hence complete for the respective classes. 

As shown in [27], a propositional EDLP P can be transformed into an equiva- 
lent disjunctive default theory embo (P) by replacing every rule 

t l [  �9 �9 �9 ILk ~ Lk+l, . . . , Lm, not Lm+l,.  . . , not Ln, 

with the disjunctive default 

Lk+I A �9 .. A L m : Lm+ 1 , . . . ,  L n 

LII " " ILk 

where L is the opposite literal of L. 

(1) 

Proposition 8.1. [27, Theorem 7.2] Let  P be a propositional E D L P .  Then S is an 
answer set o f  P i f f  S is the set o f  literals f r o m  an extension o f  embD(P). 

Applying this embedding and our results on EDLPs in the previous section, 
we arrive at the following sharpening of the lower bounds for the main reasoning 
tasks in disjunctive default logic. 

Theorem 8.1. Let  D be a finite propositional disjunctive default theory such that each 
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prerequisite a and all justifications/3 i and consequents "yj occurring in D are conjunc- 
tions of  literals, Then, deciding (i) whether D has an extension is E;-hard," (ii) whether 
a given literal L belongs to some extension of  D is E~-hard," and (iii) whether a given 
literal L occurs in every extension of  D is II~-hard. 

Proof  Let P be an EDLP in which "4"  does not occur and which does not contain 
any integrity rule. Each answer set of P must be consistent. Hence from 
Proposition 8.1 each extension of embD(P) is consistent in this case. Thus (i) 
follows from Theorem 7.1. To show (ii), add the clause p +--- to P, where p is a 
new atom not occurring in P, and let L be p; hence (ii) follows from Theorem 7.1. 
(iii) follows from Theorem 7.2. �9 

As seen from the proof, the result of  Theorem 8.1 remains valid if all justifi- 
cations and consequents occurring in D must be literals and extensions must be 
consistent, i.e. "extension" is replaced by "consistent extension". Notice that 
Theorem 8.1 extends to completeness results. 

8.2. AUTOEPISTEMIC LOGIC 

Recall that E is an autoepistemic expansion [45] of  an autoepistemic theory 
T, i.e. a set of formulae from a modal language with modal operator L, iff 

E = Cn(TU{L~o:  ~oE E} U {~L~o : r162 E}) 

[49] offers a transformation by which any DLP P without integrity clauses can be 
embedded into an equivalent autoepistemic theory embA (P). For every clause 

al V . . .  V a n ~ b l , . . .  ,bk, notbk+l , . . . ,  notbm 

of P, the formula 

bl A . . .  A bk A --,Lbk+l A . . .  A -~Lbm ~ al V �9 .. V an (2) 

is in embA (P), and for every propositional atom p the formula 

p Lp 

is in embn (P), which contains nothing else. It is easy to see that every stable set (cf. 
[38] for a definition) which contains embA (P), and hence every stable expansion of 
embA (P), contains p or ~p for every atom p. 

Przymusinski has shown the following property of embA (P). 

Proposition 8.2. [49] Let P be a D L P  without integrity clauses. There is a 1-1 corre- 
spondence between the stable models o f  P and the stable expansions of  embA (P), such 
that atom p is true in a stable model iff p belongs to the corresponding stable expansion. 
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The main reasoning tasks in autoepistemic logic are the following. Given an 
autoepistemic theory T, decide (i) whether T has an expansion; (ii) whether a given 
formula ~p belongs to some expansion of T; and (iii) whether qo belongs to every 
expansion of T. Niemel/i [47] showed that in case of a finite propositional T, (i) 
and (ii) are in E~' and (iii) is in II~'. Gottlob complemented these upper bounds 
with respective hardness results [29]; his proof, however, required that complex 
formulae can occur in T. 

Our results on stable model semantics lead by virtue of the embedding 
embA(.) to the following noticeable sharpening of these hardness results. Call an 
autoepistemic theory a disjunctive autoepistemic literal theory (DALT) if it contains 
only disjunctions D1 v- - -  V Dn, where each D; is a modal literal LB or ~LB, where 
B is a literal, or D; is a literal. 

Theorem 8.2. Given a finite propositional DALT T, deciding (i) whether T has a stable 
expansion is E(-hard," ( ii) whether a given atom p belongs to some stable expansion of  
T is E(-hard," and (iii) whether a given atom p belongs to every stable expansion of  T is 
Fl ~-har d. 

Proof Let P be a DLP without integrity clauses. Notice that each stable expansion 
of embA(P) is consistent. We apply Theorem 3.1 and Proposition 8.2. (i) follows 
immediately. To show (ii) and (iii), let p be a new atom which does not occur in 
P; p belongs to some stable expansion of embA(PU {p ~ } )  iff P has a stable 
model, which proves (ii). Further, p belongs to every stable expansion of 
embA(P U {p *--p}) iff P has no stable model, which proves (iii). �9 

As seen from the proof, Theorem 8.2 holds also if only consistent stable 
expansions are permitted, i.e. "expansion" is replaced by "consistent expansion". 
By the results in [47], the hardness results extend to completeness results. 

To conclude this section, we mention that the results of this paper have 
further applications to variants of standard autoepistemic logic. For example, the 
above embedding embA(.) also can be applied to moderately grounded expansions 
and parsimonious stable expansions [19]. Notice that based on the results of [19], 
Schaerf was able to derive similar complexity results for these variants of autoepis- 
temic logic [57]. Furthermore, complexity results for restricted fragments of 
reflexive autoepistemic logic [61] and 3-valued autoepistemic logic [50] can be 
obtained by embeddings of EDLPs into reflexive autoepistemic logic [33, 40] and 
of DLPs into 3-valued autoepistemic logic [49]. 

9. Conclusion 

In this paper we have analyzed the computational cost of important problems 
for disjunctive logic programming in the case of finite propositional programs, in 
particular, the complexity of deciding whether a disjunctive logic program (DLP) 
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has a model under semantics S (S-Consistency) and the complexity of deciding 
whether a propositional formula is a consequence of all models of a DLP under 
semantics S (S-Entailment) have been studied for various well-known semantics S 
of DLPs. Besides sharpenings of known results, new results for the disjunctive 
stable model semantics (for models (DSM) as well as partial models (PDSM)) 
and the Perfect Model Semantics (PERF) have been derived. Furthermore, the 
complexity of the corresponding problems for extended disjunctive logic programs 
(EDLPs) under the answer set semantics has been settled. Our results provide the 
solutions to problems left open in [4] and to a conjecture in [37]. In particular, 
the question in [4] whether stable semantics can be transformed for all EDLPs in 
polynomial time into satisfiability or provability of a propositional formula has a 
negative answer unless the polynomial hierarchy collapses at its first level. 

It appeared that S-Consistency is E~'-complete for DSM, PDSM, ANSW, 
and PERF, and NP-complete for all remaining semantics except the Iterated 
Closed World Assumption (ICWA), which was restricted to programs without 
integrity clauses, i.e. clauses with empty heads. Under this restriction S-Consistency 
remains E~'-hard for DSM, PDSM, ANSW, and PERF, but becomes polynomial 
for all other semantics. An intuitive explanation of Ee-hardness of DSM resp. 
PDSM are two interacting sources of complexity: The (potentially exponential) 
number of candidates M for a stable model and, due to a minimality condition 
on M, the difficulty of checking whether a candidate is a stable model. Analogous 
explanations apply to ANSW and PERF. 

S-Entailment turned out to be II~'-hard for all considered semantics except 
the Disjunctive Database Rule (DDR) (resp. the equivalent Weak Generalized 
Closed World Assumption (WGCWA)) and the Possible Models Semantics 
(PMS) (resp. the equivalent Possible Worlds Semantics (PWS)), for which the 
problem is coNP-complete. For all Yl~'-hard semantics the problem is also known 
to be in IIe except the Generalized Closed World Assumption (GCWA) and the 
Careful Closed World Assumption (CCWA), for which A~'[O(log n)] is the currently 
best known upper bound. It was shown that the II~-hardness results still hold under 
the restriction that the program contains no integrity clauses, that negation does not 
occur in the program, and that F is a literal. In this case, the problem was known to 
be polynomial for DDR, WGCWA, PMS, and PWS. An intuitive explanation of 
II~'-hardness are two sources of complexity: The (potentially exponential) number 
of candidates for a model which does not satisfy F and, due to some minimality 
criterion, the difficulty of verifying that a classical model is a model under the parti- 
cular semantics. This difficulty is caused by disjunctions in the heads of clauses or, in 
some case, alternatively by integrity clauses. 

We believe that this paper supports a better understanding of the computa- 
tional properties of finite propositional DLPs. Exact complexity characterizations 
of tasks in logic programming help to gain insight into obstacles to efficient logic 
programming; the reader is referred to [12, 59] for more on this issue. 

The results of this paper and recent complexity results for nonmonotonic 
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logics (cf. [12] for an  overview) imply as a byproduc t  tha t  queries to D L P s  resp. 
E D L P s  can be efficiently t ransla ted into reasoning tasks in m a n y  forms of  non-  
mono ton i c  reasoning. Fo r  disjunctive defaul t  theory  and  autoepis temic logic we 
obta ined  new complexi ty  results by such t ransformat ions .  Vice versa, the results 
imply tha t  reasoning tasks in m a n y  n o n m o n o t o n i c  formal isms can be efficiently 
reduced to disjunctive logic p rogramming .  The computa t iona l  relat ionship under-  
lines the close connect ion  between disjunctive logic p rog ramming  and  non-  
mono ton ic  logics, and  supports  tha t  logic p rog ramming  is a competi t ive tool  for  
knowledge representat ion.  
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