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Edinburgh Parallel Computing Centre, University of Edinburgh, King's Buildings, 
Edinburgh EH9 3JZ, Scotland 

A rigorous formulation of the generalisation of schema analysis known as forma 
analysis is presented. This is shown to provide a direct mechanism for harnessing 
knowledge about a search space, codified through the imposition of equivalence rela- 
tions over that space, to generate a genetic representation and operators. It is shown 
that a single characterisation of a space leads to a unique genetic representation, 
and the kinds of representations that are possible are classified and discussed. A rela- 
tively new operator, called random assorting recombination (RARw), is defined rigor- 
ously and is shown to be, in an important sense, a universal recombination operator. 

1. Overview 

The standard theory of  genetic algorithms is based on schema analysis [9]. 
Schema analysis operates in the representation (genotype) space and can be used 
provided that the chromosomes chosen are linear strings made up of  a fixed num- 
ber of  genes (positions) each of  which has a well-defined set of  possible alleles 
(values) and provided also that any combination of  alleles is permitted (so that 
all strings are legal). Schema analysis has been extremely fruitful in yielding insight 
into the operation of  genetic algorithms, and has recently been extended to provide 
exact models with executable forms which trace the evolution of individual strings, 
both for infinite and finite populations [11, 22, 25]. Various limitations remain 
apparent, however, and these are discussed in section 2. As a result of  these 
perceived limitations, various extensions and generalisations have been proposed 
[1, 7, 13, 24]. This paper is concerned only with the particular generalisation called 
forma analysis, which has been developed in a series of papers [13-18], though the 
relationship between forma analysis and other generalisations is touched on in the 
discussion at the end of the paper (section 7). The purpose of  the present paper is to 
define forma analysis rather more rigorously than has before been attempted and to 
prove certain results that have previously either been taken for granted or left open. 
In the process, there will also be a certain amount of "cleaning-up" of notation. 

The remainder of  the present section provides a relatively detailed overview 
of  the contents of  the rest of  the paper. Section 2 briefly re-states the features of  
schema analysis that have motivated the development of  forma analysis and con- 
nects the necessarily rather formal content of the body of  this paper to practical 
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problems encountered when using genetic algorithms. Its content is similar to - but 
less detailed than - that of Radcliffe [18]. 

Section 3 formally introduces equivalence relations, which are central to 
forma analysis, together with a certain amount of associated notation. Readers 
already familiar with equivalence relations and forma analysis may wish to proceed 
directly to definition 1 in section 3 after this overview. An algebra of equivalence 
relations is then introduced in section 4 by defining intersection for equivalence rela- 
tions. The basis of the approach taken involves codifying such knowledge of the 
search space as is available using a set of equivalence relations (or partitions of 
the search space) that group together solutions whose performance might reason- 
ably be expected to be correlated. Provided that these equivalence relations are suf- 
ficiently rich, in a sense to be defined, this then allows a genetic representation and a 
set of operators to be defined "automatically". To facilitate the formulation and 
analysis of both this representation and the operators described, appropriate defini- 
tions of span, independence, coverage, orthogonality and basis (in the context of 
equivalence relations) are then introduced, and it is formally demonstrated that 
orthogonality implies independence, as sense requires. 

Section 5 is concerned with representation, and shows in detail the way in 
which a basis for a suitable set of equivalence relations over a search space can 
be used to generate a faithful representation of that search space, or equivalently 
how a useful genotype space can be generated "automatically" from a phenotype 
space. A precise formulation of the terms gene and allele is then provided, and 
this will be found to align very naturally with standard usage of these terms within 
the field. The important result that every set of equivalence relations contains a 
unique basis is then proved, which in turn shows - loosely - that each characterisa- 
tion of a search space (codified through a set of equivalence relations) leads to a 
unique genetic representation. 

Section 6 is concerned with recombination. Following similar principles to 
but a more formal discipline than earlier discussions of forma analysis, principles 
for guiding the design of recombination operators are first described, and then 
applied to construct a family of representation-independent operators. These prin- 
ciples include the notions of respect, assortment and gene transmission discussed in 
earlier works. Three operators are then generated, two of which - random respect- 
ful recombination (R 3) and random transmitting recombination (RTR) - have been 
described in some detail before, together with a rather newer operator, random 
assorting recombination (RAR). It is demonstrated that when the basis for the 
equivalence relations is orthogonal, (which in turn means that alleles may be inde- 
pendently assigned to genes) forma analysis reduces to schema analysis, and the 
operators discussed in this paper reduce to standard operators. This section also 
contains a discussion of the conditions under which the properties suggested for 
recombination operators are mutually compatible, and shows that RAR may be 
"'tuned" to allow appropriate accommodation between them in cases of conflict. 

The final section, section 7, is a discussion of the results presented and their 
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interpretation. This includes consideration of linkage, disruption and the relative 
merits and ease of manipulating operators and representations to desired ends. 

2. Motivation 

The initial motivation for developing forma analysis is a consideration of the 
schema theorem [9] and the r61e of implicit parallelism. This theorem may be stated 
in a fairly general form (though assuming fitness-proportionate selection) thus: 

N~(t) fz~(t) [ ~-~ p~p~] (N~(t+ 1)) _> ~ 1 -  , 
w ~  J 

(1) 

where 

�9 N~(t) is the number of members of the population at time t that are members 
of a given schema ~; 

�9 ~ ( t )  is the observed fitness of the schema ~ at time t, i.e. the average fitness of 
all the members of the population at time t that are instances (members) of 
the schema ~; 

�9 #(t) is the average fitness of the whole population at time t; 

�9 the term p~,p~ quantifies the potential disruptive effect on schema member- 
ship of the application of operator a~ E 12; 

�9 (.) denotes an expectation value. 

This theorem is fairly easily proved. It has been extended by Bridges and 
Goldberg [3] (for the case of binary schemata) to replace the inequality with an 
equality by including terms for string gains as well as the disruption terms. 

It is both a strength and a weakness of the schema theorem that it applies 
equally, given a representation space C (of "chromosomes" or "genotypes"), for 
a search space S (of "phenotypes"), whichever mapping is chosen to relate geno- 
types to phenotypes. Assuming that S and C have the same size, there are IS t! 
such mappings (representations) available - clearly vastly more than the size of 
the search space i t se l f -  yet the schema theorem applies equally to each of them. 
The only link between the representation and the theorem is the term/2~(t). The 
theorem states that  the expected number of instances of any schema at the next 
time-step is directly proportional to its observed fitness (in the current population) 
relative to everything else in the population (subject to the effects of disruption, dis- 
cussed in section 7). Thus, the ability of the schema theorem, which governs the 
behaviour of a simple genetic algorithm, to lead the search to interesting areas of 
the space is governed by the quality of the information it collects about the space 
through observed schema fitness averages in the population. It can be seen that if 
schemata tend to collect together solutions with related performance, then the 



342 N.J. Radcliffe, The algebra of genetic algorithms 

fitness-variance of schemata will be relatively low, and the information that the 
schema theorem utilises will have predictive power for previously untested instances 
of schemata that the algorithm may generate. Conversely, if the schemata do not 
tend to collect together solutions with related performance, while the predictions 
the theorem makes about schema membership of the next population will continue 
to be accurate, the performance of the solutions that it generates cannot be assumed 
to bear any relation to the fitnesses of the parents. This clearly shows that it is essen- 
tial that domain-specific knowledge be used in constructing a genetic algorithm, 
through the choice of representation and operators, whether this be implicit or - 
as is advocated in the present paper - explicit. If no domain-specific knowledge is 
used in selecting an appropriate representation, the algorithm will have no oppor- 
tunity to exceed the performance of an enumerative search. 

In addition to these observations about the schema theorem's representation- 
independence and the sensitivity of its predictions to the fitness variance of 
schemata, Vose [24] and Radcliffe [13] have independently proved that the 
"schema" theorem actually applies to any subset ~ of the search space, not only 
schemata, provided that the disruption coefficients p~p~ are computed appro- 
priately for whichever set ( is actually considered. Vose's response to this was to 
term a generalised schema a predicate and to investigate transformations of opera- 
tors and representations that change problems that are hard for genetic algorithms 
into problems that are easy for them [23]. This was achieved through exploiting a 
limited duality between operators and representations, which is discussed briefly 
in section 7. Radcliffe instead termed the generalised schemata formae (with singu- 
lar formforma) and set out to develop a formalism to allow operators and represen- 
tations to be developed with regard to stated assumptions about performance 
correlations in the search space. The aim was to maximise the predictive power 
of the schema theorem (and thus its ability to guide the search effectively) by 
allowing the developer of a genetic algorithm for some particular problem to 
codify knowledge about the search space by specifying families of formae that might 
reasonably be assumed to group together solutions with related performance. 

The goal, then, of the present work, is to provide a mechanism for developing 
genetic representations and operators that allows the accuracy of the performance 
estimators/2~(t) to be maximised (or at least raised) by selecting appropriate subsets 
~. Knowledge about the search space is codified explicitly through constructing 
equivalence relations (q.v. section 3) that partition the search space into appropriate 
equivalence classes which play the rrle of formae. Having achieved this, the task 
addressed is the construction of a genetic representation and operators for search- 
ing the given space effectively. 

3. Background on equivalence relations 

Radcliffe [13, 18] has shown that domain specific knowledge must be utilised 
if a genetic algorithm is to have any opportunity to exceed the performance of an 
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enumerative search. In schema analysis, this knowledge is used implicitly in the con- 
struction of an appropriate genetic representation. The way in which forma analysis 
captures and expresses this knowledge is through the introduction of equivalence 
relations over the search space 8. A relation is a property of each pair of members 
of 8 which is either true or false. Familiar examples are inequalities such as "greater 
than", defined over the integers. (For each pair of integers m and n, it is either true 
or false that m > n.) A relation ~ is said to be an equivalence relation if it is reflexive, 
symmetric and transitive, and members for which such an equivalence relation is 
true are said to be equivalent under ~. A relation is reflexive if and only if every 
member of 8 is equivalent to itself: 

VxES: x x. (2) 

Symmetry means that if one member of 8 is equivalent to another then the converse 
is true also: 

Vx, y E 8 :  x ~ y = ~ y , ~ x .  (3) 

Transitivity requires that if a first member is equivalent to a second and that s~cond 
is equivalent to a third then the first is equivalent to the third: 

Vx, y, z e 8 :  ( x ~ y a n d y - - ~ z )  = ~ x ~ z .  (4) 

The most familiar equivalence relation is equality. For example, if the search space 
8 is the set Z of integers, it is clearly true that 

V x e Z :  

Vx, y E Z: 

Vx, y, z E Z: 

X=X~ 

x = y ~ y = x ,  

( x = y a n d y = z )  ~ x = z .  (5) 

It is easy to show that equivalence relations over 8 are equivalent to partitionings of 
S because they partition the search space into disjoint equivalenee classes (fig. 1), 
within which all the solutions are equivalent under the given equivalence relation. 

In the context of genetic algorithms, certain equivalence relations will play 
the r61e of genes and certain equivalence classes will play the r61e of alleles. The 
idea will be to select equivalence relations that capture properties that are thought 
to be relevant to performance through appropriate equivalence relations and then to 
build operators that manipulate these properties in certain well-defined ways which 
will be described in later sections. 

For example, if the search space were the space of all human beings, and the 
search were for the vainest person, it might be that eye colour would be thought to 
be an important determinant of performance (vanity). Eye colour is an equivalence 
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Fig. 1. The eye colour equivalence relation 
partitions the search space S into disjoint 
equivalence classes corresponding to the 

various possible eye colours. 

relation because it plainly satisfies the conditions of reflexivity, symmetry and tran- 
sitivity. (I have the same eye colour as myself; if I have the same eye colour as you, 
you must have the same eye colour as I; and if I have the same eye colour as you and 
you have the same eye colour as your friend, I too must have the same eye colour as 
she.) The equivalence classes are the sets of people with the various eye colours - 
blue-eyed people, brown-eyed people, green-eyed people and so forth. In this exam- 
ple, it is easy to see the natural association of the equivalence relation (eye colour) 
with the gene, and the equivalence class (blue eyes) with the allele. 

Not all the equivalence relations will form genes: some will be composite. For 
example, if hair type is also introduced, it is quite proper to consider a combined 
equivalence relation which makes two people equivalent only if they share both hair 
type and eye colour. Indeed, such an equivalence relation will formally be constructed 
as the intersection of the more basic eye-colour and hair-type equivalence relations. It 
is only the simplest (non-composite) equivalence relations which will form genes. 

For present purposes, it will be convenient to use a functional rather than a 
relational notation for equivalence relations. The following definitions allow this. 

DEFINITION 1 (~) 

Let ~ =~ {0, 1 } so that ]~n is the set of binary strings of length n. ~ will sometimes 
be interpreted as the set of truth values, with 0 corresponding to "false" and 1 to 
"true", sometimes as a set of numbers, and sometimes as a canonical two-element set. 

[] 

DEFINITION 2 (EQUIVALENCE RELATION) 

A function 

~b: ,S • ,._q -~ ll~ (6) 
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wilt be said to be an equivalence relation over S if and only if 

VxES:  t b ( x , x ) = l ,  

Vx, y E S: Zb(x, y) = 1 =~ r x) = t, 

and Vx, y, z E S: ~b(x, y) = tb(y, z) = 1 =~ ~b(x, z) = 1. 

DEFINITION 3 (IDENTITY EQUIVALENCE RELATION 2-) 

(7) 

[] 

is defined by 

Z(x, y) ~ 1. (9) 

[] Plainly 2" is reflexive, symmetric and transitive. 

DEFINITION 4 (E) 

Given a set S, define E(S) to be the set of all equivalence relations over S. 
[] 

Equivalence classes will be seen to play an important r61e in the ensuing ana- 
lysis. For convenience, the termforma (with pluralformae) will be used to refer to an 
equivalence class. There will be three collections of formae that will be of particular 
interest. These are given below. 

DEFINITION 5 (E) 

Given an equivalence relation Ib E E(S), define Er to be the set of formae 
(equivalence classes) induced by lb. Further, given a set of equivalence relations 

c E(S), with ~ = {t)l, ~b2, �9 �9 ~l~I}, define E~, to be the vectors of formae given 
formally by 

I~'1 
Z~, ~ 1 " I -  - (10) ~--" ~"r ~ ~'~'1 X ~r X ' ' -  X ,',r 

i= l  

where the enumeration of the members of �9 is understood to be arbitrary but fixed. 
Finally, ~(~)  will be used to denote the set of all formae induced by relations in ~: 

U (ll) = = =:'r U -'=r U - - -  
r 

= will also often be used to denote some general or specific set of formae. [] 

The identity equivalence relation 

Z: S •  (8) 
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EXAMPLE 6 (FORMAE) 

Let G be the equivalence relation for eye colour, and assume for simplicity 
that the only three eye colours are green, brown and blue. Then 

~pe = {~green, ~brown, ~blue}, (12) 

where ~g~een, for example, is the forma containing all members of S with green eyes. 
Similarly, let % be the equivalence relation for hair type, with formae correspond- 
ing to straight and curl), hair, so that 

~*h = {~curly, ~straight }" (13) 

Now let 

Then 

and 

E = {%, g'h}. (14) 

EE ~--- ~g'e X '-"r 

: {(~green, ~curly), (~brown, ~curly), (~blue, ~curly), 

(~green~ ~straight), (~brown, ~straight), (~blue~ ~straight)} 

~(E)  = {~green, ~brown, ~blue, ~curly, ~straight}. 

(15) 
(16) 

(17) 

[] 

4. The algebra of equivalence relations 

In order to formalise the notions of gene, allele and so forth in terms of 
equivalence relations, notions from linear algebra are borrowed and modified as 
appropriate. In what follows, intersection of equivalence relations is introduced 
and is used as the analogue of linear combination in linear algebra. This allows 
the span of a set of equivalence relations to be defined as the set of all equivalence 
relations that can be constructed by their intersection. It further allows notions of 
independence and orthogonality to be established. These suffice to allow the intro- 
duction of both orthogonal and non-orthogonal bases, which - as will be seen - are 
fundamentally related to genes and alleles. In the following section (section 5) these 
will be used to construct genetic operators and to analyse their properties. 
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DEFINITION 7 (INTERSECTION OF EQUIVALENCE RELATIONS) 

by 

Given equivalence relations Ib, 6 E E(S), define their intersection 

~ n 6 :  S x S--+ B 

(4 n @)(x, y) & r y) A q~(x, y), 

where A denotes logical conjunction ("and") defined by 

(18 )  

(19) 

1, i f a = b = l ,  
a A b & 0, otherwise. 

(20) 
[] 

Two solutions are thus equivalent under the intersection of a pair of equiva- 
lence relations precisely if they are equivalent under each of the pair. Intersection is 
illustrated in fig. 2. 

It is trivial to show that the intersection of two equivalence relations so 
defined is itself an equivalence relation. It is also easy to see that this definition of 
intersection is commutative and associative, since these properties follow from 
the commutativity and associativity of logical conjunction. Thus given a set �9 of 
equivalence relations, the intersection of any A c �9 is well defined and will be 
denoted NA. If 

A = . . . ,  VJAI} (21) 

then 

( ' ]A& ('] 'r ~,a n,( . ,2n.. .n r (22) 

The formae (equivalence classes) induced by ~b n 6 are intersections of the formae 
induced by ~ and r as the following lemma shows. 

Fig. 2. The intersection of a pair of equivalence relations is defined to be their logical conjunction. 
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LEMMA 8 (FORMAE INDUCED BY INTERSECTIONS ARE INTERSECTIONS OF 

FORMAE) 

Given a set of equivalence relations �9 c E(S), let ~b ~= fq ~. Then the equiva- 
lence classes (formae) induced by ~b are intersections of those induced by the rela- 
tions in ~. Formally 

V ~ E E r  N ~ i = ~ '  (23) 
i=1 

where ( = (~1, ~2,. .- ,  ~]i9]). 

Proof 

Given solutions x and y in S, and any equivalence relation ~ E E(S), let [x]r 
denote the equivalence class under ~b in which x lies (i.e. the set of all solutions that 
are equivalent to x under ~b). Then 

q~(x,y) = 1 r 

Thus, comparing eqs. (24) and (27), 

y E [x], (24) 

V~b E q: ~b(x, y) = 1 (25) 

V~bE~: y E [ x ] f = l  (26) 

y E N {[x]f [ ~b E gt}. (27) 

[x]r = N {[x]~0 [ ~b E ~}. (28) 

This is an intersection of precisely the form required by eq. (23). [] 

DEFINITION 9 (POWER SET) 

The power set of any set A is the set of all subsets of that set and is denoted 
Thus 

]P(A) & {B c A}. (29) 
[] 

DEFINITION 10 (SPAN) 

The span of a set of equivalence relations E c E(8) is defined to be the set of 
all equivalence relations that can be constructed by intersection of any subset of E. 



N.J. Radcliffe, The algebra of genetic algorithms 349 

Formally, 

Span: lP(E(S)) ~ ~(E(S)) (30) 

is defined by 

SpanE~-{eEE(S)[3A,  cE:  N A ,  = e}. (31) 

If �9 c Span E then E is said to span tg. [] 

EXAMPLE 11 (SPAN) 

Given an arbitrary pair of equivalence relations ~e and ~bh, but thinking of 
them as the eye colour and hair type relations introduced in example 6 above, 

Span {%, %} = {%, %, ~beh} (32) 

where 

~)eh ~ ~e ("1 ~/)h" (33) 

~/)eh makes two solutions equivalent only if they share both eye colour and hair type. 
[] 

DEFINITION 12 (INDEPENDENCE) 

A set of equivalence relations E C E(S) is said to be independent if no member 
of E can be constructed by intersection of other members of E. Formally, E is 
independent if and only if 

V e c E , ~ A ~ c E \ { e } :  A A , = e ,  (34) 

where \ denotes set subtraction.1 [] 

EXAMPLE 13 (INDEPENDENCE) 

{~3e, ~)h} and {2/3e, ~)eh}, from example 11, are both independent sets of 
equivalence relations, but {~e, %, 2/)eh} is not because %h = ~)e (1 ~)h. [] 

DEFINITION 14 (ORTHOGONALITY) 

A set of equivalence relations E C E(S) is said to be orthogonal to order k if 
given any k equivalence classes induced by different members of E, their intersection 

1 Given sets A and B, A \ B = {a E A I a r B}. 
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is non-empty. Formally, E is orthogonal to order k if and only if 

VA c E ([AI < k) V~ E = 
IA[ 

(35) 
i=1 

where ( = ((1, {2, -.-, ~lal)" I f E  is orthogonal to order ]E I then E is simply said to 
be orthogonal, 2 in which case eq. (35) simplifies to 

tel 

i=l 
(36) 

[] 

EXAMPLE 15 (ORTHOGONALITY) 

Assuming that all combinations of eye colour and hair type are possible (or, 
more carefully, that at least one instance of each combination exists in the search 
space S over which the equivalence relations are defined) the set {~be, %} c E(S) 
is orthogonal, but {%, %h} C E(S) is not because, for example, 

~green f') ~blue, cu r ly=  O,  (37) 

contradicting equation 36. If it were impossible to have, say, green eyes and straight 
hair, then {~be, ~bh} would also be non-orthogonal. [] 

It is clear that orthogonality is a stronger condition than independence. The 
following lemma confirms, as might be expected from the analogy with linear alge- 
bra, that orthogonality implies independence. (The hurried reader could skip the 
proof of this lemma without imperiling future understanding.) 

LEMMA 16 (ORTHOGONALITY IMPLIES INDEPENDENCE) 

Let �9 c E(S) be an orthogonal set of equivalence relations over S. Then �9 is 
independent. 

Proof 

Suppose that g2 were not independent. Then, from the definition of indepen- 
dence (eq. (34)), there would be some ~ in �9 that could be constructed as the 

2 In Radcliffe [15] orthogonality was defined to be what is here defined as orthogonality to order two 
(pair-wise orthogonality). This definition is unsatisfactory because pair-wise orthogonality does not 
imply full orthogonality in the sense of this exposition. This was not realised at the time the earlier 
definition was given. The earlier definition should be discarded in favour of that given in the present 
treatment. 
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intersection of some other members of ~I,: 

3 , , 3A+ce \ (38) 

For each member ~b of Ae, choose an arbitrary equivalence class ~+ E E~. Then, by 
construction, the intersection 

(39) 

is an equivalence class induced by ~b (because ~/, = NAy). Thus any solution that 
is in each of the formae ~ will fail to be in any equivalence class chosen for ~b 
except ~ since the formae induced by a single equivalence relation are disjoint (non- 
intersecting). Thus provided that levi > 1, which is true for all equivalence relations 
except the identity, a forma ~' E E~ \ {~} must exist such that 

t + (40) 

contradicting orthogonality (eq. (36)). Since it is obvious that the identity equiva- 
lence relation cannot be constructed by intersection of other equivalence rela- 
tions, this concludes the proof. [] 

Following the analogy with linear algebra, a basis can now be defined in the 
obvious way. 

DEFINITION 17 (BASIS) 

A subset E of a set of equivalence relations ~ C E(S) will be said to consti- 
tute a basis for ~ if and only if E spans k9 and E is independent. If E is orthogonal, 
the basis will be said to be an orthogonat basis. The number of elements in a basis E 
will be referred to as the dimension of the basis. [] 

5. Representation 

One of the uses for a basis in linear algebra is that it allows an arbitrary vec- 
tor, defined as a geometric entity to be "coordinatised" by projecting it onto the 
axes defined by the "basic vectors" which constitute the basis. The vector can 
then be described as a linear combination of the basic vectors. A similar process 
is now possible for the equivalence relations in kv if there is a basis E for tt,: a gen- 
eral equivalence relation can be decomposed as an intersection of "basic equivalence 
relations" in E. This decomposition underpins the forthcoming formalisation of 
genes and alleles, and facilitates the expression of criteria against which genetic 
operators can be measured. It further provides a framework within which to dis- 
cuss the amenability of various problems to genetic search. 
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The mechanism here adopted for formalising the notions of genes and alleles 
involves identifying EE as a representation of,5. In order for this to be useful, ideally 
EE should be isomorphic to S under a function induced by the basic equivalence 
relations as follows. 

DEFINITION 18 (p) 

Given an equivalence relation e E E(S), define the partial representation 
function 

by 

p~: S ~ E ~  (41) 

p,(x) & [x], (42) 

where [x], is the equivalence class of x under e: 

[x],&{y ~ Sle(x ,y  ) = 1}. (43) 

Then, given any E c E(S), with E = {q,  e2, . . . ,  en}, define the genetic representa- 
tion function by 

Oe& (p,,, p,2, . . . ,  p,,) (44) 

so that 

with 

Pc: S ~ E e  (45) 

pE(x) = ([x],l, [x],2, . . . ,  Ix],,). (46) 
[] 

The function Pe maps each solution in S to the vector of basic formae to 
which it belongs, and can be used as a representation of S as follows. 

DEFINITION 19 (C) 

Given a basis E for a set of equivalence relations ff~ C E(S), define C, the 
space of chromosomes, to be the image of S under PE: 

e A Im s - oE(S) - {e  e Z E l 3 x  e S: o~(x) = r c Z~. 
PE 

(47) 

[] 
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OBSERVATION 20 

Provided that PE is injective (i.e., different solutions have different represen- 
tations in C) the growth function 

g: C ~ S, (48) 

which produces the corresponding solution in S given its chromosomal representa- 
tive ~, is simply the reverse of Pe: 

g(~) & p~l (~j). (49) 

The necessity for injectivity so that the inverse is well defined is brought out in the 
definition of coverage which follows. [] 

The remainder of this section clarifies the relationship between representa- 
tions and orthogonality, and shows that a unique basis can always be found for 
an arbitrary set of equivalence relations over the search space. While earlier discus- 
sions of forma analysis have advocated non-redundant representations, they have 
never explicitly imposed the covering condition about to be introduced, or dis- 
cussed the representation function in quite this manner. 

First, the notion of coverage is introduced. The idea here is that for a set of 
equivalence relations to induce a useful genetic representation, it must be suffi- 
ciently rich that a solution can be uniquely identified by examining the equivalence 
classes to which it belongs. After a couple of technical lemmas, it is then shown that 
an orthogonal basis that satisfies such a requirement of coverage may be used to 
generate a faithful representation of the search space automatically. After another 
technical lemma, it is shown that, in contrast to the analogous case in linear algebra, 
the basis for any set of equivalence relations is unique. Combined with the previous 
result, this means that any sufficiently rich set of equivalence relations over the 
search space induces a unique genetic representation. At this point, genes and 
alleles are formally identified as basic equivalence relations and basic formae respec- 
tively. Finally, the twin notions of a similarity set and a dynastic potential are intro- 
duced. These group together related solutions in ways that are potentially relevant 
to recombination, which is then discussed in section 6. The impatient reader is again 
recommended to skip the proofs of the lemmas in the remainder of this section. 

DEFINITION 21 (COVERAGE) 

A set of equivalence relations �9 c E(S) will be said to cover S if and only if 
for each pair of solutions in S there is at least one equivalence relation in �9 under 
which the pair are not equivalent. Formally, 

V x E S V y E S \ { x } 3 ~ ' E ~ :  ~b(x, y) = 0. (50) 
[] 
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LEMMA 22 (A BASIS FOR A COVERING SET COVERS) 

Let E be a basis for a set of equivalence relations a2 C E(8) that covers S. 
Then E covers S. 

proof 

This follows immediately since every equivalence relation ~b in �9 can be 
expressed as an intersection of some members of the basis E, and thus if �9 distin- 
guishes between two solutions so must at least one of the equivalence relations in 
E into which it can be decomposed. [] 

Coverage is important because if a set of equivalence relations covers S then 
specifying to which equivalence class a solution belongs for each of the equivalence 
relations in the set suffices to identify a solution uniquely. This is clearly an impor- 
tant property of any genetic representation. 

OBSERVATION 23 

A rather pleasing alternative to the definition of coverage given above intro- 
duces the fundamental equivalence relation 

x= N (51) 

Coverage is then easily seen to reduce to the requirement that under X, each member 
of S is equivalent only to itself. Formally, q~ covers S if and only if 

X(x, y) - axy, (52) 

where 6 is the "Kronecker delta", defined by 

5 q & { l '  i f i = j ,  (53) 
0, otherwise, 

so that each solution is in a singleton equivalence class under X: 

p (x) - - { x } .  (54) 
[] 

LEMMA 24 

A basis E for a set kv of equivalence relations over S is orthogonal if and 
only if the genetic representation function PE: 8 ~ Ee is surjective, i.e. if 
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Proof 

Recall from the definition of Pe in eqs. (45) and (46) that 

Pc: S ~  Ee (45 bis) 

is given by 

p (x) = (Ix],,, [x],2, . . . ,  (46 bis) 

where E = {el, s ' ' ' ,  s Thus if PE is surjective, this means that 

(55) 
V~ E EE 3x E S: pE(x) = ~ (56) 

let 
V{E.w.E3xES: x E N { i  (57) 

i=1 

let 
v  zE: (58) 

i=l 

where, as usual, ( = (~, (2, . . . ,  ~lel). Since this is precisely the orthogonality con- 
dition given in equation 36, this concludes the proof. [] 

THEOREM 25 (AN ORTHOGONAL COVERING BASIS INDUCES A FAITHFUL 

REPRESENTATION) 

Let E be an orthogonal basis for a set of equivalence relations ~ C E(S) that 
covers S. Then Ee is a faithful representation of S (i.e. Pe is invertible). 

Proof 

Lemma 24 has shown that pe is surjective whenever E is orthogonal, so it 
only remains to be shown that i f ~  covers S then PE is injective. Moreover, lemma 22 
shows that it suffices to demonstrate that i fE  covers S then p~ is injective. But this is 
obvious, because for a basis to cover S means precisely that for each pair of solu- 
tions, (at least) one of the basic equivalence relations distinguishes between them, 
and thus they must lie in different basic formae for that equivalence relation. Since 
the representation furnished by Pe is precisely the vector of basic formae to which a 
solution belongs, it follows that if E covers S, this function must be injective as 
required. [] 
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It would be convenient if every set of equivalence relations were known to 
contain a basis, and even more convenient if that basis were always unique. The 
following definition and temma facilitate the proof of theorem 29, which shows 
that this is so. Again, the proof of the lemma is merely technical, and may be safely 
skipped by the hurried reader. 

DEFINITION 26 (PRECISION) 

The precision of an equivalence relation ~b is the number of equivalence 
classes it induces, 3 and is denoted p(~b). [] 

Remark 27 

Plainly any equivalence relation except the identity Z has precision greater 
than 1. [] 

LEMMA 28 (PRECISION OF INTERSECTIONS) 

Given equivalence relations ~b, ~b E E(S), with ~b r ~ N ~b :fi 4~, the number of 
equivalence classes induced by ~b n ~b exceeds the number induced by either ~b or ~b, 
i.e. 

p(~b N ~b) > max {p(~b), p(~b)). (59) 

1'roof 

Without loss of generality, assume that p(~) > p(~b). From the definition of 
intersection of equivalence relations (eq. (19)), it is clear that solutions that lie in 
different equivalence classes under ~b must also lie in different equivalence classes 
under ~ N q~, so p(~b n ~b) > p(~b). Since ~b ~ ~b n 4~ by assumption, it is also clear 
that some pair of solutions that are in the same equivalence class under ~b must 
be in different equivalence classes under g, N 4~, otherwise ~b and ~b N ~b would be 
identical. Since equivalence classes are disjoint, this means that at least one of 
the equivalence classes of ~b must be divided in ~ N 4~, and thus at least one more 
equivalence class must be induced by ~b N ~b than by ~b, as asserted. [] 

3 In previous discussions, the precision of  a forma was defined as the precision of  the equivalence rela- 
tion that induces it, but this is clearly only well-defined if the forma is induced by only one equiva- 
lence relation. There is therefore no attempt to define the precision of  a forma in this paper. 
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THEOREM 29 (EXISTENCE OF UNIQUE BASIS) 

Every set of equivalence relations �9 C E(S) contains a unique basis. 

Proof. Existence (by construction)." 

A basis E can be constructed using the following recursive definitions. 

(1) Let N &[@[ and arbitrarily enumerate the members of ~ as ~Pl, ~2, .-., ~bu. 

(2) Let E0 & ~. 

(3) Recursively define Ek (for k _< N) by 

~ E k - l k { ~ k } ,  i f 3 A c E k _ l k { ~ k } :  NA=~k,  Ek (6O) [ Ek_l, otherwise. 

(4) Let E & Eu. 

The set E thus constructed is clearly independent, because any member that could 
be constructed by intersecting others has been explicitly removed. Moreover, it is 
clear that Ek spans Ek-1 by construction, and that spanning is transitive, so that 
E = EN must span E0 = ~. Thus E is indeed a basis for ~. 

Uniqueness: 

Suppose that E1 and E2 are both bases for ~, with E1 # E2. Then there must 
be some relation e that is in E1 but not E2: 

3e E E1 fq El, (61) 

where the prime denotes complementation: 

E~ & E(S) \ E2. (62) 

Since E2 is a basis for q, however, 

3A~cE2: N A ~ = e "  (63) 

Assume, without loss of generality, that A, is the smallest such set, so that no subset 
of A, suffices to make up e. Since e ~ E2, it follows that IAol > 1. 

Now, since E1 is a basis for q, each ~b c A, can be constructed as an inter- 
section of relations in El: 

V~EA, 3A~ cEI: ~A(~=qS. (64) 
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Let B~ be that subset of the relations in E1 used to make up any of the relations q~ 
from A, C E2 whose intersection forms c: 

Clearly 

(65) 

NB~ = e, (66) 

so by independence of Et, BE must contain e. Since e r E2 and A~ C E2, some ~b c A~ 
must be the intersection of e with some other relation or relations in B,. By lemma 
28, p(4~) > p(E). But by the same lemma, this prevents ~b being used in the construc- 
tion of e as an intersection of the members of At. This is a contradiction, so a basis 
for �9 is indeed unique. [] 

This theorem shows that every set of equivalence relations uniquely specifies a 
genetic representation function. It is thus now appropriate to define genes and 
alleles. 

DEFINITION 30 (GENES AND ALLELES) 

Let E be a basis for a set of equivalence relations ~ c E(S) that covers S. The 
members of E will be called basic equivalence relations, or genes. Similarly, given any 
e E E, the member s of E~ will be called basicformae, or alleles. [] 

DEFINITION 31 (DYNASTIC POTENTIAL) 

Given the basis E for a set �9 C E(S) of equivalence relations that covers a 
search space S, the dynastic potential 

F: I?(S) ~ ~(S) (67) 

of a subset L of S is the set of all solutions in S that are equivalent to at least one of 
the members of L under each of the basic equivalence relations (genes) in E: 

r(L) {z SIW L: ,(x,z) : 1). (68) 

This is the set of all "children" that can be generated using only alleles available 
from the "parent" solutions in L. [] 

DEFINITION 32 (SIMILARITY SET) 

Let = be a set of formae defined over a search space S. Then the similarity set 
of any L c S (defined with respect to E and written E(L)) is the intersection of all 
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those formae to which each solution in L belongs: 

5;(L)A { N{(e  E l L  c (}, i f3~ e E: 
S, otherwise. 

L C ( ,  (69) 
[]  

REMARK 33 

It is usually (but not invariably) the case that formae satisfy a closure condi- 
tion provided that they are augmented by the empty set, so that the intersection of 
any pair of formae is itself a forma. If this is the case, it is clear that the similarity set 
of a set L of solutions is simply the smallest forma that contains L. [] 

EXAMPLE 34 (DYNASTIC POTENTIAL AND SIMILARITY SET) 

Let E be an orthogonal basis for a set �9 of equivalence relations that covers a 
search space 8. Let 

E = {% eh, %}, (70) 

these being equivalence relations for eye colour, hair type and political persuasion, 
with equivalence classes given by 

--ee "~ : {(blue, (green, (brown}, (71) 

--eh -- {(straight, (curly}, (72) 

= = {~left, (right}, (73) 

Orthogonality means that all combinations of gene values are legal, so the search 
space has 3 x 2 x 2 = 12 members. Now consider two solutions x and y with 
genetic representations given by 

PE(X) = (~blue, (straight, ~left) (74) 

and 

PE(Y) = ((green, (curly, (left)" (75) 

Then the dynastic potential F({x, y}) is given by 

r({X, y}) = ((blue U (green) N ((straight U (curly) n (left (76) 

"~::::::~PE(r({ X, Y}) )  = {((blue, (straight, (left), ((green, (straight, (left), 

((blue, (curly, (left), ((green, (curly, (left)}, (77) 



360 N.J. Radcliffe, The algebra of genetic algorithms 

while the similarity set E({x, y}) is given by 

~2({x, y}) = Cleft 

~->pe(r~({x, y})) = {(~bi.o, G~gh. ~ef,), 

(Cg~.., Cstr.~gh. ~oft), 
(Gow., G~gh. Clof~), 

(Cblue, Grly, Cleft), 

(~groo., Grly, C~oft), 

(Cbrown, Ccurly, Cleft ) }" 

(78) 

(79) 

Thus the similarity set of a pair of parents contains all those solutions that share the 
same alleles as the parents share, whereas the dynastic potential is restricted to those 
that have every allele in common with one or other parent. [] 

LEMMA 35 (SIMILARITY SETS CONTAIN DYNASTIC POTENTIALS) 

Given a basis E for a set of equivalence relations ~ c E(S), the dynastic 
potential of any subset L of S is contained by the similarity set of L. Formally, 

VL c S: P(L) c ~(L). (80) 

hoof  

Recall from definition 32 that the similarity set of a set L of solutions is given 
by 

E(L)~_fN{~EEILc~}, i f 3 ~ E E :  L C G  
(69 bis) / S, otherwise. 

while from definition 31, their dynastic potential is 

F (L)A{z  E SIVe E E3x E L: E(x,z) = 1}. (68 bis) 

Clearly if E(L) = S the result is trivial, so it remains only to deal with the case in 
which 

z(L) : N{C ~ ~1 L c C}. (81) 

Let ~ ,  denote the subset of the equivalence relations in k~ under which all the mem- 
bers of L are equivalent. Similarly, let Ed denote the subset of the basic equivalent 
relations in E under which all the members of L are equivalent. Then eq. (81) may be 
re-expressed as 

Z(L) = {z E SIV~b E ~Z3x E L: ~)(x, z) = 1}. (82) 



N.J. Radcliffe, The algebra of genetic algorithms 361 

But because E is a basis for ~I,, eq. (82) must remain true if ~ is replaced with Ez~ as 
follows: 

{z SlW E73x L ,(x,z):  1). (83) 

Expressed in this form, it becomes clear that the dynastic potential specified in 
eq. (68 bis) is merely a restriction of the similarity set (since E~ c E). This com- 
pletes the proof. [] 

6. Recombination 

Having introduced the formalism of equivalence relations and constructed an 
algebra that naturally leads to the identification of genes and alleles, it is now 
appropriate to consider how recombination operators should be constructed so as 
to manipulate these structures in useful ways. It will be convenient to regard a recom- 
bination operator as any function that, given some pair  of solutions together with 
some "control parameter", produces a unique child. (In the case of one-point cross- 
over, for example, the control parameter is the cross point.) This formalism allows 
the stochastic element in recombination to be introduced simply through the choice 
of control parameter. It will normally be assumed that the control parameter is 
selected from a uniform distribution over the control set, though other distributions 
could be used. After some basic definitions, various properties that might be thought 
to characterise good recombination operators will be introduced. 

DEFINITION 36 (RECOMBINATION) 

Given any (non-empty) set Ex, and a search space S, any function 

X: 8 x S x Ex ~ 8 (84) 

will be said to be a recombination operator over S, and the set IC x will be called the 
control set for X. [] 

DEFINITION 37 (DYNASTIC SPAN) 

Let X be a recombination operator over a search space S with control set 1Cx. 
Then the immediate dynastic span (under X)  

(85) 

of a set L C S of solutions is the set of all children that can be produced by recom- 
bining the members of L with any control parameter: 

I~x(L)&{zES[3x ,  y E L 3 k E I C x :  X ( x , y , k ) = z } .  (86) 
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The ith dynastic span (under X) 

(87) 

is then defined recursively as follows: 

(88) 

Thus I"~(L) is the set of children that can be produced by i recombinations of 
previous generations. Finally, the (full) dynastic span (under X), 

Fx: P(8) --* ~(S) (89) 

of a set L c S is the set of all children that can be produced given any number of 
generations, so that 

Fx(L) & U F~(L). (90) 
i=1 

[] 

The definitions of recombination operators, dynastic spans and dynastic 
potentials used in this paper are convenient, and allow distinctions to be drawn 
between operators which, while having the same dynastic span, produce children 
with different probabilities or frequencies. This can be accommodated by using dif- 
ferent control sets, possibly having a number of control parameters each of which 
results in the production of the same child. While the different "distributional" 
characteristics of operators can be highly significant, the focus of the following defi- 
nitions will be only the dynastic span of an operator for various pairs of parents. It 
will therefore be convenient to introduce an equivalence relation ,,~ on recombina- 
tion operators that makes them equivalent precisely if they have the same dynastic 
span for each subset of 8. The following definition achieves this. 

DEFINITION 38 (DYNASTIC EQUIVALENCE) 

Two recombination operators Xl and X2, each defined over a search space 8, 
and having respective control sets/(;x, and Ex2, will be said to be dynastically equiva- 
lent if and only if the range of (first generation) children each is capable of producing 
given any set of parents is the same. Dynastic equivalence will be indicated by the 
equivalence relation ~. Formally, 

XI~X2  r VLCS:F~(L)=r~c2(L). (91) 
[] 
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EXAMPLE 39 (UNIFORM CROSSOVER) 

Given a search space 4 

S=Z~,  (92) 

where Zk is the set of integers (modulo k), the uniform crossover operator 

/g: Z~ x Z~ x ~n ~ Z~ (93) 

is defined (cf. [21]) by 

f if mi O, 
L//(x, y, m) & ~ (94) 

I, Yi, otherwise. 

The control parameter m is a binary mask of length n, and each of the child's genes is 
taken from the first or second parent according to the corresponding bit in the mask. 

[] 

Definition 36 clearly admits a very broad class of"recombination" operators. 
The aim of the present section is to impose conditions on recombination which 
might be thought to be helpful in ensuring effective genetic search. Perhaps the 
most obvious condition that one might wish to impose on a recombination opera- 
tor is that when the two parents are the same, all offspring produced by recombina- 
tion will be clones of the parents. Such a recombination operator will be said to be 
pure. More generally, if a set of formae has been defined, corresponding to a set of 
characteristics that are thought to be important in determining performance, one 
might require of recombination that the children it produces should share any 
characteristics that the parents share. This is the essence of the property of 
respect. The following definitions make these notions precise. 

DEFINITION 40 (PURITY) 

Let X be a recombination operator over a search space S, having control set 
Ex. Then X will be said to be pure if and only if all the offspring produced by X 
when the parents are identical are themselves identical to the parents: 

Vx~SVkrEx: X(x,x,k)=x. (95) 
[] 

4 In practice, it will more commonly be the representation space (the set of chromosomes or genotypes) 
that wilt be Z~, but the distinction is unimportant for the purposes of the present example. 
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DEFINITION 41 (RESPECT) 

Let E be a set of formae defined over a search space S and let X be a 
recombination operator over S with control set Ex. Then X will be said to respect 
the formae in E if and only if all the offspring produced by X are members of each 
forma to which both parents belong: 

V~ E EVx E ~ Vy E ~ Vk E ICx: X(x, y, k) E ~. (96) 
[] 

LEMMA 42 (RESPECT r ALL CHILDREN LIE IN THEIR PARENTS' SIMILARITY SET) 

A recombination operator X, with control set 1Cx, defined over a search space 
S, respects a set E of formae if and only if all the solutions produced by recombina- 
tion lie in the similarity set of their parents: 

V x E S V y e S :  X(x,y, iEx) CZ,({x,y}). (97) 

Proof 

If the two solutions x and y share membership of no forma then respect 
imposes no conditions, so only the case where they share membership of at least 
one forma need be considered. The proof is then direct: 

VxESVyES:  X(x,y, lCx) C~({x,y}) (98) 

V x E S V y E S V k E E x :  X(x,y,k) EZ,({x,y}) (99) 

r VxESVyESVkEICx:  X(x,y,k) E N { ( E E I x ,  yE~} (100) 

r V~E=.VxE(VyE~VkEEx: X(x,y,k) E(. (96bis) 

[] 

COROLLARY 43 (RESPECT OF COVERING FORMAE IMPLIES PURITY) 

A recombination operator X, that respects a set E(kV) induced by a set �9 of 
equivalence relations that covers a search space S, is pure. 

Proof 

If both parents are the same, then clearly they are in the same forma for 
each equivalence relation in kv. Respect therefore requires that all children lie in 
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each of these formae. Since �9 covers S, this means that the child is identical to 
the parents. [] 

Respect restricts the solutions that any pair of parents are allowed to produce 
under recombination, to ensure that common characteristics are preserved. It 
also seems important, however, that recombination be capable of combining 
characteristics of two parents, provided these characteristics are compatible; this, 
after all, is normally considered to be its raison d~tre. The property of assort- 
ment, defined below, characterises recombination operators that are capable of 
generating children with arbitrary admixtures of their parents' genes. The remain- 
der of the present section is based primarily on the twin notions of respect and 
assortment; the choice of the latter as a relevant criterion against which to measure 
recombination operators is discussed in section 7. 

DEFINITION 44 (ASSORTMENT) 

A recombination operator X, defined over a search space S and having con- 
trol set Ex, will be said to assort a set E of formae, also defined over S, if and only if 

~1 E Z V~2 E -~" (~I N ~2 ~;~ O) ~X 1 E ~1 VX2 E ~2: I~x({X1, X2} ) N ~t N ~2 ~ ~" 
(101) 

The assortment will be said to be proper if this property holds for I'l({xl, x2}) as 
well as for I'x({Xl, x2}), i.e. if 

V~I E ~V~2 E '~' (~1 nr • O)Vx1 E ~1 VX2 E r 

rxl({xl, x2}) n (1N~2 r O 

'" ~1  E ~ V~2 E ~ (~1 I"1 ~2 r 0)  ~X 1 E ~1 VX2 E ~2 3k E Ex: 

(X(Xl, x2, k) E ~1 N ~2 or X(x2, Xl, k) E ~I f'l~2). 

(102) 

(103) 
[] 

DEFINITION 45 (SEPARABILITY) 

A set E of formae defined over a search space S will be said to be separable if 
and only if the conditions of respect and assortment of the formae in E are com- 
patible. Formally this can be expressed as follows: 

(104) 

An operator that simultaneously respects and assorts E will be said to separate E 
(and the formae in E). [] 
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OBSERVATION 46 

The definitions of respect, assortment and separability depend only upon the 
definition of formae, not equivalence relations or bases, and thus not on genes or 
alleles. If the term forma is relaxed to include any subset of the search space, with- 
out particular reference to any equivalence relation which might induce that subset 
as an equivalence class, this allows these notions to be applied even when genes have 
not been defined, provided that formae have. [] 

DEFINITION 47 (GENE TRANSMISSION) 

Let E be a basis for a set �9 of equivalence relations over a search space S. 
Then a recombination operator X over S will be said to be (strictly) transmitting 
if and only if each allele present in any child produced by X is present also in at 
least one of its parents. Formally, this is the requirement that 

Vx, y E S V k E 1 E x V e E E :  (e(x ,X(x,y ,k))= l or e(y ,X(x ,y ,k) )= l) 

(105) 

Vx, y E S V k E E x :  X(x,y ,k)  EF({x,y}), (t06) 

i.e. every child produced by X is equivalent to at least one of its parents under each 
basic equivalence relation, or equivalently, that each of the child's alleles is inherited 
from one or other parent. [] 

LEMMA 48 (GENE TRANSMISSION IMPLIES RESPECT) 

Let E be the basis for a set �9 of equivalence relations over a search space S. 
Then if a recombination operator 

X: S x S x lCx--+ S (107) 

transmits the genes in E, it respects the forrnae in E(~). 

Proof 

It has been shown in lemma 42 that respect amounts to the condition that all 
children lie in their parents' similarity set. Gene transmission is the requirement that 
all children lie in their parents' dynastic potential. The proof therefore follows 
immediately from lemma 35, which shows that similarity sets contain dynastic 
potentials. [] 
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DEFINITION 49 (G-SEPARABILITY) 

A set E(ff') of formae induced by a set �9 of equivalence relations defined over 
a search space S will be said to be g-separable if and only if the conditions of gene 
transmission and assortment with respect to ~ are compatible. Formally, 

vr ~ ~(r vr E z(w) (r n r # o) Vx~ E r Vx2 E r r({x~, x2})nr nr # z. 
(lOS) 

[] 

LEMMA 50 (G-SEPARABILITY IMPLIES SEPARABILITY) 

Let ~I, be a set of equivalence relations over a search space S. Then if E(@) is 
g-separable, Z(@) is separable. 

Proof 

This follows immediately from lemma 35, which shows that similarity sets 
contain dynastic potentials. [] 

DEFINITION 51 (E*) 

Following from the definitions of E~ and E~, given in definition 5, this nota- 
tion is now extended to define E~ and E~, as follows. Given 5' E �9 C E(S), let 

-~  - =~, U { S }  (109) 

and 

~'~ = , x  "~" (110) 

[] 

LEMMA 52 (REPRESENTATIONS OF FORMAE) 

Let E be an n-dimensional orthogonal basis for a set of equivalence relations 
E E(S). Then every forma r induced by a relation ~ E �9 can be expressed 

uniquely as the product of the components of some member ~ E E~. Formally, 

?/ 

/ = 1  

where H! is read "there exists a unique", and ~ = (r r " ' ' ,  Cn). 
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Proof 

Let ~ be induced by the equivalence relation ~b E ~, i.e. ( E E~. Then since E 
is a basis for ~, 

~A, c E :  NA~o=~b. (112) 

The existence of a ~ satisfying eq. (111) follows fairly directly from lemma 8, which 
showed that the formae induced by intersections of equivalence relations are inter- 
sections of the formae induced by the "parent" relations. Making appropriate sub- 
stitutions, eq. (23) becomes 

V~ E ~A~" E~ 3~ ~ E : �9 
taxi 
N ~  ~ =~, (113) 
i=l 

where( = ((1, ~ 2 ,  �9 �9 �9 (l&l). Thevector ( '  E _&,z, can be extended to a ~ E E) simply 
by setting the "extra" components of ( (those corresponding to those relations 
e E E \ A~) to S. Clearly then 

n 

~')~i =~  (114) 
i=1 

also, since the only "extra" intersections compared with ~ are those with S. 
Uniqueness for the components of ( corresponding to relations in Ar follows 

from the fact that the equivalence classes induced by any equivalence relation are 
disjoint. That the remaining components of~ can only be S follows from the ortho- 
gonality of E. [] 

LEMMA 53 (RESPECT r CHILDREN INCLUDE ALL ALLELES COMMON TO THEIR 

PARENTS) 

Let E(~) be a set of formae induced by a set gJ of equivalence relations over a 
search space S. Then a recombination operator 

X: S x S x Ex ~ S (115) 

respects E(~) if and only if the alleles common to the parents are present in every 
child produced by X. 

Proof 

This is immediately clear because every equivalence relation ~b E �9 can be 
expressed as an intersection of basic equivalence relations in E, and thus every 
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equivalence class (forma) ~ E E(~) can be expressed as an intersection of basic for- 
mae in E(E), by lemma 52. Clearly, therefore, if E(E) is respected, (i.e. every allele 
common to the parents is included in all children produced by X)  then all their 
intersections must be respected also. [] 

EXAMPLE 54 (SCHEMATA ARE G-SEPARABLE) 

Let 

S = Z~:, (116) 

the set of k-ary strings of length n, and let E be the corresponding set of schemata: 

z = (117) 

where [] is the "don't  care" character. Then E is g-separable, and uniform crossover 
(see definition 39) both transmits genes and assorts schemata. To see this, observe 
first, from lemma 53, that in this case respect amounts to the requirement that all 
alleles present in the child come from one or other parent, and that uniform cross- 
over plainly ensures this. Moreover, assortment now amounts to the requirement 
that any combination of the parents' alleles be capable of being produced, and uni- 
form crossover also ensures this. Thus uniform crossover transmits and assorts 
schemata, so schemata are g-separable. [] 

EXAMPLE 55 (NON-SEPARABLE FORMAE) 

Let Pn be the set of permutations of the elements of Zn. Then given a set g of 
undirected edges that it is possible for a permutation to include, (an edge specifying 
the adjacency of two elements in the permutation) let the forma ~e be the set of all 
permutations that include the edges in g. The set E of all such formae is non- 
separable. To see this, observe that if a permutation x contains the sub-permutation 
1-2-3 and another permutation y contains the sub-permutation 1-2-4, respect 
requires that the 1-2 edge be contained in all the offspring produced by recombina- 
tion of x and y, while assortment requires that recombining them allows the 
generation of a permutation containing both the 2-3 and the 2-4 edges. Clearly 
these requirements are incompatible. [] 

COROLLARY 56 (ORTHOGONAL FORMAE ARE ISOMORPHIC TO SCHEMATA) 

Let E be an n-dimensional orthogonal basis for a set of equivalence relations 
kv c E(S) that covers S, and assume that 9 is closed under intersection. Then the 
formae in E(tg) are isomorphic to schemata with genes E and alleles E(E). 
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Proof 

Lemma 52 has already shown that any forma in E(~) can be expressed as an 
intersection of the components of a vector g E E). It has previously been argued that 
basic formae are the natural generalisation of alleles, and this only leaves the identi- 
fication of"intersecting with S"  with the "place-holder" wildcard []. This is clearly 
also very natural: intersecting with S does not narrow the membership of a forma at 
all, and similarly including a "don't  care" character allows any allele to occupy that 
position, thus not narrowing the solutions contained within a schema. [] 

THEOREM 57 (ORTHOGONALITY IMPLIES G-SEPARABILITY) 

Let E be an orthogonal basis for a set of equivalence relations �9 c E(S). 
Then E(tg) is g-separable. 

Proof 

This follows immediately from corollary 56 since schemata have already been 
shown to be g-separable (example 54). [] 

OBSERVATION 58 (NON-ORTHOGONALITY DOES NOT IMPLY NON-SEPARABILITY) 

The fact that a set of formae is non-orthogonal does not mean that it is neces- 
sarily non-separable. An example of a set of separable formae induced by non- 
orthogonal genes can be found in Radcliffe [14, 15]. [] 

Having now defined a number of properties - purity, respect, gene transmis- 
sion and assortment - that appear to be relevant to genetic search, it is natural to try 
to identify generic operators that satisfy these properties. The following definitions 
introduce a family of three related operators, known as random respectful recombi- 
nation, (R3), random transmitting recombination (RTR) and random assorting 
recombination (RAR). These three operators are related, and all reduce to uniform 
crossover in the case of binary schemata. They are subtly different in cases of non- 
separable formae, and in cases where genes are non-orthogonal. Each has proved 
useful in some practical applications (Good [8]; Jones [10]; Shapcott [19]). The 
simplest of the operators is R 3, which, as the following definition shows, delivers 
a child that is randomly selected from the parents' similarity set. 

DEFINITION 59 (RANDOM RESPECTFUL RECOMBINATION (R3)) 

Given a set E of formae over a search space S, the random respectful recom- 
bination operator 

R3: S x S x Z ~ S (118) 
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is defined by 

R 3 (x, y, k) = cr k, (x, y), (119) 

where cri(x , y) is the ith element of the similarity set o fx  and y under some arbitrary 
enumeration and k' &k (mod 1E({x , y}) I). Thus if R 3 is given a random control 
parameter, it returns a randomly-selected member of the parents' similarity set. [] 

COROLLARY 60 (R 3 RESPECTS) 

Random respectful recombination respects the formae with respect to which 
it is defined. 

Proof 

This follows immediately from 1emma 42, (which shows that respect amounts 
to requirement that children lie in their parents' similarity set) since R 3 selects chil- 
dren only from the similarity set of the parents. [] 

THEOREM 61 (R 3 SEPARATES SEPARABLE FORMAE) 

Let E be a separable set of formae over a search space S. Then R 3 (defined 
with respect to E) separates E. 

Proof 

First notice that R 3 generates every solution in the similarity set of the parents 
given suitable control parameters. This is, from lemma 42, the maximal set of off- 
spring compatible with respect. Thus if R 3 cannot assort the formae in E, nor can 
any other respectful recombination operator. Thus R 3 respects and assorts any 
separable set of formae. [] 

R 3 is unusual in that it does not, in general, restrict children's alleles to be 
inherited from their parents. The RTR operator, defined next, adds this restriction. 

DEFINITION 62 (RANDOM TRANSMITTING RECOMBINATION (RTR)) 

Given a basis E for a set �9 of equivalence relations over a search space S, the 
random transmitting recombination operator 

RTR: S x S x Z ~ S  (120) 

is defined by 

RTR(x, y, k) &'i'k,(x, y), (t21) 
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where 3'i(x, y) is the ith member of the dynastic potential F({x, y}) of the parents x 
and y under some arbitrary enumeration ofr({x, y}), and k'  & k (mod I r'({x, y}) [). 
Thus if RTR is given a randomly selected control parameter, it returns a random 
member of the parents' dynastic potential. []  

THEOREM 63 (RTR TRANSMITS AND ASSORTS G-SEPARABLE GENES) 

Let E be the basis for a set �9 c E(S) of equivalence relations over a 
search space & Then RTR transmits the genes in E and assorts them if they are 
g-separable. 

eroof 

That RTR transmits genes follows immediately from the definition, since the 
dynastic potential of a pair of parents is precisely those children that can be con- 
structed only from their genes. It therefore remains only to show that RTR assorts 
the genes in E. This is also obvious, because the span of RTR is the whole dynastic 
potential of the parents, and thus it generates every solution that is compatible 
with gene transmission. Thus if RTR fails to assort the formae in E(~), it is clear 
that no transmitting recombination operator can do so, and thus they are not 
g-separable. [] 

THEOREM 64 (RTR ~ UNIFORM CROSSOVER GIVEN ORTHOGONAL GENES) 

Let E by an orthogonal basis for a set of equivalence relations �9 C E(S). 
Then RTR is dynastically equivalent to uniform crossover. 

Proof 

The dynastic span of RTR is, by definition, the dynastic potential of the 
parents, and orthogonality ensures that all combinations of the parents' genes repre- 
sent legal solutions. It therefore suffices to show that 

Vx, y 6 &  Fu({x,y})-r({x ,y}) .  (122) 

Since uniform crossover is defined precisely to produce a child by selecting the value 
for each gene at random from the values of the parents, this is clearly the case. [] 

THEOREM 65 (FOR ORTHOGONAL BINARY GENES, R 3 ~ RTR) 

Let E be an orthogonal basis for a set of equivalence relations ~Y c E(S). 
Then if each gene in E is binary (has precision 2), R 3 is dynastically equivalent to 
RTR. 
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Proof 

This follows as an immediate consequence of the fact that if the parents 
have different alleles (i.e. are in different basic formae) for some gene, the 
range of values RTR allows is still the entire allele set since there are only two 
alleles. [] 

Having introduced R 3 and RTR, recombination operators that give primacy 
to the related characteristics of respect and gene transmission respectively, the final 
operator that will be introduced, random assorting recombination (RARw), sacri- 
fices these in favour of assortment when the principles are in conflict. It does so, 
however, in a parameterised way, so that the trade-off between respect and assort- 
ment can be controlled. The essential idea behind the operator is to collect together 
all the alleles present in the parents in a bag. The number of copies of an allele placed 
in the bag depends on whether or not it is common to the two parents. (There are w 
times as many copies of common alleles as of those present only in one parent.) 
Alleles are then randomly drawn from the bag, without replacement, and placed 
in the forming child, provided that they are not incompatible with alleles already 
chosen for it. Such an incompatibility will obviously arise if a different allele 
has already been selected for the child's corresponding gene. If the basis is non- 
orthogonal, however, it may also arise simply because of an incompatibility 
between alleles at different loci. This initial phase of the operator completes either 
when the child is fully specified, or when the bag is empty. In the latter case, the 
operator completes the child by making random (legal) assignments to the unspeci- 
fied genes in the child, taking appropriate account of any incompatibilities that may 
arise from non-orthogonal genes. 

The following definitions give a more precise formulation of the operator. 

DEFINITION 66 (MULTIPLICITY m) 

Let .M be a multiset (bag), i.e. is a collection of elements in which repetition of 
members is significant. Then define the multiplicity m(x, .A4 ) of a member x in .M to 
be the number of copies x in .M. [] 

DEFINITION 67 (RANDOM ASSORTING RECOMBINATION (RARw)) 

Let E be a basis for a set �9 of equivalence relations that cover a search space 
S. Then 

RARw: 8 x 8 ~ 8  (123) 

is a recombination operator that constructs a child RAR w (x, y), (w integral), from 
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parents x and y as follows. Construct a multiset 130 of alleles by 

w, i fx,  y E (, 

V~E:Z(E): m((,/3o)& 1, i f x E ( x o r y E ( ,  (124) 

0, otherwise. 

Further, define a set 7"r & S. Now recursively define the multisets/3 i by picking a 
random member ~i from/3i-1 and setting 

/3i --~/3i-1\ [~il, (125) 

(where [.. "1 denotes a multiset) and then recursively define the sets T~ i by 

~_~ ~ "~i- 1 f"l ~i, 
[ ~'~i-l~ 

if "]~i-1 N ~i • O, 
(126) 

otherwise. 

Continue these recursive definitions until step n, at which Bn = Z. Then let 
RAR(x, y) be a randomly chosen member of ~n. 

Notice that this definition, as presented does not have an explicit control set, 
and thus does not conform to the standard form of recombination operator sug- 
gested in definition 36. This is easily effected, however, by introducing an (arbi- 
trary) enumeration over ~n and using Z as a control set, with the integer control 
parameter (mod [ ~'n D being used to select the member of 7"r chosen. [] 

Note that the above definition is intended as a formal construction of RAR 
only, and is unlikely ever to be an efficient method for its implementation. Notice 
further, that the higher the value of w, the higher is the probability that RARw 
will respect, because the more copies of the common alleles will be present in the 
bag. 

The weight parameter, w, determines the relative probability, during the first 
phase of RARw's operation, of picking alleles that are common to the two parents 
rather than those that are present only in one. Higher values of w bias the operator 
more strongly towards choosing common alleles, encouraging respect. Indeed as w 
is increased, the distribution of solutions produced by RARw clearly approaches 
that of R 3. Conversely, lower values lead to less emphasis on common alleles and 
respect, but encourage more assortment. 

It is a simple matter to generalise the operator to accept any non-negative 
weight w rather than integral values only. In this case, values of w less than one 
actively bias the operator against common alleles, encouraging very strong mixing 
of the alleles that differ between the parents. Experiments with a range of values for 
w above and below one are described in Radcliffe and George [12]. 

The following theorem confirms, as expected, that for any finite value of w, 
RARw assorts. 
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THEOREM 68 (RAR ASSORTS) 

Let E be a basis for a set of equivalence relations g' c E(~). Then for all 
values of w E Z +, RARw properly assorts the formae in E(~). 

Proof 

Recall the definition of proper assortment (eq. (102)), applied to this case is as 
follows: 

~ t  e '~' ~ 2  E ~'(r n~2 :/z O)VX 1 E r E ~2: I~I~ARw({X1, X2}) n~l Nr ~;~ O, 
(127) 

Lemma 8 shows that ~1 and (2 can be represented as intersections of basic equiva- 
lence relations in E(E) since E is a basis for ~. Thus 

3A 1 C Z(E): NA1 = ~1 (128) 

and 

3A2 C E(E): NA2 = ~2- (129) 

Clearly 

(NA1) n (NA2) -~ N(A1 U A2) = ~1 n~2. (130) 

Each member of A1 is an allele that the parent xl contains, and similarly each 
member of A2 is an allele that the parent x2 contains. Moreover, since ~1 n ~2 is 
by assumption non-empty, all the alleles in A1 U A2 are compatible. Examining defi- 
nition 67 (the definition of RARw), it is clear that each allele in A1 U A2 will be in the 
bag/30 of available alleles with multiplicity strictly greater than zero. It is therefore 
possible that each of these alleles will be selected before any others, and that if this 
happens, they will all be found to be compatible (because they are!). This suffices to 
show that RARw can generate a solution in the intersection as required. [] 

THEOREM 69 (RAR TRANSMITS AND ASSORTS G-SEPARABLE GENES) 

Let E be a basis for a covering set of g-separable equivalence relations 
C E(S). Let �9 by closed under intersection, i.e. 

vr r c ~: r n r ~ ~. (131) 

Then for all values of w E Z +, RARw assorts and transmits the genes in E. 
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Proof 

Theorem 68 has already shown that RAR~ assorts the genes in E, so it 
remains only to show that it transmits them also when these two conditions are com- 
patible. Continuing from the proof of theorem 68, observe first that if by the time 
the bag of alleles is empty the child has been fully specified, then RARw would 
indeed have transmitted, because all the child's alleles would then have come 
from one or other parent. Since E covers ~, the child could only fail to be fully 
specified after the bag has been emptied if for some gene neither of the parents' 
corresponding alleles were found to be compatible with the other alleles already 
selected. To complete the proof, therefore, it suffices to show that this would contra- 
dict g-separability. 

Suppose, then, that after partially constructing the child using RARw, it 
became impossible to include the allele from either parent for some gene e. Let 
the forma ~ denote the intersection of all those alleles that the (partial) child 
possesses at this stage. Then clearly no recombination operator which could con- 
struct a child in ~ could strictly transmit genes. The forma ~, however, is non-empty 
by construction (see definition 67). Let the parent solutions be Xl and x2. Since ~ is 
an intersection of alleles from these parents, it is clear that there must be formae ~1 
and ~2, with xl E ~1 and x2 ~ ~2, such that ~1 N ~2 = ~. Since ~ is non-empty, assort- 
ment requires that a recombination operator be capable of generating a solution in 
~. Thus if membership of ~ is incompatible with gene transmission, the genes cannot 
be g-separable, contradicting the assumption and completing the proof. [] 

DEFINITION 70 (HILL-CLIMBER) 

Given a search space S, for the purposes of the current paper, a hill-climber 
will be defined as any function 

h: ~(S) -~ S. (132) 

Thus given a set of solutions, a hill-climber picks one of them. [] 

It will normally be helpful, and accord better with common usage of the 
term hill-climber, if h returns at least a local maximum (with respect to some move 
operator or metric) from the set that forms its argument. 

EXAMPLE 71 (ENUMERATION) 

Simple deterministic hill-climbing is an example of a hill-climber in the sense 
of definition 70. Enumeration evaluates every solution in the given subset of S and 
returns the one with the highest fitness. In the case where there is more than one such 
point, an arbitrary choice is made. [] 
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DEFINITION 72 (RANDOM ASSORTING RECOMBINATION WITH HILL-CLIMBING 
(RARwh)) 

The random assorting recombination operator with hill-climber h (RARwh) is 
an extension of RAR~ which depends on the existence of a hill-climber h. The defi- 
nition of RARwh is identical to that of RARw until Ten has been constructed (i.e. the 
bag of alleles is empty). Instead of making a random selection from the children in 
7-~ n, RmRwh applies the hill-climber h to 7~n and returns its result this as the child 
produced. [] 

THEOREM 73 (ORTHOGONALITY IMPLIES RARw IS DYNASTICALLY EQUIVALENT TO 
RTR) 

Let E be an orthogonal basis for a set �9 of equivalence relations that covers a 
search space S. Then RARw and RTR (defined with respect to E and E(9)) are 
dynastically equivalent: 

Vw E Z+: RAR~ ,-~ RTR. (133) 

Proof 

Recall that orthogonality amounts precisely to the requirement that any com- 
bination of alleles from different genes should be present in some solution in S. It is 
clear that the only circumstances in which it will be impossible to place an allele in a 
child will be those in which a different allele has already been chosen for that gene. It 
is also clear that by the time the sequence of bags 13i is empty the child will have been 
fully specified because one allele will have been assigned for each gene. Thus all com- 
binations of the parents' genes will be capable of being produced by RAR, and all 
children will consist solely of alleles selected from the parents. This shows that given 
orthogonal genes, the dynastic span of RARw is equal to the dynastic potential of 
any set of parents. Since this is also the case for RTR, the two must be dynastically 
equivalent. [] 

COROLLARY 74 (RAR~ TRANSMITS AND ASSORTS ORTHOGONAL FORMAE) 

Let E be an orthogonal basis for a set �9 c E(S) of equivalence relations over a 
search space S. Then for all values of w, RAR transmits and assorts the genes in E. 

/'roof 

Since orthogonal genes are g-separable by theorem 57 and RTR transmits 
and assorts them by theorem 63, the result follows immediately from the previous 
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theorem, which shows that RARw is dynastically equivalent to RTR for orthogona! 
formae. [] 

7. Discussion 

The preceding sections have formalised many of the earlier results of forma 
analysis and proved for the first time a number of relationships between the struc- 
ture of patterns of correlations in a search space and the manipulations that it is 
possible to perform on the members of the search space. The purpose of the present 
section is to set these in context, and to discuss the relationship between the approach 
of forma analysis, in which operators are designed to achieve specific effects, and the 
more common approach suggested by schema analysis, whereby a representation is 
constructed to allow "standard" operators to manipulate solutions. 

Forma analysis provides a method for constructing operators and represen- 
tations using the mechanism of codifying such knowledge as the worker has through 
equivalence relations or through the explicit construction of alleles. Each member of 
the suggested family of operators manipulates solutions so as to achieve purity, 
respect, gene transmission and assortment in various measures. These notions 
have been arrived at by studying the way conventional crossover operators mani- 
pulate schemata. In the context of schemata, the principles of gene transmission 
and proper assortment restrict the set of available operators to those that are 
dynastically equivalent to uniform crossover. Because it chooses each of the chil- 
dren within the dynastic potential of the parents with equal probability, uniform 
crossover may be regarded as a "neutral" operator that may be refined by biasing 
it in various ways. For example, Eshelman et al. [5] have helpfully characterised 
recombination operators in terms of positional and distributional bias. Positional 
bias refers to the tendency of operators to distinguish between alleles chosen for 
propagation from one parent to the child on the basis of their positions on the 
chromosome. Thus, one-point crossover is highly positionally biased, because 
adjacent alleles are very much more likely to be transmitted together than distant 
alleles. Uniform crossover, on the other hand, exhibits no positional bias because 
any pair of alleles is equally likely to be transmitted whole. The characteristics of 
R 3, RTR and RARw are the same as those of uniform crossover in this regard. Posi- 
tional bias as demonstrated by one-point crossover is helpful in many problems 
because representations are often chosen which link strongly interacting genes by 
placing them in close proximity on the chromosome; this is particularly helpful 
when the genes exhibit epistasis. 

It should be recalled, however, that Holland [9] originally proposed that one- 
point crossover be used in conjunction with a re-linking operator (inversion) which 
would move genes around the chromosome to allow the search to discover strong 
linkages adaptively. If the linkage of a chromosome is regarded as a random vari- 
able, this restores n-point crossover to the status of properly assorting; moreover, 
insofar as the linkage is actually non-random, it would be presumed that adaptation 
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would concentrate assortment on fruitful areas of the genome. Despite some effort, 
however, studies including those by Cavicchio [4], Franz [6] and Radcliffe [13] have 
tailed to observe significant improvements in performance using inversion. Bethke 
[2] has attributed the failure of the early studies to demonstrate a significant effect to 
the simplicity of problems studied. It is possible, however, that the selective pressure 
exerted by superior linkage may be too weak to be usefully exploited in most appli- 
cations. (This suspicion motivated the formulation of the PMX operator by Gold- 
berg and Lingle [7] as a sexual re-linking operator, though the author is unaware of 
any experiments with this idea to date.) It is also possible that the perceived super- 
iority of n-point crossover on many problems discussed in the literature may stem in 
part from the concentration of tackling real parameter optimisation problems using 
a binary coding in which there is clearly strong linkage between the many adjacent 
bits that code a single parameter. It is therefore rather unclear whether the position- 
ally unbiased nature of R 3, RTR and RARw should in general be regarded as a ben- 
efit or a weakness. 

Distributional bias refers to the tendency of an operator to choose the 
amount of genetic material to be drawn from one parent other than uniformly. 
One-point crossover thus exhibits no distributional bias (assuming the cross point 
is itself picked uniformly) while uniform crossover (with parameter half) exhibits 
a strong bias towards taking half the material from each parent. It is easy, how- 
ever, to control the distributional bias for most operators by changing the distri- 
butions from which their control parameters are drawn. Spears and De Jong [20] 
have used this freedom to manipulate the distributional characteristics of recombi- 
nation operators and show that if a parameter other than half is picked for uniform 
crossover (so that there is a bias towards taking material from a preferred parent) 
then its much-criticised disruptive effect on schema membership can be con- 
trolled. This important point has rather wide applicability. For example, RARw 
can trivially be biased towards one parent simply by placing k additional copies 
of all alleles from that parent in the bag at the outset. 

Taken together, these points suggest that R 3, RTR and RARw should not be 
viewed as "ideal" operators, but merely as neutral operators akin to uniform cross- 
over. They may be further refined, for example by manipulating the distribution 
from which control parameters are selected, by biasing the content of the bag (in 
the case of RARw) and possibly even by adding an explicit notion of linkage which 
could then be used to construct "n-point crossover-like" variations of, for example, 
RARw. 

Having placed the discussions in the paper in a clearer context, it is perhaps 
worth discussing in a little more detail why, as well as all the above considerations, 
assortment may be a property of some significance for a recombination operator. It 
has already been shown that situations can arise in which respect (or strict gene 
transmission) is not compatible with assortment, and that most of the standard 
operators respect schemata (and strictly transmit genes). Practical examples in 
which the principles are incompatible using natural formae include the travelling 
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sales-rep problem (Radcliffe [15], where the formae are based on directed or 
undirected edges), neural network topology optimisation (Radcliffe [17], where 
they are based on nodes) and fixed-size set and multiset problems (Radcliffe [16], 
where they are based on set membership). Thus if a respectful operator is used, 
the non-separability immediately means that assortment must fail to be achieved. 
The significance of this is that even when parents are chosen that contain all the 
genetic material (apparently) necessary to build some given child, it may be 
impossible for a respectful recombination operator to construct that child. As 
well as being in conflict with reason, this would seem to make navigation around 
the search space unnecessarily difficult. 

It is hoped that these discussions suffice to show that the principles discussed, 
(purity, respect, assortment and transmission) far from being arbitrary, precisely 
capture the behaviour of standard crossover operators on separable problems. 
The virtue of formulating the principles explicitly is that this permits them to be 
applied and analysed in domains in which solutions are not naturally expressed 
as linear strings of genes that may be independently assigned. 

Among the more important results that have been shown in this paper, the 
existence of a unique genetic representation given a set of equivalence relations 
(theorem 29) stands out. This requires careful interpretation. The mathematical 
content of the theorem is simply that given any set of equivalence relations over a 
search space, it is possible to construct a unique basis (a minimal subset out of 
which the remainder may be constructed) for those relations. If, however, the iden- 
tification of basic equivalence relations with genes and basic formae with alleles is 
accepted, this means that given a set of relations that covers a search space S, there 
is exactly one (abstract) genetic representation consistent with the characterisation 
expressed by those equivalence relations. If it is further accepted that respect, assort- 
ment and so forth are the relevant characteristics of effective genetic recombination 
operators, then R 3, RTR and RAR suggest themselves at least as natural starting 
points for recombination operators. 

The relationships between general formae and schemata have also been 
clarified in this paper, as have the relationships between R 3, RTR and RAR. The 
formae induced by a set of equivalence relations with a covering orthogonal basis 
are isomorphic to schemata: thus orthogonal genes are the standard case that work- 
ers in the field have been accustomed to thinking about. Moreover, given orthogo- 
nal formae, both RTR and RAR reduce to uniform crossover. (If the genes are 
binary, R 3 so-reduces also.) One of the important uses of forma analysis, there- 
fore, is to allow analysis of cases in which non-orthogonal (but possibly separ- 
able) and non-separable formae are involved. 

The approach taken in forma analysis is to make explicit those characteristics 
of solutions that are considered to be important in determining performance, to 
encapsulate these through equivalence relations (or at least through formae) and 
then to construct operators that manipulate these characteristics (formae, 
genes) in line with the notions of purity, respect, gene transmission and assortment, as 
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appropriate and feasible. An alternative, and more conventional approach, is to 
seek to construct a linear string representation in which schemata are meaningful 
and then to use "standard" operators (typically n-point or uniform crossover). It 
has, of course, already been demonstrated that uniform crossover transmits and 
properly assorts the genes associated with schemata; n-point crossover, for fixed 
n, transmits and weakly assorts genes. 

At first sight it may seem that these two approaches are equivalent. It is easy 
to imagine that there might be a duality between operators and representations, in 
the sense that any desired manipulations could be achieved either by fixing the 
operator (say uniform or 1-point crossover) and manipulating the representation, 
or by fixing the representation and varying the operator. A more careful examina- 
tion shows that this is not so. 

The first clarification concerns "representations". Under the conventional 
approach, recombination operators are defined explicitly with respect to the genetic 
encoding. Thus a recombination operator is viewed as taking two genotypes 
(chromosomes), together with a control parameter, and producing another geno- 
type. Throughout this paper, and the more recent of the previous papers on forma 
analysis, this has been avoided: instead recombination operators have been defined 
directly in the phenotype space - -  the given search space S. Thus with forma 
analysis the phenotypic effect of operators is specified and the encoding used is 
left as a matter for the implementor. (This is similar to the way in which a mathe- 
matician will specify the meaning of multiplication, and leave as an implementation 
decision the choice of floating point representation: multiplication is unchanged 
provided that the effect of multiplying two numbers is independent of the encoding 
chosen.) 

In this sense, the choice of representation (i.e. encoding) of phenotypes in S 
does not alter the (phenotypic) effect of an operator specified in phenotypic terms. 
This encoding independence should not distract, however, from the way in which 
the imposition of a set of equivalence relations that covers a search space, and 
the subsequent extraction of the basis for those relations, corresponds at a more 
fundamental level to the definition of genes and alleles, and thus specifies an 
"abstract representation". 

In considering the set of all possible recombination operators over a search 
space S, it is not useful for present purposes, to distinguish between operators 
that are dynastically equivalent. It therefore suffices to consider all the different 
sets of children that may be produced by each pair of parents. The set R0 of 
dynastically non-equivalent operators is 

Ro a= i?(s)S2, (134) 

where 82 is the set of unordered pairs of (parent) solutions in S, 

$2 g {{x,y}Ix, yE S} (135) 
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and 17(8) s2 is the set of all mappings from pairs of solutions in S to subsets of ,9: 

~(S) 82 & { f [ f :  82 -* I?(S)}. (136) 

Similarly, in considering the set of all encodings of a search space S, assuming that 
only faithful representations are considered (i.e. those for which each solution has 
exactly one chromosomal representative, and that representatives are distinct) the 
set of representations is 

R 1 & {r : S---+ C l r  is bijective}, (137) 

where C is an arbitrary set of the same size as S. If ISI = N, then the size of R0 is 
given by 

IR0l = II?(S)l Is2l (138) 

= (2N) N(N-1)/2. (139) 

The size of R1, the number of different invertible encodings of S, is only 

IRll = N! < N N < (2N) N < (2N) N(N-t)/2 = IRol. (140) 

It should therefore be clear that there is no duality between representations and 
operators (because [RI[ << [R0[ ). It is, moreover, obvious that any manipulations 
that can be achieved with a "standard" operator on a linear string representation 
can be produced by an abstract operator that has the same phenotypic effects given 
an arbitrary representation. Thus the approach of fixing the operator is more 
restrictive than that pursued here. (It is of course possible to establish a duality 
between representations and a suitable subset of operators, and this is often use- 
ful, but it is not the aim of the present paper.) 

The fact that more operators may be considered is not, of course, an intrinsic 
virtue, and is useful only if some of the operators not usually available to schema 
analysis are useful. Some cases in which there is reason to believe this might be so 
have been discussed previously in Radcliffe [18]. In summary these are problems 
for which 

�9 the genes are non-orthogonal, but are separable, in which case R 3 or RTR 
may be of use; 

�9 the formae are non-separable, in which case it may be desirable to use an 
operator such as RARw or RARwh; 

. the size of the search space S is not a power of a convenient small integer 
(particularly 2), so that no simple string representation is available. 

It is also often easier to manipulate entities whose natural computer represen- 
tation is redundant in a more satisfactory manner using this approach. Notice 
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also that since RARw has been shown to be equivalent to uniform crossover when 
the basis for the chosen set o f  equivalence relations is orthogonal,  there is a sense in 
which RARw is a completely general operator  that behaves appropriately both  in 
the "s tandard"  case (orthogonal genes) and in the context o f  more exotic problems. 
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