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The lexicographic closure of any given finite set D of normal defaults is defined. 
A conditional assertion a b ~ b is in this lexicographic closure if, given the defaults D 
and the fact a, one would conclude b. The lexicographic closure is essentially a rational 
extension of D, and of its rational closure, defined in a previous paper. It provides a 
logic of normal defaults that is different from the one proposed by R. Reiter and that 
is rich enough not to require the consideration of non-normal defaults. A large number 
of examples are provided to show that the lexicographic closure corresponds to the basic 
intuitions behind Reiter's logic of defaults. 

1. Plan of the paper 

Section 2 is a general introduction, describing the goal of this paper, in relation 
to Reiter 's default logic and the program proposed in [2] by Lehmann and Magidor. 
Section 3 first discusses at length some general principles of the logic of  defaults, 
with many examples, and then puts this paper in perspective relative to previous 
work. Section 4 sets the stage for the present paper by describing the intuitive meaning 
of  default information and the formal representation used here for defaults. It singles 
out two different possible interpretations for defaults: a prototypical and a presumptive 
reading. Section 5 briefly discusses the relation between defaults and material 
implications. This paper proposes a meaning to any set D of defaults. This meaning 
is presented in a complex construction, which is described in full in section 9. Firstly, 
the different aspects of  this construction are presented and in section 6, the meaning 
of a set consisting of a single default is studied. Reiter's proposal does not enable 
the use of a default the antecedent of which is not known to hold. The new perspective 
of  this paper allows many more sophisticated ways of using default information. In 
particular, the default (a : b) may be used to conclude that, if b is known to be false, 
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then a should be presumed to be false, too. Section 7 is a short digression on non- 
normal defaults. It is shown that such defaults can never be understood if one 
requires that the closure of a set of defaults be rational. Section 8 studies interacting 
normal defaults that have the same rank (or strength). We propose that, in the case 
of contradictory defaults of the same rank, we try to satisfy as many as possible. This 
proposal is in disagreement with Poole [15], but in agreement with the maximal 
entropy approach of [6]. It is shown that this idea guarantees rationality. In section 9, 
a formal description of our complete proposal is given. First, a model-theoretic 
construction is presented: given a finite set D of normal defaults, a modular model 
is defined and the lexicographic closure of D is the rational consequence relation 
defined by this model. Then, an equivalent characterization in terms of maxiconsistent 
sets is given. Section 10 presents examples and the description of the answer provided 
by our proposal. One of those shows how and why this proposal disagrees with the 
maximal entropy approach. Section 11 is a concluding discussion. 

2. Introduction 

In [16], Reiter proposed a formal framework for default reasoning. Its focal 
point is the definition of an extension. In [17], Reiter and Criscuolo found that, in 
this framework, one must consider non-normal defaults. Non-normal defaults have, 
since then, been taken as the basic piece of default information by the logic programming 
community. An alternative point of view is propounded here. An answer is provided 
to the following question: given a set D of normal defaults, what are the normal 
defaults that should be considered as following from D, or entailed by D? The answer 
provides a logic of defaults that does not suffer from the problems of multiple 
extensions or the inability of Reiter's system to cope satisfactorily with disjunctive 
information. There is no need to consider non-normal defaults. In [12], Magidor and 
the present author proposed as their first thesis [12, thesis 1.1] that the set of defaults 
entailed by any set D be rational. This requirement is met. The rational closure of 
a set D, defined there, is not the set looked for, since it does not provide for inheritance 
of generic properties to exceptional subclasses. In the second thesis [12, thesis 5.25, 
section 5.9], they proposed to look for some uniform way of constructing a rational 
superset of the rational closure of a knowledge base. The answer provided here, the 
lexicographic closure, is almost such a set, and a simple variation meets the condition 
in full. Independently, Benferhat et al. [1] proposed a similar lexicographic construction 
based on an unspecified ordering of single defaults. When one applies their construction 
to the ordering on single defaults defined in [12], one obtains the lexicographic 
closure presented in this paper. Its computational complexity has been studied in [2] 
and [9]: it is in A~ and is NP-hard and co-NP-hard. The lexicographic closure is a 
syntactic construction in the sense of [14], i.e., it is sensitive to the presentation of 
the default information. 
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3. Nonmonotonic reasoning 

3.1. THE RATIONAL ENTERPRISE 

We shall briefly summarize [8] and [12] and set up the stage. This section was 
prepared in collaboration with David Makinson. Some nonmonotonic inference relations 
are better behaved than others. In particular, there are some simple closure conditions 
that appear highly desirable: reflexivity, left-logical-equivalence, right-weakening, 
and, or, and cautious monotonicity. The family of relations that satisfy these properties 
is closed under intersection. Therefore, given a set K of ordered pairs (a, b) of 
formulas (which we shall write a ~ b to remind us that they are meant to be elements 
of an inference relation), there is a natural and convincing way of defining a distinguished 
superset of K that satisfies these conditions: simply put K p, called the preferential 
closure of K, to be the intersection of all supersets of K that satisfy the above six 
conditions. 

However, there are other desirable "closure" (in a broad sense) properties that 
are much more difficult to deal with. Rational monotonicity defines a family of 
relations that is not closed under intersection. Other desirable conditions appear to 
be incapable of a purely formal expression, but may be conveyed intuitively and can 
be illustrated by examples. Because of their informal nature, their identification is 
not cut and dried, but four seem to be of particular interest: 

(1) the presumption of typicality, 

(2) the presumption of independence, 

(3) priority to typicality, and 

(4) respect for specificity. 

There may be other desirable properties. 

(1) The presumption of typicality begins where rational monotonicity leaves 
off. Suppose p ~ x E K. By rational monotonicity, the closure of K, K § will contain 
either p A q b ~ x or p b ~ -~q. But which? No guideline is given. The presumption of 
typicality (it may as well be called "a weak presumption of monotonicity") tells us that, 
in the absence of a convincing reason to accept the latter, we should prefer the former. 

Example 1 

If  K has p b ~ x as its sole element, there is no apparent reason why the relation 
K + D  K that we regard as "generated" by K should contain p ~ ~q.  Hence, it 
should contain p A q b ~ x. Note: In this and all examples, p, q, r . . .  x, y, z are understood 
to be distinct atomic formulas. 

(2) The presumption of independence is a sharpening of the presumption of 
typicality, and thus a stronger presumption of monotonicity. For, even if typicality 
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is lost with respect to one consequent, we may still presume typicality with respect 
to another, "unless there is reason to the contrary". 

Example 2 

Suppose K = { p b" x, p b '  ~q}.  Presumption of typicality cannot be used to 
support p A q b ~ x, since K § is known to contain p b ~ ~q. Presumption of independence 
tells us we should expect x to be independent of  q, and therefore unaffected by the 
truth of q. Therefore, it tells us, we should accept p A q b ~ x. 

Example 3 

Suppose K =  {p b~x,p A q b ~ -~x,p ~ y } .  Notice that p b ~ ~ q  is in K p, the 
preferential closure of K, and, therefore, the presumption of  typicality cannot convince 
us to accept p A q b ~ y. But we should presume that x is independent from y, since 
there is no reason to think otherwise, and put p A q b ~ y in the desired consequence 
relation K § D K. 

Remark 

The two conditions above may be interpreted as related to and strengthening 
the condition of rational monotonicity. The difference between rational monotonicity 
on the one hand, and the presumptions of typicality and independence on the other 
hand, is subtle and may be easily overlooked. Rational monotonicity is a constraint 
on the product K § D K, whereas presumptions of  typicality and independence are 
best understood as rough and partial guides to the construction of a desirable K +. 

(3) Priority to typicality tells us that, in a situation of  clash between two 
inferences, one of them based on the presumption of typicality, the other one based 
on the presumption of independence, we should prefer the former. Two examples are 
now provided. 

Example 4 

Suppose K = {p b ~ x, p A q b ~ ~x}.  The presumption of  typicality offers 
p A q A r b ~ ~x,  since there is no compelling reason to accept p A q b ~ ~r .  The 
presumption of independence offers both p A q A r b ~ ~ x  and p A q A r b ~ x. It 
clearly would not be justified to draw both conclusions. Priority to typicality tells us 
to prefer the former. 

Example 5 

Suppose K = {p b ~ x, t rue  b ~ q, q b ~ ~x}.  The presumption of  independence, 
acting on the last assertion of K, offers q A p b ~ ~x. This is in conflict with p A q b" x 
that is offered by presumption of typicality from the first assertion. Priority to typicality 
says we should prefer the latter conclusion. 
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(4) Respect for specificity tells us that, in case of a clash between two 
presumptions, one of them based on an assertion with a more specific antecedent then 
the other, we should prefer the conclusion based on the more specific antecedent. 
This principle is generally accepted and has been discussed in the literature. It is 
somewhat difficult to formalize: what does "based on" mean? It is closely related to 
the priority to typicality principle just described, but the exact relationship between 
these two principles still needs clarification. In examples 4 and 5, the priority given 
to typicality achieves precisely the respect for specificity we are looking for. In 
example 4, we prefer to use p /x  q p ~x  to p ~ x also because p A q is strictly more 
specific than p, i.e., p A q ~ p. In example 5, we prefer to use p ~ x to q ~ ~x  also 
because p is defeasibly more specific than q, since, from t rue  b ~ q, we shall conclude 
p ~ q by presumption of typicality or, preferably, presumption of independence. 
Another, more technical, reason to view p as more specific that q is that the rank (the 
definition found in [12] is explained at the end of section 9.1) o f p  is strictly greater 
than the rank of q. 

Of course, along with the above principles, one should also not forget avoidance 
of junk: the desired K § ___ K should avoid gratuitous additions (otherwise, e.g., the 
total relation would do). In other words, K § should be, in some sense, "least" among 
the supersets of  K satisfying the desired conditions. "Least" should certainly imply 
minimal in the set-theoretic sense, i.e. no strict subset is acceptable, but cannot mean 
"included in any acceptable superset", since our family is not closed under intersection. 

In [12], a construction is given that, given any (finite) set K of pairs a b ~ b 
provides a rational extension K such that K C_ K p C K = KP = K,  which behaves 
well so far as the presumption of typicality and the respect for specificity are concerned. 
However, it does not pay much heed to the presumption of independence. For example, 
it does not legitimize the conclusion p A q ~ y in example 3 above. The purpose of 
the present paper is to propose a different construction that performs better in this 
last respect, whilst not losing satisfaction of the other formal and informal properties. 

3.2. RELATED WORK 

Reiter's [16] was certainly one of the most influential papers in the field of 
knowledge representation. It proposed a way of dealing with default information. In 
short, it proposed to represent such information as normal defaults and to define the 
meaning of a set of  normal defaults as the set of extensions it provides to any set 
of sentences. In a follow-up paper [17], Reiter and Criscuolo remarked that, in many 
instances, the simple-minded formalization of situations involving more than one 
(normal) default was not adequate: the extension semantics enforced some unexpected 
and undesirable consequences. They proposed to remedy this problem by considering 
an extended class of defaults: semi-normal defaults. 

In the present paper, a different perspective on default reasoning is proposed. 
Normal defaults are considered and sets of normal defaults are given a meaning that 
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is different from the one proposed in [16]. With this meaning, the interactions between 
defaults are as expected and the consideration of non-normal defaults is superfluous. 
This perspective is in line with the first thesis of [12], which requires a set of defaults 
to define a rational consequence relation. It is also almost in line with the second 
thesis of the same paper, which requires a set of defaults to define a consequence 
relation that extends the rational closure of the set to defaults, and a straightforward 
variation will be shown to extend rational closure. This goal of implementing Reiter's 
program, but with different techniques, is similar to Poole's [15]. The present paper 
also shares some technical insights with Poole's. It may also be considered as a close 
relative to the maximal entropy approach of [6,7], but the semantics proposed here 
is different from the one obtained from maximal entropy considerations. This paper 
is a descendant of [11]. The main ideas of the lexicographic construction proposed 
in this paper have been proposed, independently, in [1]. There, the initial ordering 
of single defaults was left for the user to choose. A specific ordering of single 
defaults is used here. 

4. What is default information? 

Default information is information about the way things usually are. The 
paradigmatical example of such information, which has been used by most researchers 
in the field, is birds fly. Syntactically, a default is a pair of propositions that will be 
written as (a : b), where a and b are formulas (of a propositional calculus for this 
paper). Remember that only normal defaults are considered, so that (a : b) is our 
notation for Reiter's _5~_. The default (true �9 b) will be written as (: b) Given a set 
D of defaults representing some background information about the way things typically 
behave and a formula a representing our knowledge of the situation at hand, we shall 
ask what formulas should be accepted as presumably true. The meaning of a set of 
defaults D will therefore be understood as the set of pairs (conditional assertions) 
c p d it entails, i.e., for which d should be presumed to be true if c is our knowledge 
about the specific situation, i.e., represents the conjunction of the facts we know to 
be true. It is probably reasonable to expect that the conditional assertion c b ~ d be 
entailed by a set D containing the default (c : d), but this will be discussed in the 
sequel. Notice that we may, as well, consider that a set of normal defaults entails a 
set of defaults, confusing "snake" ( ~ )  and colon (:). 

The meaning of defaults is a delicate affair and it will now be discussed in 
depth. In [17], a prototypical reading is proposed: birds fly being understood as 
typical birds fly. However, there is another possible reading: birds are presumed to 
fly unless there is evidence to the contrary. This second reading will be called the 
presumptive reading. The conclusions of this paper may be summarized in three 
sentences. The two above readings are almost equivalent when isolated defaults are 
concerned, they are not when sets of defaults are concerned. The rational closure 
construction of [12] is the correct formalization of the prototypical reading. The 



D. Lehmann, Another perspective on default reasoning 67 

presumptive reading is the one intended by default logic and its formalization is the 
topic of this paper. The distinction between the two readings will be explained with 
an example. This example is formally equivalent to the Swedes example described 
informally in [12, p. 4]. In this example, as in all other examples of this paper, the 
formulas appearing in the defaults will be represented by meaningless letters and not, 
as customary in the field, by meaningful sentences. The remark that logic, the study 
of deductive processes, may be concerned only with the form of the propositions and 
not with their meaning, dates back to Aristotle. The use of semantically loaded 
formulas and the import of the reader's knowledge of the world may only hamper 
the study of the formal properties of nonmonotonic deduction (that should perhaps 
be called induction). When a given example is formally isomorphic to some well- 
known folklore example (or at least to some possible formalization of it), it will be 
pointed out. 

Example 6 (Swedes) 

Let p and q be different propositional variables. Let D be the set of two 
defaults: {(: p), (: q)}. Accepting D means that we believe, by default, that p is true, 
and also believe that q is true. Following the prototypical reading, then typically p 
is true and typically q is true. Following the presumptive reading, p is presumed to 
be true unless there is evidence to the contrary and q is presumed to be true unless 
there is evidence to the contrary. Suppose now that we have the information that 
~p  v - q  is true, i.e., at least one of p or q is false. 

Using the prototypical reading, we shall conclude that the situation at hand is 
not typical. In such a case, neither of our two defaults is applicable: typically p is 
true, but this is not a typical situation, and therefore we shall not conclude, even by 
default (i.e., defeasibly) that p v q holds true. 

Using the presumptive reading, on the contrary, we shall conclude that p V q 
should be presumed to be true unless there is evidence to the contrary, and since there 
is no evidence of this sort, it should be presumed to be true. We should therefore 
presume that exactly one of p and q holds. 

S. Default versus material implication 

A very natural feeling is that the meaning of any single default (a : b) should 
be closely related to the meaning of the material implication a ~ b. This last formula 
will be called the material counterpart of the default (a : b). Similarly, the meaning 
of a set of defaults D should be related to the meaning of the set of its material 
counterparts. 

It turns out, both in the rational closure construction of [12] and in the construction 
proposed in this paper, that the meaning of a default (a : b) (which is an element of 
the set D of defaults accepted by a reasoner) in the presence of knowledge c, either 
its material counterpart a ~ b or is void (i.e., equivalent to a tautology: true). Both 
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constructions may therefore be described by pinpointing, given specific information 
c, which of the defaults of D are meaningful. If Dc is this set and Mc is the set of  
material counterparts of D C, then d should be presumed true iff d is a logical 
consequence of c U M c, i.e., Mc, c ~ d. This semantics fits well into the implicit 
content framework proposed in [18]. 

6. Single defaults 

Let D be the singleton set { (a : b)}, where a and b are arbitrary formulas. We 
propose the following meaning to D: 

�9 if the information at hand c is consistent with a --~ b, i.e., c g: a A ~b,  then 
the default is meaningful and d is presumed iff c, a --) b ~ d, 

�9 otherwise, the default is meaningless and d is presumed iff c ~ d. 

An equivalent, more model-theoretic, description of the consequence relation 
determined by D is the following: the rational consequence relation that is defined 
by the modular model in which the propositional models are ranked in two levels: 
on the bottom level (the more normal one), all models that satisfy the material 
implication a---) b, on the top level all other models. 

This is the most natural understanding of the default information i f  a is true, 
then b is presumably true, and completely in line with Poole's [15] treatment of 
defaults. Notice, though, that it does not always agree with Reiter's treatment and 
only almost agrees with rational closure. If the information at hand c logically 
implies a, then the perspective proposed here agrees with Reiter: d is presumed to 
be true iff d is an element of the unique extension of (D, {c}). 

To see the difference with Reiter's treatment, suppose a and b are different 
propositional variables and consider c to be -lb. The perspective defended here will 
support the claim that ~ a  should be presumed to be true, i.e., a should be presumed 
to be false. For Reiter, on the contrary, there is a unique extension: Cn(-~b) (Cn is 
the logical consequence operator) and therefore we should not presume anything 
about a. Similarly, if c is true,  the present perspective will support a --~ b, whereas 
Reiter will not. 

The comparison with rational closure is more subtle. Our perspective agrees 
with rational closure except when a ~ --lb. This is quite an out-of-the-ordinary situation: 
a is logically equivalent to something of the form ~b  A e, and the default is of the 
form i f  b is false and e is true, then assume b is true. Such a default will probably 
never be used in practice, but its consideration is nevertheless enlightening. In such 
a situation, the present perspective claims that the meaning of the default ( ~ b  A e : b) 
is that all models that satisfy ~b  A e are on the top level. In other terms, i f c  ~ ~b  A e, 
the default is meaningful and means ~b  A e ---) b, which is logically equivalent to 
e --) b, but if c ~ ~b  A e, then the default is meaningless. The treatment of this last 
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case is well in line with the presumptive reading: if b is known to be false, then b 
should not assumed to be true. If we look at the way rational closure deals with this 
case, we see that it agrees with the present perspective in the first case (i.e. if 
c ~ ~b  A e) but disagrees with it in the second case. Rational closure accepts any 
conclusion from the information that e is true and b is false. This is in line with the 
prototypical reading of the default: i f  e is true and b is false, then typically b is true 

may only mean that it is inconsistent for e A --lb to be true and therefore one should 
conclude anything when this happens. 

The new perspective does not always support each member of the rational 
closure, but the reader may check that the solution it supports is always rational (in 
the technical sense of [12]). A proof of this, in a more general setting, will be given 
in section 9. How come our proposal is different from the rational closure that 
seemed to be the only reasonable one? Let K be the conditional knowledge base 
containing the single assertion e A ~b  ~ b. The rational relation proposed here in 
place of the rational closure does not contain e A b t ~ b. It is not an extension of K 
and therefore does not satisfy thesis 5.25 of [12]: "The set of assertions entailed by 
any set of  assertions K is a rational superset of the rational closure of K". This 
departure from thesis 5.25 is not central to our proposal and a slight variant of it 
would satisfy thesis 5.25 by treating differently only those useless defaults discussed 
above. This variant does not seem to fully fit the presumptive reading of defaults, 
though. If we denote by K t the (lexicographic) construction proposed in this paper, 
the variant we have in mind may be defined in the following way: accept a ~ b iff 
either a has a rank for K and a t ~ b E K t, or a has no rank. This variant gives a 
superset (sometimes strict) of K l that is also a superset (sometimes strict) of  the 
rational closure K.  

7. Semi-normal defaults 

This paper will show that if one accepts a semantics that is different from 
Reiter's, the reasons that compelled him to introduce non-normal defaults disappear, 
and one may restrict oneself to normal defaults. The reader may well ask whether 
one would not like to consider, anyway, a more general form of defaults: the semi- 
n " n r a : e A b  . . ormal defaults. A semi- o mal default ~ means that i fa  ts known to be true and 

there is no evidence that e A b is false, then b should be presumed to be true. Let 
a be a tautology, i.e., t rue,  and e and b be different propositional variables (q and 
p, respectively). Suppose we accept the semi-normal default ---~.:qAp There is general 
agreement about the following points: 

if the information at hand c is a tautology, i.e., we have no specific information, 
we should presume that p is true, since there is no evidence that q A p does 
not hold; 
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�9 if c is ~q,  i.e., we know for sure that q does not hold, we should not use the 
default information and therefore we should not presume p; 

�9 but, if we have no specific information, we should not presume that q holds 
(why should we?). 

The above three points provide a counter-example to the rule of rational monotonicity 
of [12]: we accept true ~ p, but neither t rue  ~ -1 ~q  nor ~ q  p p. Even the simplest 
isolated non-normal default cannot be given a rational interpretation. This remark is 
very important in view of the fact that the efforts to harness logic programming to 
nonmonotonic reasoning take as their basic component rules of the form 

a <---- b, ~c,  

meaning conclude a i f  b has been concluded and c cannot  be concluded. This is 
essentially equivalent to considering the semi-normal default 

b : a  A ~ c  
a 

or to considering the not even semi-normal default 

b : ~ c  
a 

and will lead to a consequence relation that is not rational. All we have shown here 
is that non-normal defaults or the logic programming approach to nonmonotonic 
reasoning are incompatible with the property of rational monotonicity, that is central 
to this and previous papers. 

8. Competing but equal defaults 

After dealing in section 6 with single defaults, we shall now treat the more 
interesting case of a set of interacting normal defaults. In general, given a set of 
defaults D, this set defines a ranking of the defaults, as explained in [12]. This 
ranking will be described in full in section 9.1. The ranking of a default (a : b) 
relative to D depends only on its antecedent a and, a we shall see in section 10, 
defaults of higher ranking (they correspond to exceptions) should be considered 
stronger than those of lower ranking. In this section, we shall deal with the case 
where all defaults have the same rank, i.e., all defaults are equal in strength and none 
of them correspond to an exception. This happens only when all elements of D have 
rank zero, as will be clear in section 9.1. It is clear that, when considering such 
defaults, we should always assume that as many defaults as possible are satisfied 
(i.e., not violated). We should therefore always prefer violating a smaller set of 
defaults to violating a larger one. One may hesitate about the meaning to be given 
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to "smaller": set inclusion or smaller size. The main conclusion of our considerations 
will be that sets of defaults should (for rationality's sake) be compared by their size, 
not by set inclusion. 

We choose an example isomorphic to the musicians example of [4, section 4.4], 
but we shall first ask about it questions that are different from those asked traditionally. 

Example 7 (Musicians) 

Let p, q and r be different propositional variables. Let D contain the following 
three defaults: {(: p), (: q), (: r)}. In other words, p, q and r are assumed to hold by 
default. If  we learn that c de=f -~P A ~ q  V ~ r  holds, i.e., that either both p and q are 
false, contrary to expectations, or, also contrary to expectation, r does not hold, what 
should we assume? Should one of the two possibilities (~p  A ~q)  and ~ r b e  assumed 
more likely than the other one? 

In [15], Poole claims we should not. He claims that are two different maximal 
subsets of the material counterpart of D consistent with c (two bases for c): {p, q} 
and {r}, and he proposes that we presume true only those formulas that are both in 
Cn(r, c) and in Cn(p, q, c). In particular, we should not presume p to be true. But, 
we should presume p ~ q to hold. Also, if we learn that c A ~p  holds, we should 
presume true only those formulas that are both in Cn(r, c, -~p)= Cn(r, c) and in 
Cn(q, -~p). In particular, we should not presume the truth o f p  ~ q. Poole's proposal, 
therefore, does not satisfy the rational monotonicity principles. 

Guided by thesis 1.1 of [12], which requires rational monotonicity, a slight 
modification of Poole's ideas will now be put forward. This modification is also 
supported by the maximal entropy approach of [6]. The above two bases should not 
be considered equivalently plausible. The larger one, which contains two defaults, 
should be considered more plausible than the one containing only a single default. 
In other terms, situations that violate two defaults should be considered less plausible 
than those that violate only one default. Here is a model-theoretic description. We shall 
consider the (propositional) models of our language, and rank them by the number of 
defaults of D they violate. A model m violates a default a b ~ b iff it does not satisfy 
the material implication a ---) b, i.e., iff m ~ a A --lb. The most normal models are 
those that violate no default of D: they constitute the bottom level (zero) of our modular 
model. Slightly less normal are those models that violate one single default: they constitute 
level one of our model. In general, level i is constituted by all models that violate exactly 
i members of D. The nonmonotonic consequence relation defined by this model is the 
one defined by D. It is rational, since the model described is ranked and consequence 
relations defined by modular models are rational (lemma 3.9 of [12]). Coming back 
to the Musicians example: if we learn that c ~ ~p  A ~q  V -~r holds, ~ r  should be 
presumed true. We should therefore presume p to be true. 

Above, we provided a model-theoretic description of our proposal. An equivalent 
description in terms of "bases", in the spirit of [15], is now provided. The same bases 
were also considered in [1]. Let E = {ei} be a finite set of formulas. Let c be a formula. 
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DEFINITION 1 

A subset F of  E is said to be a maxbase for c iff c is consistent with F and 
there is no subset F '  of E, IF'l > IFI that is consistent with c. 

THEOREM 1 

Let D be a set of  defaults such that all elements of D have rank zero (with 
respect to D). Let E be the set of  material implications corresponding to the defaults 
of D. The consequence relation defined by the above model-theoretic description is 
characterized by 

a ~ b iff for every maxbase F of  E for a, F, a D b. (1) 

Theorem 1 implies that the relation defined by eq. (1) is rational. 

Proof 
First, some remarks. Let n be the size of the set D. 

(1) If  a is satisfied by some model of level i (0 < i < n), then there is a maxbase 
for a, and all maxbases for a are of  size larger or equal to n - i. 

(2) If  F is a maxbase of size k (0 < k < n) for a, then there is a model of level 
n - k that satisfies a, and no model of lower level satisfies a. 

(3) There is no maxbase for a iff a is a logical contradiction. 

Suppose a ~ b. If no model satisfies a, a is a logical contradiction and X, a ~ b for 
any X. Suppose, then, that a is satisfied by some model of level i, but by no model 
of lower level. Any model of level i that satisfies a, satisfies b, by hypothesis. Let 
F be maxbase for a. By remark (2), n - I F I - - i .  Any model that satisfies F is 
obviously of  level less or equal to n -  I FI -- i. Any model that satisfies F and a is 
therefore of level i and satisfies b, by hypothesis. We conclude that F, a ~ b. 

Suppose now that for any maxbase F for a we have F, a ~ b. If there is no 
maxbase for a, then, by remark (3), a is a logical contradiction and a ~ b. Then 
suppose the maxbases for a are of size k. There is, by remark (2), a model of  a of 
level n - k ,  and there is no model of level less than n -  k that satisfies a. We must 
show that any model of a of  level n - k satisfies b. Let m be such a model. Since 
m violates n - k defaults, it satisfies a set M of k defaults. But M is consistent with 
a, since m ~ a. The size of  M is the size of the maxbases for a, therefore M is a 
maxbase for a and, since M, a ~ b, we conclude that m ~ b. []  

Example 8 (Musicians, continued) 

We shall now describe our solution to the questions traditionally asked about 
the musicians' example and generally used to demonstrate that counterfactuals do not 
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def satisfy rational monotonicity. Suppose our specific information is c = p /x  -,r  V ~p/X r. 
There are two maxbases: {p, q} and {q, r}. We shall therefore presume that q holds 
and we shall not presume that d d~f = q A r V --q A ~ r  holds. This is the common 
wisdom and the present perspective subscribes to it. 

Suppose now that our specific information is c /x  --1 d or, equivalently, p A q A 
-~r V ~p/X --,q/X r. The common wisdom, defined in [4], would like to convince 
us that we should not presume q to be true. The position defended here presumes that 
q is true (and also p and --,r) because this situation violates only one default (: r), 
whereas the other possible situation, ~ p  A ~ q  A r, violates two defaults. 

The reader may suspect that our policy gives results that are extremely sensitive 
to the way the defaults are presented. Indeed, the way defaults are presented is 
important, and our perspective on defaults does not enjoy the nice global properties 
of rational closure described in [12, section 5.5] that make it invariant under the 
addition or deletion of entailed defaults. Two examples of this phenomenon will now 
be described. The first one shows that the addition to D of a default entailed by D 
may add new conclusions. The second one shows that the addition to D of a default 
entailed by D may force us to withdraw previous conclusions. The examples presented 
are very simple and natural, and should convince the reader that any presumptive 
reading of defaults leads to a high sensitivity to the presentation of the default 
information. This sensitivity is, probably, a drawback of the lexicographic closure. 
The following examples should convince the reader that the problem is inevitably 
brought about by a presumptive understanding of defaults. If we had decided to 
consider multisets of defaults instead of sets, thus allowing certain (stronger) defaults 
to appear a number of times in D, our construction would have been sensitive to the 
number  of times each default appears in D. 

Example 9 (Adding entailed defaults may add conclusions) 

Let D be the singleton { (: p A q) }. The default (identifying defaults and conditional 
assertions) (: p) is obviously entailed by D. But the default ( ~ p  V - , q :p )  is not 
entailed by D, the antecedent being inconsistent with the only default of D. Nevertheless, 
( - p  V ~ q  : p) is entailed by the set {(: p / x  q), (: p)}, since its antecedent is consistent 
with the second default. The behavior of the corresponding Poole system is the same. 

Example 10 (Adding entailed defaults may delete conclusions) 

L e t D  be the set {(: p),  (: q)]. Both defaults C p 4-> q) and ( ~ p  : q) are entailed 
by D. But (--p : q) is not entailed by the set {( :p) ,  (: q), ( : p  4-> q)}, since the 
antecedent is consistent with the last defaults separately but not together, and there 
are therefore two maxbases. Also in this case, the behaviour of the corresponding 
Poole systems is the same. 
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9. Lexicographic closure 

9.1. INTRODUCTION AND DEFINITION 

In the previous section, we discussed the treatment of conflicting defaults that 
has the same precedence. We shall now treat arbitrary conflicting defaults, and define 
the construction we propose in full generality. We must take into account the fact that 
defaults may have different weight, or precedence. Fortunately, the correct definition 
of the relative precedence of defaults has been obtained in a previous work. Given 
a finite set of  defaults D, the precedence of a default is given by its rank (higher 
rank means higher precedence), i.e. by the rank of its antecedent as defined in 
[ 12, section 2.6]. The definition presented here is equivalent to the original definition, 
by corollary 5.22 there. 

We shall now remind the reader of this definition. Let D be a finite set of  
defaults and /) the set of  its material counterparts. Let a be a formula. We shall put 
E0 = D. If a does not have rank less than i, but is consistent with Ei, it has rank i. 
The set El+ 1 is the subset of E i that contains all defaults (a : b) of D for which a does 
not have rank less or equal to i. We shall put D i = E i -E l+l ,  and let D~ be the set 
of  all elements of D that have no rank, i.e., have infinite rank. Elements of D~ have 
precedence over all other defaults. Notice that, since D is finite, all Di's  a r e  empty 
after a certain point, except possibly D**. There is a k such that for any i, k < i < ~,  
D i = 0. The smallest such number k will be called the order of the set D. The set D 
may be partitioned into D~ ~) Dk-1 ~ ... ~) Do. 

We remind the reader that the rational closure of the set D, defined in [10] and 

studied in depth in [12, theorem 5.17 and lemma 2.24] is the set of  defaults D that 
consists of all defaults (a �9 b) such that the rank of a is strictly less than the rank of 
a / x  ~ b  (equivalently, the rank of a A b is strictly less than the rank of a A ~b) ,  or 
such that a has no rank. We shall now define another closure for D, the lexicographic 
closure. We define the lexicographic closure by way of a modular model in which 
every model is ranked by the set of  defaults it violates. A similar presentation may 
be used to define rational closure; it will also be described. 

9.2. THE MODEL-THEORETIC DESCRIPTION 

As usual, we shall suppose a finite set D of defaults is given. We shall describe 
the consequence relation defined by D, the lexicographic closure of D, D l, as the 
consequence relation defined by a certain modular model, .Tv/o. To define this model, 
we need to order the propositional models by some modular ordering. We shall order 
the propositional models by ordering the sets of defaults (of D) that they violate: each 
model m violates a set D,,, __. D of defaults. How should we order the subsets of D? 
Intuitively, we are looking for a "degree of seriousness". We prefer to violate a 
"lighter" set of defaults than a more serious one, i.e., a propositional model that 
violates a lighter set of defaults is more normal than a model that violates a more 
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serious set. There are two criteria that must be taken into account when deciding 
which of two sets is more serious: 

�9 the size of the set: the smaller the set, the less serious it is. We have seen in 
section 8 that "smaller" should here be taken to mean "of smaller size", and 

�9 the seriousness of the elements of the set: it is less serious to violate a less 
specific default than a more specific default, i.e., a default of lower rank than 
a default of higher rank. 

The reader should notice here that our definition is in no way circular. The lexicographic 
closure is defined in terms of a specific modular model that is, in turn, defined in 
terms of the ranks of the formulas involved. These ranks have been defined above, 
by a straightforward inductive definition. The ranks of the formulas have a close 
relationship with the ordering of the modular model that defines the rational closure 
of D, but this is a different modular model. In fact, the model we are describing now 
is a refinement of the model that defines rational closure (a level may split into a 
number of sublevels). The next question now is how should we compose those two 
criteria? The principle of rationality will trace the way for us. We want a modular 
ordering on the subsets of D. Each of the above criteria gives a modular ordering. 
Is there a general way to combine two modular orderings and obtain a modular 
ordering? Yes, a lexicographic (i.e., consider one criterion as the principal criterion, 
the other as secondary) composition of modular orderings is a modular ordering. 
Which of the above two criteria should be considered as the major criterion? Clearly, 
the second one: specificity. We should prefer violating two defaults of low specificity 
to violating one of high specificity. 

Example 11 

Let D = {(: p), (: q), (: x), (y : ~x),  (y : r)}. Suppose our assumptions are 
y A ( ~ p  A ~q  V ~r) .  You may imagine that p, q and x are generic properties (of 
birds, say), and that y is a class of birds that are exceptional with respect to x. The 
property r is a generic property of y birds. Suppose we have a bird that is part of 
the y class and is known to be either exceptional with respect to two generic properties 
of birds, or exceptional with respect to one generic property of the subclass y. 
Presumption of typicality (see section 3.1) from the last default of D proposes the 
conclusion r (and therefore -~p and ~q).  Presumption of independence proposes the 
conclusions p and q (and therefore --1 r). Priority to typicality convinces us to accept 
the former and reject the latter. 

Therefore, to decide which of two sets of  defaults is more serious, we shall 
partition those sets into subsets of defaults of equal ranks and compare (by size) rank 
by rank, starting with the higher ranks. As soon (in terms of ranks) as a decision can 
be made, we decide and stop. 
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DEFINITION 2 

Let D be a set of defaults and k its order. To every subset X C_C_ D may be 
associated a k + 1-tuple of natural numbers: (no . . . . .  nk) ,  where no = [D= tq XI, 
nl = IDk-1 N X[, and in general, for i = 1 ..... ki, ni = [Dk-i N X[. In other terms, no 
is the number of defaults of X that have no rank and, for 0 < i < k, n i is the number 
of defaults of X that have rank k - i. We shall order the subsets of  D by the natural 
lexicographic ordering on their associated tuples. This is a strict modular partial 
ordering: it will be denoted by < ,  (the seriousness ordering). 

The seriousness ordering on sets of  defaults is used to order the propositional 
models: m -< n '  iff V(m) < V(m'),  where V(m) C_ D is the set of defaults violated by 
m. This modular ordering on models defines a modular preferential model that, in 
turn, defines a consequence relation D i, the lexicographic closure of D. The reader 
may check that all examples treated in this paper conform to the above definition. 

Let us now, before we give an alternative description of lexicographic closure, 
briefly digress to see that rational closure may be defined by a specific seriousness 
ordering, different from the one defined in definition 2. 

DEFINITION 3 

Let XI and X2 be subsets of  a set D of defaults and k its order. Let n] and n 2, 
for i = 1 ..... k, be the size of the partitions of Xl and X2, respectively. Let m j be the 
smallest i such that n / ~  O, for j = 1, 2. We shall write X 1 << X2 iff m 1 > m 2. 

Clearly, X1 << X2 implies X 1 ~ X2, i.e. << is coarser than -<. 

THEOREM 2 

Suppose a has a finite rank. The conditional assertion a b" b is a member of 
the rational closure of D iff it is satisfied by the modular model in which each 
propositional model is ranked by the << ordering on the set of  defaults it violates. 

Proof 
Suppose the rank of a is strictly less than that of a A ~b,  and that m is a 

propositional model that satisfies a and is minimal among those for the << ordering. 
If a has rank l, there is a model that satisfies a and violates no default of D of rank 
greater or equal to l. We conclude that m violates no such default and therefore 
satisfies no formula of rank strictly greater than l. The model m does not satisfy 
a A ~b,  and therefore satisfies b. 

Suppose now that all propositional models that satisfy a and are minimal in 
the << ordering for that property also satisfy b. Let the rank of a be k. Since there 
is a propositional model that satisfies a and violates no default of rank greater than 
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or equal to k, all models that satisfy a and violate no default of  rank greater than or 
equal to k satisfy b. We conclude that the rank of a A ~b  is greater then k. [ ]  

We may now show that the lexicographic closure is a superset of the rational 
closure, at least for defaults of finite rank, thus almost complying with thesis 5.25 
of [12]. 

THEOREM 3 

If a has a finite rank and a ~ b is an element of the rational closure of D, then 
it is an element of its lexicographic closure. 

Proof 
Suppose a has a finite rank and a ~ b is an element of the rational closure of 

D. By theorem 2, a ~ b is satisfied in the modular model defined by <<. It is 
therefore satisfied in any modular model defined by a finer relation. We noticed, just 
following definition 3, that -< is such a finer relation. [] 

A characterization of the lexicographic closure in terms of bases will now be 
described. 

9.3. BASES 

DEFINITION 4 

Let a be a formula and B a subset of D. We shall say that B is a basis for a 
iff a is consistent with B, the material counterpart of B, and B is maximal with 
respect to the seriousness ordering for this property. 

The following lemma may help to explain the structure of bases, but is not 
used in the sequel. 

LEMMA 1 

If a has rank i (a has no rank is understood as a having an infinite rank) and 
B is a basis for a, then, for any j > i, D) C_ B. 

In other terms, any basis for a is full, for all indexes larger than or equal to 
the rank of a. 

Proof 

Since s has rank i, for any j > i, a is consistent with E i and therefore with 
Dj U B A Ey-I ~ Ey [] 

THEOREM 4 

The default (a : b) is in D l, the lexicographic closure iff, for any basis B for 
a , B ,  a N b .  
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P r o o f  

The proof is a generalization of that of  theorem 1. Let k be the order of D. 
Let di = I Oil for i = 0 .... ,k - 1, ~ .  

(1) If a is satisfied by some model of seriousness level (i0 ..... ik), then there is a 
basis for a of level (d~ - i0, dk_l - il ..... do - ik), and all bases for a have this 
level. 

(2) If B is a basis of level (l 0 ..... lk) for a, then there is a model of level (d~ - 10, 
d k -  1 - l l  . . . . .  do - Ik) that satisfies a, and no model of  strictly smaller seriousness 
satisfies a. 

(3) There is no basis for a iff a is a logical contradiction. 

First, suppose that a ~ b E Dr. If no model satisfies a, a is a logical contra- 
diction and X, a ~ b for any X. Then suppose that a is satisfied by some model of  
level (i 0 ..... ik), but by no model of  lower level. Any model of  level (i0 ..... ik) 
that satisfies a, satisfies b, by hypothesis. Let B be a basis for a, of  seriousness 
(b . . . . . .  b0). By remark (2), d j -  bk_j = ik- j ,  for j = 0 ..... k -  1, and d ~ -  b0 = i0. 
Any model that satisfies B is obviously of seriousness level less than or equal to 
(d~ - bo, dk_ 1 - b l , . . . ,  do - bk), i.e., of level less than or equal to i 0 ..... ik. Any model 
that satisfies B and a is therefore of level io . . . . .  ik, and satisfies b, by hypothesis. We 
conclude that B, a ~ b. 

Suppose now that for any basis B for a, we have B, a ~ b. If  there is no basis 
for a, then, by remark (3), a is a logical contradiction and a ~ b E D t. Then suppose 
the bases for a are of seriousness (b 0 ..... bk). There is, by remark (2), a model of a 
of level l = ( d ~ -  b o , . . . , d o -  bk), and there is no model of level less than l that 
satisfies a. We must show that any model of a of  level l satisfies b. Let m be such 
a model. Since m violates dj - bk_j defaults of rank j ,  it satisfies a set M containing 
bk_j defaults of rank j. But M is consistent with a, since m ~ a. The seriousness of  
M is (b0 ..... bk), the seriousness of  the bases for a. Therefore, M is a basis for a and, 
since M, a ~ b, we conclude that m ~ b. []  

We shall now describe the lexicographic closure of a number of sets of  defaults, 
some of them well known from the literature. 

10. Examples 

In this section, motivating examples will be described, indicating for each of  
them the conclusions endorsed by the lexicographic closure. My goal is to gradually 
convince the reader that each one of the decisions taken in the process of defining 
the lexicographic closure was reasonable. My goal is not  to convince the reader that 
lexicographic closure provides the intui t ively  correct answer once the propositional 
variables have been interpreted in some manner that is well known in the folklore 
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of the field, because I believe that, in most cases, we intuitively treat interpreted 
formulas in a meaning-dependent manner, not in the formal, meaning-independent 
way that is the hallmark of logic. In other terms, once the variables are interpreted, 
there is no way of knowing whether the intuitive conclusions come from formal 
logical considerations or from world knowledge the reasoner has about the situations 
or objects the interpreted variables refer to. A first example exemplifies why one 
needs to give precedence to defaults describing exceptional cases over those that 
describe more normal cases. 

Example 12 (Exceptions) 

Let D = {(: p), (: q), (--,p : --,q)}. Here, p and q hold by default, and when p 
does not hold then, by default, q does not hold either. Suppose we know that p does 
not hold. Then, obviously, we cannot use the first default. But we could use the 
second one to conclude q or the third one to conclude ~q.  We obviously want to 
presume -~q, and we need to say that the third default has precedence over the second 
one. Fortunately, it is not difficult to justify why the third default has precedence over 
the other ones. It (i.e., its antecedent) has rank one, whereas the two other defaults 
have rank zero. This comes from the fact that the antecedents of the first two defaults 
( true) describe some unexceptional situation, while ~p  describes an unexpected, 
exceptional situation since p is, by default, presumed to be true. 

The technical description of the lexicographic closure follows. The order of D 
is two. The first two defaults of D have rank zero, the last one rank one. The most 
normal models (those that have level zero) are those that satisfy p and q (and 
therefore ~p  ~ ~q).  On level one, we find those models that satisfy ~p  --~ ~q  and 
violate exactly one of p or q: the models that satisfy p and ~q.  The third level 
contains those models that violate both p and q, but satisfy ~p  ---) -~q, i.e., the 
models satisfying ~p and -~q. The fourth level contains all models violating ~p  ~ ~q,  
but satisfying p and q; it is empty. The fifth level contains all models violating 
~p  --~ ~q,  and exactly one of p and q; it contains one model. The sixth level is 
empty. 

So, we must give precedence to defaults of higher rank over defaults of lower 
rank. Notice that rank is really all the difference between the default (a : b) and the 
default (: a --~ b). The second one has always rank zero, while the first one may have 
a much higher rank (if a is presumed to be false) and is therefore more powerful. The 
reader may easily check that the first two defaults of D have rank zero, whereas the 
third one has rank one. Let us now treat the similar but more classical penguin example. 

Example 13 (Penguins) 

Let D = {(p : q), (r : p), (r : ~q)}. The default (: ~ r )  is entailed by D and the 
second and third defaults have rank one, whereas the first default has rank zero. The 
defaults (r : ~q)  and (p A r : ~q)  are entailed by D, whereas (r : q) is not. 
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Technically, the rank of D is two. At level zero: all models satisfying p --> q 
and -~r. At level one: all models satisfying p and -~q, and those satisfying r, ~p  and 
-~q. Level two is empty. Level three: all models satisfying r, q and p. Level four: all 
models satisfying r, q and ~p.  Level five: empty. 

In the present proposal, this precedence of defaults of  higher rank is in a sense 
(or in two ways) absolute: one should not trade the violation of a default of rank n + 1 
for the violation of any number of defaults of rank less than or equal to n. On this 
point, the present proposal is in disagreement with the principle of maximal entropy 
as proposed in [7]. The following example will exhibit this disagreement; it is not 
meant to support one construction against the other. 

Example 14 (Winged penguins) 

L e t D  = {(b : w), (b : f ) ,  (p  : b), ( p :  ~ f )} .  The default (p  A ( f V  ~w)  : b) is 
entailed by D, since the only basis for (p  A ( f V  -~w) is the set {(p : b), (p : ~ f )} ,  
containing all defaults of  rank one. In fact, even (p A ( f V  -~w) :b  A ~ f A  ~w)  is 
entailed by D. But the principle of maximal entropy of [7] will consider as equivalent 

�9 to violate two defaults of rank zero: ((b : w) and (b,f), and 

�9 to violate one default of rank one: (p  : b), 

and therefore will not accept (p  A ( f V  ~w)  : b). Notice that the set D is Minimal 
Core in the sense of [7]. 

Example 15 (Exceptions again) 

Let 
D = {(: r), (: p), (: q), ( ~ p  : -~q), ( ~ p  : -~r)}. 

Suppose our specific information is --,p A q, which means the situation is doubly 
exceptional: p is presumed true but is in fact false, and when p is false, q is presumed 
false but it is true. In other words, the rank of --,p A q is two. Should we presume 
r to be true or false? It is clear we should presume it false, since the default ( ~ p  : ~ r )  
talks about a situation closer to the one at hand than the default (: r), and should have 
precedence over it. But notice that our information shows that the situation described 
by ~ p  A q is exceptional with respect to the one described by ~p.  

11. Discussion 

The lexicographic closure D I of a finite set D of defaults is defined by a 
modular model in which all propositional models appear, at some level. An assertion 
of  the form a ~ false will appear in D t only if a is a logical contradiction. In other 
terms, lexicographic closure is, in the terminology of [13], consistency preserving. 
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This is indeed one of the hallmarks of default reasoning ~ la Reiter, as attested by 
the discussion in [16], and in particular corollary 2.2 therein. 

Since there has been a great deal of discussion in the literature, in particular 
in [5] and [3], of the principle of transitivity, it is probably worth a short discussion. 

The question of transitivity is: should we accept (a : c) on the basis of the two 
defaults (a : b) and (b : c)? The answer proposed here, and which follows from our 
construction, is that if we have both (a : b) and (b : c), and if a and b are both of 
the same rank, then we should also accept (a : c). Note that if we accept (a : b), then 
b has rank lower than or equal to that of a: indeed, if the rank of b was larger than 
that of a, the rational closure of our set of defaults would include a V b ~ --1 b and 
therefore a ~ ~b  and, by theorem 3, we would accept (a : ~b)  in the lexicographic 
closure. If the rank of a is strictly greater than that of b, then we are not guaranteed 
that (b : c) will be part of all bases for a. 

Given a finite set D of defaults and a default (a : b), how difficult is it to 
decide whether (a : b) is entailed by D? This decision seems to require the computation 
of the ranks of the defaults of D, but this is relatively easy: a quadratic number of 
satisfiability problems. It seems that is also requires the consideration of a possibly 
large number of subsets of D and therefore seems inherently exponential. The rational 
closure construction of [12] provides a quick and dirty approximation to this construction 
in the following sense: if a default belongs to the rational closure, it is entailed (up 
to a slightly different treatment of formulas that have no rank). The case in which 
all defaults have a Horn structure needs further study. One may perhaps avoid the 
exponential blow-up in this case. 
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