
RESONANCE VIBRATIONS OF TURBINE ROTORS WITH AN ANNULAR SHROUD. 

REPORT NO. i. THEORETICAL MODEL 

A. P. Zin'kovskii, I. N. Buslenko, 
and V. V. Matveev 

UDC 534.015.1:62-226 

The reliable operation of shrouded blading rings in turbines is assured by proper tight- 
ening of the flanges of the blade assembly. This condition can be met by preliminary twist- 
ing of the blades during construction and as a result of the centrifugal forces developed dur- 
ing service. Under these circumstances, all of the flanges form a closed ring. 

However, in reality, the need for machining tolerances and wear of the contact surfaces 
of the flanges during operation may result in appreciable scatter of contact conditions for 
the flanges. In this case, either mutual slip of the flanges may be completely absent or gaps 
maydevelop between individual pairs of flanges. Also, individual blades have different nat- 
ural frequencies, i.e., the rotor blades may be mistuned. 

- These factors cause the rotor to deviate from strict rotational symmetry, which is usu- 
ally taken into account in turbine design. As a result, there is some scatter of the reson- 
ance amplitudes of the blades [i, 2]. It is therefore important, in designing highly reli- 
able turbines, to establish the effect of the character of asymmetry of the blading ring of 
the rotor on laws governing the formation of the resonance-amplitude scatter of the blades. 

In light of the complexity of experimentally determining these laws, analytical investi- 
gation becomes particularly important. One step in performing such an investigation is choos- 
ing a theoretical model. The model chosen should reflect the basic properties of the object 
of investigation. 

Figure la present a diagram of a theoretical model of a turbine rotor. It is assumed 
that the disk is rigid and that the blades are connected to each other through the disk. Each 
blade is modeled ~ a subsystem with one degree of freedom. The natural frequency of this 
subsystem pj = ~kj/Mj (j = i, 2 ..... N) corresponds to a certain bending mode of blade vi- 
bration, where kj and Mj are the corrected stiffness coefficient and mass of the j-th blade. 

We will examine a blade coupling made by means of a flanged shroud. Since the contact 
surfaces of the flanges may undergo relative displacements during cyclic deformation of the 
blades, energy will be lost to friction. This and the fact that the flanges possess a cer- 
tain compliance make it necessary in the general case to consider the elastic--dissipative cou- 
pling of the blades through the shroud. 

The two types of shroud coupling most often realized under service conditions are ana- 
lyzed when studying the vibrations of shrouded rotors [i, 3, 4]. These couplings are as 
follows: 

i) guaranteed flange tightness in which the contact surfaces do not undergo mutual dis- 
placement; 

2) guaranteed flange tightness in which the mutual displacements of the contact sur- 
faces are developed in character and the relative energy dissipation due to friction de- 
pends only slightly on the amplitude of the displacements. 

Blade coupling is characterized by a continuous elastic zone in the first case, while 
friction losses may occur in the joints between the flanges in the second case. In each of 
these states, the system is close to linear. These features also dictate the choice of theo- 
retical model for an element of the blade coupling: a model with a viscously damped absorber. 
Here, as noted above, allowance should be made for the probability of the development of a 
third state of blade interaction -- the presence of gaps between individual blades of the ring 
at the flanges. 
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Fig. i. Diagram of theoretical model of a turbine blade 
with an annular shroud coupling of the blades (a) and 
model of an elastic-dissipative element of the blade cou- 
pling (b). 

The model proposed for an elastic-dissipative element of the coupling of adjacent blades 
(Fig. ib) makes it possible to describe potential states of blade interaction. 

First State. The shroud is represented as an elastic coupling between blades (dj,j• 0). 
We will examine cophasal and antiphase vibrations of the blades as limiting (maximum and min- 
imum phase difference) cases of their combined vibration. Since the stiffness of the'given 
elastic coupling is different during such vibrations, the shroud element between the j-th and 

' 2k" Given (j + l)-th blades is modeled by springs with stiffness coefficients kj,j+ I and 
j,j+l" 

the same amplitude, the elastic coupling factor in such a model is equal to k'] 3,j+ I in the case 

of cophasal vibration and k[ 3,j+l in the case of antiphase vibration. In the general case, the 

stiffness of the elastic coupling depends on the ratio of the amplitudes of vibration of the 
subsystems. 

Thus, the potential strain energy of the springs is determined by the expression 

#i . i~1 (~ i - - x i + l )~  :_ h i . i+  I (xj xj+~) ~ (i) 

where xj is the displacement of the mass of the j-th subsystem. 

Second State. In this state, along with the elastic coupling of the blades, we need to 
consider energy losses due to friction in the mutual displacement of the contact surfaces of 
the flanges. 

Let us examine certain features of the deformation of the blades in the presence of such 
displacements. A theoretical model of paired blades with a scarf joint was described in [5]. 
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The contact surfaces of the joint move in opposite directions during cophasal vibrations of 
the blades and in the same direction during antiphase vibrations. Since the amount of energy 
dissipated is determined by the mutual slip of the contact surfaces, this amount will be greater, 
the greater their relative displacement. Energy dissipation reaches a maximum during copha- 
sal vibration of the blades. Since the shroud flange is made together with the tip of the 
blade, these laws also hold for displacements of the contact surfaces of the flanges. 

In modeling the elastic coupling of blades for the state being discussed, it is neces- 
sary to note the following. Given the same amplitude of antiphase vibration of adjacent blades, 
the stiffness of the coupling remains the same as in the first case, i.e., the stiffness co- 
efficient of the elastic coupling is equal to k~ j,j+l" In the case of cophasal vibrations, the 

degree of elastic coupling of the blades decreases due to the displacement of the contact sur- 
faces of the shroud flanges, i.e., the degree of coupling should be less than k? 3,j+ I . Thus, 

we introduce an additional spring with the stiffness coefficient k(S)j,j+l into the model. 

Proceeding on the basis of the above, we use the following expressions to determine the 
potential energy and the dissipative function of the elastic-disslpative element between the 
j-th and (j + l)-th subsystems, which characterizes the second state: 

, , (2)  k i . i +  I ( x j  - -  xi+t)2 ~(s) l l / . j+l  = 2 + j,i+l (XI+Xi+I)t'2 ' ( 2 )  

"d(S)+t i . i  (x j  + x i + t ) 2  ( 3 )  
F i . i + t  = 2 ' 

where 

i.i-r : - l,(S) k i . i + l  -{- " i . i + t  

I n  the absence o f  d i sp lacemen t  o f  the con tac t  su r f aces  o f  the shroud f l a n g e s ,  i . e . ,  w i t h  
d (S ) .~  -~ =, the e l a s t i c  c o u p l i n g  f a c t o r  ~ (s )  . _~ k"  J , j m -  j , j + i  j , j + l "  Thus, we a u t o m a t i c a l l y  o b t a i n  the 

first state. 

Third State. In the presence of a gap between the j-th and (j + 1)-th blades at the 
flanges 

= k i+, = k ? ' , + ,  = ui. i+t ~ 0. 

I t  i s  known t h a t  c i r c u m f e r e n t i a l  n o n u n i f o r m i t y  o f  the gas f l o w  i s  one o f  t h e m a i n  sources 
of  e x c i t a t i o n  of  resonance v i b r a t i o n s  i n  t u r b i n e  r o t o r s .  We t h e r e f o r e  r e p r e s e n t  the g e n e r a t -  
ing  f o r c e  a c t i n g  on the j - t h  subsystem i n  the form 

PJ = Po cos [vl q- (] - -  1) (Pmj' (4 )  

2am e 
w h e r e  (P'"e - N " me i s  t h e  n u m b e r  o f  t h e  e x c i t a t i o n  h a r m o n i c ;  Po a n d  v a r e  t h e  a m p l i t u d e  a n d  

f r e q u e n c y  o f  t h e  g e n e r a t i n g  f o r c e .  

With allowance for Eqs. (i)-(4) , the equations of motion of the system will have the form: 

�9 ~c,, d"' ' x  d "~ x (ki.~-, X.,  , ~ x  M~x~. + d } ' } _ , x j _ ,  + (dj  + . j . j _  + j .~+,j  j + i.J+~ i+,  - -  - -  - j . ; - .  /-, + 

-(s) ! + + + k;.;+, + 

-[(k}.;+,  - " ' ,  x - .~ j . j+  ). ~+, =:P0'cos'(vt:+ ( i - -  1 ) ~ . ] ,  

i =  1,2 . . . . .  N, ( 5 )  

where d_. is the corrected coefficient of viscous friction, reflecting the energy losses in 
the matJerial of the blade tip and in the scarf joint. 

Equations (5) are easily solved by the method of complex amplitudes. 

The proposed theoretical model makes it possible to describe the dynamic behavior of the 
investigated design of turbine rotor more completely and more accurately than the discrete 
models proposed in other studies. For example, in [6] the shroud was regarded as a solid 
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Fig. 2. Theoretical (line) and experimental (points) dependence 
of the natural frequency of cophasal vibrations of paired blades 
on the tightness at the flanges. 

elastic ring, and the model did not consider possible displacements of flange contact sur- 
faces. In the theoretical model proposed by N. K. Nevedomskii in [7], energy dissipation in 
the shroud was considered in such a way that it reached a maximum during ant• vibrations 
of the blades. This situation is inconsistent with the energy dissipation mechanism associ- 
ated with the given type of flanged shrouding. 

Analytical Description of Parameters of a Blade-Coupling Element. The degree of coupling 
of the blades depends appreciably on the tightness A t at the flanges or on the magnitude of 
the normal force Ft, which in turn is linearly dependent on A t . This means that the stiff- 
ness coefficients k~ k'.' and k (s) and the coefficient of viscous friction d (s) 

j,j• 3,j• j,j• j,j• 
are functions of the tightness A t . 

Considering that an increase in the tightness of the flanges is accompanied by an in- 
crease in the stiffness of the system (this is manifest in an increase in the resonance fre- 
quency of cophasal vibration of paired blades), we will describe the conditions of elastic 
coupling of the blades through relations expressing a power dependence of the stiffness coef- 

ficients of the elastic coupling on tightness: 

k' (~d = • 
k" (At) = 

k'" (4 0 = vA . 

(6) 

(7) 

(8) 

Given these relations, the natural frequency of cophasal vibration of a tuned (kx = k2 = 
ko, Mx = M2 = Mo, d, = da = do) model of a blade pair is determined by the expression 

P=Po]/  1+2 ~(~)ko -- Po I/ 1+2 ~ko ' (9) 

where 

x-? 
Po = Vko/Mo ; TI = ~ + ~" 

The parameters k and n can be determined from experimental data on the resonance fre- 
quency of pairs of full-size blades with different tightnesses A t obtained in a study of the 
damping capacity and vibrational loading of pair-shrouded turbine blades [8]. 

Figure 2 shows the analytical dependence of the natural ~requency of the paired-blade 
model on the tightness at the flanges, determined from Eq. (9) with k = 0.5 and q/ko = 0.56. 
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Fig. 3. Theoretical (solid line) and experimental (dashed line) 
dependence of the relative resonance amplitude of cophasal vibra- 
tion of a tuned pair of blades on the tightness at the flanges. 

Also shown are values of the natural frequency of cophasal vibration of paired blades in one 
rotor. Despite the experimental scatter due to the unavoidable mistuning of the blade fre- 
quencies, a comparison of the results shows the correctness of the chosen analytical depen- 
dence of the coefficients of the elastic coupling on the flange tightness. 

The analytical and experimental studies established that the level of damping for the 
blades depends considerably on flange tightness. For each design there is an optimum tight- 
ness that will ensure maximum energy dissipation at the given vibration amplitude; i.e., the 
dependence of the damping characteristic and, accordingly, the maximum amplitude of resonance 
vibration of paired blades on tightness has an extremum. 

Proceeding on this basis, we choose to express the dependence of the coefficient of vis- 
cous friction d (s) on tightness A t in the form 

d {s) = cle-(C,~t )' (e ~c, ~t _ I), (i 0 ) 

where the coefficients c~ and ca are determined by the parameters of the investigated blades 
and their mode of vibration. 

In the case of cophasal vibration, the maximum relative resonance amplitude Ar of vibra- 
tion of a tuned pair of blades is described by the expression 

Ar = Ar -- 12 am l = l (ii) ( ( j  or-- ,v''+ 

where Aor = Polpodo is the resonance amplitude of vibration of the isolated subsystem. 

Choosing the values c~/do = 1.61 and ca = 3.6 as an example, we obtain a relation Ar(At) 
which is close to the experimental value (Fig. 3) for a full-size pair of blades [8]. 

To determine the effect of asymmetry on resonance vibrations of the system being exam- 
ined, it is necessary to first determine the resonance characteristics in the symmetrical case. 
For such a system, all subsystems are identical: 

kj=ko; M ~ = M o ;  d j = d  o . 

The coupling conditions between the subsystems are also identical: 

k(mJ 
J./• = kg~; dWj./~, - -  d ~ .  

The free vibrations of this system are determined by the following differential equations: 
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Mo~) + (ko + 2 s  + 2-~,") x~ - ( ~  - ~o") xj_, + 

+ (k~o - -  ~s))  Xl+' = O, ] = 1, 2 . . . . .  N .  (12) 
2n.m 

All of the subsystems vibrate with the same amplitudes, but with a phase shift ~m= N ' 
where m is the number of strain waves about the circumference of the system. We seek the so- 
lution of Eqs. (12) in the form 

xl = Ao e tt'~t+~l-O~rml" (13) 

Having inserted solution (13) into system (12), we find the natural frequencies of the 
system : 

Pm l /  I + 2 
ko 

P= = P'--~" = r ~ (1 - -  COS q~m) + 2 ~ (1 + COS q~m), 

0, 1 . . . . .  N / 2  with N e v e n ;  

m = 0, 1, , ( N - -  1)/2 w~t.h N odd. 

(14) 

It should be noted that the natural frequencies Pm are double frequencies for O<m<N/2. 

Resonance of the system will occur under the condition that Pm = v. 
ing Eq. (13) into (5), we find the resonance amplitude of the vibrations 

AgT ) = 

or the relative resonance amplitude 

A m 

Po 

g~do [l + 2 - ~ o  (1 + dg~ cos q~m)] 

Then after insert- 

(i5) 

l (16) 

- - =  ~ , , , [1+2  db'~ (i +cos%,0]  ' 
-4-0 
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