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Abstract 

Although the top-down development paradigm has successfully been applied to 
master the complexity of large systems, it has not yet been accepted as a useful paradigm 
for fault tolerant system design. This is mainly due to a problem that is sometimes 
referred to as the "lazy programmers" paradox. The "lazy programmer" paradox was 
already present and solved in top-down development methods for non-critical systems. 
However, the problem has re-appeared in an even more serious variant for critical 
systems. A few "toy" examples concerning exception handling in an Ada-like language 
are used to explain and illustrate the paradox. One possible solution to the problem is 
to use a specification language in which one can express that certain behaviours of a 
system are preferred over others. This paper proposes deontic logic as such a specification 
language. Therefore, a short and rather informal introduction to deontic logic is included. 
A non-trivial example is included to illustrate how deontic logic can be used to solve 
the "lazy programmer" paradox. 

1. Introduction 

As computing systems are used more often for critical applications, the 
importance of formal design methods for fault tolerant systems becomes more 
apparent (cf. [12]). Such design methods should provide not only formal specification 
and verification methods, but also a design methodology which supports the structuring 
of the system under development and the development process itself. Formal methods 
that meet these requirements adopt the top-down development paradigm. Top-down 
development methods incorporate some refinement method which is used to gradually 
transform a high-level abstract specification into a low-level concrete implementation. 
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Each transformation step creates a new layer beneath the previously generated 
layers of the system, hence the name layered systems. One of the earliest descriptions 
of  a layered system can be found in [6]. 

To overcome the complexity of  its design, a fault tolerant system may, like 
most complex systems, be structured in layers. On the one hand, a layer may use 
the services delivered by its lower level layer to provide a service to its upper level 
layer. On the other hand, a layer may receive an exception from its lower level layer 
or raise an exception to signal its upper layer that it cannot provide a requested 
service. At each level, the system tries to handle the exceptions raised by the layer 
below. If the current layer is unable to cope with the current situation, it may decide 
to raise an exception itself. In this way, a malfunctioning of the underlying execution 
mechanism may gradually propagate to a layer which can deal with it in a satisfactory 
manner. A layer can therefore be regarded as an ideal fault tolerant component in 
the sense of  Anderson and Lee [2], see fig. 1. The arc directed from "exceptional 
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Fig. 1. Layer viewed as an ideal fault tolerant component. 

behaviour" to "normal behaviour" represents the case that the current layer handles 
an exception raised by a lower level (or the current level). The arc directed from 
"exceptional behaviour" to "normal behaviour" represents the case that the current 
layer handles an exception raised by a lower level (or the current level). The arc 
directed from "normal behaviour" to "exceptional behaviour" represents the case 
that an exception is raised by a lower level (or the current level). Notice that in 
order to achieve a layered structure as described above, it must be possible to 
program a deliberately raised exception. 

Any formal method that supports top-down development of  layered fault 
tolerant systems has to solve the following two problems. Firstly, the method must 
provide a formal language to reason over faults and their effects. For example, 
Hoare's proof system as it was presented in [9] cannot deal with fault tolerance, 
because in this proof system, a program is considered correct if it behaves according 
to its specification under the assumption of  a faultless execution mechanism.  
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In [5], Cristian extended Hoare's logic to deal with exceptions. However, in 
Cristian's formalism it is not possible to distinguish between deliberately raised 
exceptions and exceptions due to a physical fault in the executing hardware. Now, 
consider a specification of a program that computes the factorial N! for input N. 
If an intermediate result of the computation causes an integer overflow, signalled 
by the exception ovf, it is specified that the result is zero. A lazy programmer might 
be tempted to write a program that outputs zero immediately and raises the exception 
ovf deliberately. This is of course not an acceptable implementation - the exception 
should only be raised due to an overflow in the underlying hardware - which can 
be avoided by explicitly stating that the programmer is not allowed to raise the 
exception ovf. This works well for this particular example, but it was already 
mentioned that it should be allowed to raise certain exceptions deliberately, e.g. to 
prevent undefined results. Because it is in general not possible to predict when such 
exceptions may occur, the lazy programmer cannot be prohibited from abusing his 
privilege to raise exceptions deliberately. This is a particular case of the second 
problem that has to be solved in any top-down development method for fault 
tolerant programs. The more general case of this problem is referred to as the "lazy 
programmer" paradox, and will be discussed in more detail in section 4. 

This paper is a first step towards a deontic specification language for fault 
tolerant systems. It does not include a semantic model, nor does it include a complete 
proof theory. It merely discusses and illustrates the problems encountered when 
specifying the operations of fault  tolerant systems when adapting a top-down 
development strategy. This is unlike the work in [ 11 ] where (monadic) deontic logic 
is reduced to dynamic logic, thereby obtaining a logic for specifying the behaviour 
of programs without considering faults. 

The merits of a dyadic deontic specification language is that it is possible to 
distinguish the behaviour in a perfect world (i.e. a computation without faults) from 
the one (preferred) in a less than perfect world. For example, if a program should 
satisfy a property ~0 but due to some fault it does not, we can specify a property 
~' it should satisfy instead. Using dyadic deontic logic, this can be specified as 
follows: 

Og,^  (--, q~)O ~. 

The conjunct O~0 is used instead of simply q~, because q~ is not always satisfied but 
it ought to be if possible. The second conjunct specifies that it q~ is not satisfied, 
then ~ ought to be satisfied instead. If one would replace the second conjunct by 
an implication (--, ~0)~ g, the program that satisfies --1 ~0 A Ig would be a correct 
implementation, which was not intended. Replacing (--,~0)Ov by O(--,q~---~ ~g) or 
--1 q~ ~ O g  causes similar problems (see [8]). 

The remainder of this paper is organized as follows. In section 2, a programming 
language is defined and an intuitive explanation of the language constructs is given. 
In this section, three small programs are explained. These programs are also used 
in section 3 to motivate the introduction, and explain the meaning of, dyadic modalities 
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in the deontic logic specification language. Section 3 introduces deontic logic. The 
"lazy programmer" paradox is discussed in somewhat more detail in section 4. 
Section 5 includes an informal description of a non-trivial fault tolerance system. 
The application of deontic logic as a specification language to solve the "lazy 
programmer" paradox is illustrated in section 6 by specifying part of the example 
outlined in section 5. Finally, section 7 contains a comparison with related work 
and some suggestions for future work. 

2. Program notation 

In this section, a small subset of an Ada-like "programming" language [1], 
called @rog, is defined. This programming language is also used in section 5 to 
describe some of the operations used in the example. The main feature of the 
programming language @rog is that it provides a notation for exception handling. 

Given the following basic sets: 

�9 Tar,  the set of program variables, with typical element x, 

�9 %xc, the set of exceptions, with typical element exc, 

�9 %xpr, the set of expressions with occurrences of program variables, with 
typical element exp, 

�9 ~exp ,  the set of Boolean expressions with occurrences of program variables, 
with typical element b, 

the syntactic class @rog of programs, with typical element S is defined by 

S ::= null Ix := exp I raise exc I begin S end I $1; $2 

[ i f b t h e n S f i [ i f b t h e n S l e l s e S 2 f i l w h i l e b d o S  

I begin So exception when excl =r S 1 . . .  when exck ::~ Sk end 

The meaning of the programming language constructs in ~'rog is as follows. 

�9 The empty statement null has no effect other than skipping to the next 
statement. 

�9 The assignment statement x := exp assigns the value of the expression exp to 
the program variable x. 

�9 The raise statement raise exc raises the exception exc. As a side effect, it 
causes the execution of the program to continue at the innermost enclosing 
exception handler that handles exc exceptions. If such an enclosing exception 
handler does not exist, program execution is aborted. 

�9 The simple block statement begin S end groups the statements in S in a single 
block. It may be regarded as a pair of parenthesis. 
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~ $1; $2 is the sequential composition of the program $1 and $2, First $1 is 
executed, and if S~ terminates successfully, then $2 is executed. 

~ In case of  the alternative statement if b then S~ else $2 ti, the subprogram S~is 
executed if the Boolean guard b is true, and $2 is executed otherwise. The 
construct if b then S ti is an abbreviation of if b then S else null ft. 

�9 The iterative statement while b do S is skipped if b is initially false. If  b 
initially is true, then execution of  S is repeated until b becomes false. 

�9 begin So exception when excl ~ $1 �9 �9  when exck ~ Sk end is executed as 
follows. The program starts with the execution of  So. If during the execution 
of  So an exception exci (i = 1 . . . . .  k) is raised, then the execution of  So is 
aborted and the program resumes with the execution of  Si. If an exception 
other than exci (i = 1 . . . . .  k) is raised, then execution of  So is aborted, and 
the exception is passed to the next enclosing block. If there is not an enclosing 
block, the program is aborted. If So terminates without raising an exception, 
then the program terminates normally. 

For example, the programs listed in fig. 2 are executed as follows. Program a 
assigns the factorial of  N to variable x unless an ov f  exception occurs - meaning 
that an overflow has been detected - in which case x is set to zero. Program b sets 
x to zero and then raises ov f  deliberately. Program c assigns N! to x if initially N 
is less than or equal to K, and sets x to zero in case N is larger than K. 

(a) begin x := N! exception when o v f ~ x  := 0 end 

(b) begin x := 0 ; raise ovf end 

(c) begin i f N < K t h e n x : - N ! e l s e x : = 0 f i e n d  

Fig. 2. Running examples. 

3. Deontic logic 

The specification language combines deontic logic with first-order predicate 
logic, and is inspired by the logic used in [7]. A systematic introduction to deontic 
logic in general is given in [4]. The basic modality of the deontic logic used in this 
paper is the dyadic obligation q~V. A more philosophical motivation of  dyadic 
deontic logic can be found in [14, 15]. The first-order predicates in the specification 
language are used to quantify over logical variables only. 

Assume that the following sets are defined: 

�9 %xpr ' ,  the extended set of expressions over program variables, which may 
be decorated with a prime. Thus, ~ x p r  c ~xpr ' .  
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�9 ~var,  the set of logical variables, such that ~s c~ %xpr = O. LogiCal variables 
never have primes attached to them. 

A primed program variable x'  refers to the value of the variable x before executing 
a program, whereas an unprimed variable x refers to the value ofx after the execution 
of the program. The use of primed and unprimed variables in expressions captures 
the concept of initial and final states syntactically. 

Given the above sets, the syntax of assertions q~, g ~  ~ s s n  is defined by 
(expo, expl E~xpr ' ,  exc E%xc, and g E~s 

~p ::= truelexpo = expd expo -< expfl&(exc)l--,~pl~ ---> wl3g(q~)l~pOv. 

Notice that quantification is only allowed over logical variables. In addition to the 
usual abbreviations for predicate logic (such as Vg(cp) for ~ 3g(--, ~p)), the following 
derived operators are defined: 

Ocp a= true 0~o, 

q~F~" __a q~O--, ~,  F~p __a true Fop, 

q~Pv =a ~(~pO~ V/), P~p __a true P~p. 

The meaning of &(exc) is that exception exc was raised. The notation S is used to 
stress the difference with variables that refer to states instead of events. The meaning 
of r is that in all ~perfect  worlds (worlds that are perfect except that q~ is the 
case) g is true. Hence, O~p expresses that r is the case in all perfect worlds. 
Similarly, q~Pg and cpFg express that in all q~-perfect worlds, g is, respectively, 
permitted and forbidden. 

A formula with primed and unprimed variables specifies a relation between 
the initial and final states of a program. Hence, it cannot distinguish between the 
individual actions of a program. The primed variables provide the specification 
language with the dynamic aspect needed to reason about programs. For instance, 
x = x" + 1 specifies an action that increases the value of program variable x by one. 

Below, two standard derivation rules of deontic logic  are given (see, for 
example, [4]): 

~p,~p ~ ~ k ~  
(Modus Ponens) ~ (Necessitation). 

The axioms below are more typical for the application discussed in the 
introduction. The first two are still quite common axioms, which should cause no 
problems. The third axiom is more typical for the logic. It expresses that all relative 
perfect worlds are perfect alternatives to themselves, Or more loosely, there is only 
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one perfect alternative for each world. It is motivated by the fact that the set of  
possible executions of  a program does not change unless new faults are introduced. 

~-~oO(u/ ~ ;r ~ (q,Og --, q, OZ), 

I- ~pO(~ A Z) ~ (~pO g A r 

t- ~pO(O g )  ~ r  ~. 

This is not, of  course, intended to be a complete axiomatization. The axiomatization 
of  the logic itself is part of  ongoing research in which there are still many questions 
to be settled. 

The most characteristic difference between the deontic logic defined above 
and the ones that can be found in the literature about system specification is that 
the above logic includes dyadic modalities. For example, Khosla [10] uses the 
monadic modalities Oa,  respectively, P~, to express that the action a must, 
respectively, may, be performed. Thus, the deontic aspect of the specification language 
in [10] is used only to reason over the freedom of  choice. In particular, a predicate 
O a  is defined such that a is the only action that is obliged. Hence, the formula 
O a  ^ Off is equivalent to false per definition if a s  ft. When specifying fault tolerant 
systems, this causes a problem, which in the more general context of deontic logic 
is known as the Chisholm paradox (see [3]). 

Consider the following specification for a program that tries to anticipate a 
possible division by zero, when computing l ix  for input x: 

O(x" =t= O) A O(x" ~ 0 ~ y = 1/x') A (X" = 0 ~ O(y = 0)). (1) 

This specification expresses that the input x is expected not to be zero, and it should 
be the case that if input x is not zero, then y is 1/x, and if x is zero, then y ought 
to be zero. This seemingly correct specification is inconsistent in case the input x 
is zero. Using the above axioms and proof rules only it is possible to derive 
O(y  = 1/x') from O(x" =t= O) and O(x" ~ 0 ~ y = 1/x'), and O(y  = 0) from x" = 0 and 
(x" = 0 ~ O ( y  = 0)). The problem is that the monadic modalities refer to perfect 
worlds only, which may lead to a conflict of  duties once one finds oneself in a less 
than perfect world. The behaviour of  a fault tolerant system in less than perfect 
conditions should be specified, as the predicate "fault tolerant" suggests. 

Of course, one might argue that if in the above specification O ( x ' ~  0 
y = 1Ix') is replaced by x" ~ 0 --~ O ( y  = 1/x') or (x '  = 0 ~ O ( y  = 0)) by 

O(x'  = 0 ~ y = 0), then there is no problem if x is initially zero. The philisiphical 
objections to do so (see, e.g. [8]) might be irrelevant to system specifications. The 
specification of  fault tolerant systems is a difficult task even if one does not have 
to bother with such subtle paradoxes. Therefore, it is preferable to use a specification 
language in which such paradoxes can easily be avoided. 
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Dyadic deontic logic allows one to make assertions about less than perfect 
worlds. For example, the last conjunct of  (1) may be replaced by (x" = O)O(y  = 0), 
which does not result in an inconsistency if x" = 0 because there is no detachment 
rule which allows one to derive O ( y  = 0) from x'  = 0 and (x '  = O)O(y  = 0). Notice 
that in the intuitive meaning of  ,POv it is implicit that V ought to be established, 
but tp is "provided" for and not to be established. This observation is the key to the 
solution of  the "lazy programmer" paradox in section 4. 

In this paper, the use of  dyadic modalities is restricted to the special case in 
which only exceptions occur on the left side of  the modality, i.e. dyadic modalities 
occur in specifications only according to the format tS(exc)Ov.  However, i t  is 
permitted to have predicates on the left side also. This is illustrated in the next 
section. 

A standard technique to obtain a higher degree of reliability is the duplication 
of  system components. For example, one may use two different algorithms to 
compute a certain value and compare the outcomes, say x and y, of  these computations. 
In case x ~ y, at least one of  the computations resulted in an error, and in case x = y, 
either both computations were correct or both computations yielded the same erroneous 
result. If  one assumes that the probability of  the latter case occurring is zero, the 
system sketched above is fault tolerant. A schematic drawing of a component that 
compares the outputs x and y is pictured in fig. 3. 

Fig. 3. Comparator. 

The comparator may be specified by 

O(z = x A z = y ^ --, alarm) ^ (x  r y)O(alarm).  

According to its specification, the comparator ought to set z equal to x and y, and 
set alarm to false. In case x r y - and hence it is not possible to set z equal to both 
x and y - alarm must be set to true.  

4. The 'qazy programmer" paradox 

Lazy programmers were already a problem in Hoare's logic because it is a part ial  

correctness formalism, which means that it is not possible to specify that a program must 
terminate. Hence, each divergent  program is a correct implementation of  every 
specification. This particular version of  the "lazy programmer" paradox is solved in 
total correctness formalisms in which one can specify that a program must terminate. 
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The particular formulation of  the "lazy programmer" paradox for fault tolerance 
has a striking similarity with the "Good Samaritan" paradox (see [3]). A program 
that is designed to tolerate only faults intentionally caused by that program itself 
hardly deserves the predicate "fault tolerant", just as little as a thief who salvages 
his own victims deserves to be called a Good Samaritan. 

The programs i n  fig. 2 serve to illustrate the previous discussion. Consider  
the following naive specification for a program that is to compute the factorial of  N: 

0((..-, r ---) x = N! ) A (S(ovf) ---) x = 0)). (2) 

The specifier has anticipated that, due to hardware limitations, it is possible that 
during the computat ion of  N! an overflow, signalled by exception ovf,  occurs. I f  the 
overflow indeed occurs, then x should be set to zero, otherwise x ought to be equal 
to N!. However,  nothing prevents the lazy programmer  from simulating an overflow 
as in program b of  fig. 2. Because program b ought to raise the exception ovg and 
set x to zero, it satisfies 

O(x  = 0 A ~(ov f ) ) .  (3) 

Unfortunately,  (3) specifies a correct implementation of  (2), which can formally be 
proved as follows: 

1. b (x  = 0 A 8 (ov f ) )  ---) ( ( 9  tS(ovf) ---) X = N! ) A (tS(ovf) ---) X = 0)); 

2. ~- O( (x  = 0 A tS(ovf)) ---) ( ( 9  ~(ov f )  ---) x = N! ) A (tS(ovf) --~ x = 0))); 

. 1- O((x  = 0 A 6 (ov f ) )  .-) ( ( 7  r ---) x = N! ) A (~ (ov f )  ---) X = 0))) 

---) (O(x  = 0 A tS(ovf)) ~ 0 ( ( 7  tS(ovf) --~ x = N! ) A (S (ov f )  --~ x = 0))); 

4. F O(x  = 0 A •(ovf))  ---) 0((--,  8 (ov f )  ---) x = N! ) A (~ (ov f )  --) x = 0)). 

The individual steps of  the above derivation are justified as follows: 

~ 

2. 

3. 

4. 

is a valid predicate logic formula; 

is obtained by the application of the Necessitation rule to 1; 

is an instance of  the first axiom listed in section 3 ;  

is obtained by applying Modus Ponens to 2 and 3. 

Using dyadic modalities, one can specify program a as follows: 

O ( x  = N! ) A 8 ( o v f ) O ( x  = 0). (4) 

This specification expresses that it is preferred to set x equal to N!, and if this is 
not possible due to an overflow, x ought  to be zero. Provided that the axiomatization 
of  the deontic logic does not allow one to derive (4) from (3), it is not possible to 
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prove that program b is a correct implementation of (4). As a matter of fact, 
program b can be excluded more explicitly by adding the conjunct FtS(ovf) to (4). 
Hence, the lazy programmer has to think of  other means to avoid working. 

Basically, the "lazy programmer" paradox is solved by making the specification 
language more expressive. This imposes some requirements on the semantics and 
axiomatization of the programming language to avoid the situation in which an 
intuitively correct program does not satisfy a given specification. For example, 
suppose that the maximum number, say Maxlnt, that can be computed without 
causing an overflow is known. I fK  is chosen such that K! <_ Maxlnt < (K + 1)!, then 
program c in fig. 2 is intuitively a correct implementation of (4). The specification 
of  program c is, however, as follows: 

O((N < K A x = N! ) V (--1N < K A X = 0)). (5) 

The only way to prove that (5) specifies a correct implementation, i.e. to prove that 
(5) implies (4), is by making the knowledge about the hardware limitation explicit. 
For instance, by including the following axioms: 

F O(N <_ K), (6) 

F 0(..-, N < K --> (0) --.-> ~(ovf)O(0. (7) 

Axiom (6) expresses that it ought to be the case that N __. K. Axiom (7) expresses 
that if one is obliged to establish (0 if --,N < K in a faultless world, this implies that 
(0 ought to be established even if an overflow occurred. The second axiom is 
motivated by the knowledge that the overflow would have occurred anyway if 
--,N-< K, because (5) is equivalent to 

O(N < K ---> x = N! ) ^ O(---, N < K --> x = 0). (8) 

This can be proved as follows. Let V, (0~, and (02 be defined by 

V A_ ( N < K A x = N I ) v ( - - , N < K A x = O ) ,  

(or b- N < K ---> x = N!, 

(02 a= --, N <_ K ---> x = O. 

We give the major steps of the derivation of  (8) from (5): 

t-V ~ (~01 ̂  ~ ) ,  

t - 0 ( V / ~  ( ~  A ~ ) ) ,  

V 0 V  <-+ 0 ( ~  A ~ ) ,  

V 0 V  e+ (0q~ A 0 ~ ) ,  

Predicate logic. 

Necessitation. 

Axioms and Modus Ponens. 

Axioms and Modus Ponens. 
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Because it is easily seen that (8) implies 

(O(N < K) ---> O(x = N! )) A 0(--1N < K ---> x = 0), 

we may conclude from (6) and (7) that program c is a correct implementation of  O), 
provided the above assumptions hold. Thus, only if the hardware limitations are 
such that the axioms are justified does the above reasoning hold. 

It is possible to think of  clever variations on the programs in fig. 2, e.g. the 
ones in fig. 4, for which the correct arguments to accept or reject them as correct 
implementations of  (4) are not so easily found. For example, program d should be 
rejected, but just including Ft~(ovf) in the specification would also exclude program 

(d) begin x := N!; raise ovf  exception w h e n  o v f ~  x := 0 end 

(e) begin 
if N < K  

then x : = N! 
else raise ovf  

fi 
exception 

w h e n  ovf  =~ x : = 0 
end 

Fig. 4. The lazy programmer strikes backJ ) 

e which might be acceptable. However, these problems should be solved in the 
semantics and the axiomatization of the programming language. The purpose of the 
previous discussion is to demonstrate that dyadic deontic logic, if provided with 
adequate semantics, can be expressive enough to distinguish deliberate errors from 
unintentional ones. 

5. A stable storage 

An important concept in fault tolerant computing is the atomicity of actions. 
An action is atomic if it is either executed successfully or n o t  executed at all. 
Atomic actions can be implemented by creating a checkpoint before the action is 
executed, and if an error is detected by recovering the original state from this 
checkpoint. The checkpoint should be recorded on a reliable medium, called a 
stable storage. This section contains a summary of  some aspects of a particular 

1) Or is it a too diligent programmer? 
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stable storage and focuses on the implementation of the read operation. A more 
complete description of  the stable storage described below is given in [13]. 

The stable storage consists of three layers. At the lowest level, the stable 
storage is implemented by a number of physical disks. These physical disks, with 
the appropriate operations on them, are grouped in the so-called "physical disk" 
layer. Each physical disk has a corresponding logical disk that abstracts from the 
physical location of sectors on the physical disk by maintaining a flexible mapping 
between logical addresses and physical sector numbers. The logical disks are grouped 
together in the "logical disk" layer. The layer at the top level is called the "reliable 
disk" layer. The reliable disk layer provides a single stable storage, which is implemented 
by several logical disks. 

It is assumed that the only relevant errors are caused by damaged sectors of 
the physical disks. In the remainder of this section, the layers are examined in 
somewhat more detail. 

5.1. RELIABLE DISK LAYER 

The reliable disk layer provides a read_sector operation, with the intention 
that the contents of the sector with logical address address is retrieved in the 
variable sector. For this purpose, the reliable disk layer records which logical disks 
are still operational, i.e. which logical disks have not yet caused a logical_disk_crash 
exception. The numbers of the operational logical disks are administered in the set 
operational_disks. On invocation of the read_sector operation, an operational logical 
disk is selected on which a read_logical_disk operation is performed. 

The reliable disk layer must anticipate two exceptions that may be raised by 
the logical disk layer. The exception logical_sector_lost indicates that this logical 
disk is unable to return the contents of the sector with logical address address. The 
exception logical_disk_crash is raised when the logical disk layer can no longer 
guarantee consistency of the information stored in the logical disk. In case of a 
logical_sector_lost exception, the reliable disk layer attempts to retrieve the sector 
from another logical disk. The retrieve operation will be left unspecified, but notice 
that retrieving the lost section might include a recursive call of read_sector. 

The logical_disk_crash exception is handles simply by deleting the corresponding 
disk number from the set operational_disks. If the reliable disk layer runs out of 
operational logical disks, it raises a reliable_disk_crash exception. See also fig. 5. 

Notice that the nondeterminism in the selection of an operational disk needs 
to be resolved. This freedom of choice may be exploited to obtain a more efficient 
read_sector operation. 

5.2. LOGICAL DISK LAYER 

Whereas the reliable disk layer achieves a higher degree of reliability through 
the redundancy of the logical disks, the logical disk layer, in its turn, achieves a 
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begin 
success := false; 
while ~ s u c c e s s  do 
begin 

disknr := a member of operational_disks; 
read_logical_disk(disknr, address); 
success := true 

exception 
when logical_sector_lost 

retrieve the lost sector 
when logical_disk_crash 

operational_disks : = operational_disks - { disknr } ; 
if operational_disks = 0 

then raise reliable_disk_crash 
fi 

end 
end 

Fig. 5. read_sector. 

higher degree of reliability through the redundancy of so-called spare sectors on 
each logical disk. The spare sectors are recorded in the set spare_sectors. Furthermore, 
the logical disk layer abstracts from the physical location of sectors by maintaining 
a mapping log_to_phys between logical addresses and sector numbers. 

The read operation at the logical disk level is listed in fig. 6. The logical disk 
layer simple calls the read_physical_disk operation with the converted address. If 

begin 
read_physic al_sector( lo g_to_phys( address ) ) 
exception 

when invalid_crc =~ 
if spare_sectors = 0 

then raise logical_disk_crash 
else new_sector := a member of spare_sectors; 

spare_sectors := spare_sectors - {new_sector}; 
update log_to_phys; 
raise logical_sector_lost 

fi 
end 

Fig. 6. readlogicaldisk. 
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the physical disk layer raises the invalid_crc exception and there are no spare 
sectors left, then the logical disk layer raises a logical_disk_crash exception. If the 
invalid_crc exception is raised and there are spare sectors, then one of the spare 
sectors is selected and the mapping log_to_phys is updated, and the logical_sector_ 
lost is raised. 

5.3. PHYSICAL DISK LAYER 

The physical disk layer achieves reliability by using information redundancy. 
The contents of each logical sector is augmented with a cyclic redundancy code. 
It is assumed that all relevant faults can be detected with this code. Or more 
precisely, the probability of not detecting a relevant error is sufficiently small. This 
means the faults like damaged disk drives, etc. are not considered relevant in this 
example. The read_physical_sector operation is listed in fig. 7. 

begin 
sector : = physical_disk[sector_nr]; 
if --, cyc_r ed_c hec k( sector) 

then raise invalid_crc 
fi 

end 

Fig. 7, read_physical_sector. 

The cyclic redundancy code is checked by the function cyc.red_check, which 
may be implemented by special purpose hardware. 

6. Deontic logic specifications of the read operations 

A specification of an operation of a fault tolerant system typically has the 
following format: 

~plO ~l A �9 �9 �9 ̂ tp,,O gt,,. 

Each ~ specifies how the operation of this layer should behave, provided the lower 
level created the condition tpi. Because the upper level layer cannot interfere with 
the actions of the lower level layer, the conditions q~i are established facts for the 
upper level layer to which it is supposed to react according to 1/,~. For example, at 
the top level of the stable storage, the read operation may have been specified as 
follows: 

O(sector = reliable_disk'(address')) A 6(reliable_disk_crash )O V, 
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where V is left open for the moment, Thus, it is specified that the read operation 
ought to assign the initial contents of the stable storage at address address to sector. 
In case a reliable_disk_crash exception was raised, v o u g h t  to be established. Of 
course, one might also have specified that, for example, the address or contents of 
the storage ought to be left unchanged. 

Because the physical disk layer is the lowest level of the stable storage and 
it is assumed that cyc_red_check detects all errors, there are no faults (from lower 
levels) that must be anticipated by this layer. Therefore, the specification of the 
read_physical_sector operation (fig. 7) contains only monadic modalities. The read_ 
physical_sector operation (for physical disk i) is specified by 

0 (sector = physical_disk~ [sector' ] ) 

A O(8(invalid_crc) ---> --1 cyc_red_check(sector')). 

The first conjunct expresses that if the underlying execution mechanism functions 
correctly, then sector is set equal to the contents of physical disk i at location 
sectornr. The second conjunct of this specification can be rewritten as 

F( S( invalid_crc ) ^ cyc_red_check( sector')), 

which forbids to raise the invalid_crc exception when the sector passes the cyclic 
redundancy check. Now suppose an invalid_crc exception ought to be raised, i.e. 

O ~(invalid_crc). 

From the specification of the read_physical_sector operation, it follows that 

O ( 8( invalid_crc ) ---> ~ cyc_red_check( sector ") ). 

This together with the following axiom instance: 

O ( 8( invalid_crc ) ---> --, cyc_red_check(sector') ) 

---> (0  8(invalid_crc) ---> 0 --, cyc_red_check(sector')), 

is sufficient to derive 

0 8(invalid_crc) --> 0 ~ cyc_red_check(sector') 

with modus ponens. One more application of modus ponens results in 

0 ~ cyc_red_check(sector'). 

Hence, under the assumption that the physical disk functions correctly, it is established 
that the invalid_crc exception ought to be raised only if the sector did not pass the 
cyclic redundancy check. 
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Notice that if the second conjunt in the specification of read_physical_sector 
is replaced by 

tS(invalid_crc) ~ 0 ~ cyc_red_check(sector'), 

then an invalid_ere exception ensures that sector did not pass the cyclic redundancy 
check regardless of whether the exception was raised by the read_physical_sector 
operation itself or by another operation. 

The logical disk layer must anticipate an invalid_crc exception, but is allowed 
to raise a logical_disk_crash exception or a logical_sector_lost exception depending 
on whether there are any spare sectors available (fig. 6). The read_logical..sector 
operation (for logical 'disk i) is specified by 

O(sector = logical_disk[(address')) A 

t~( invalid_crc )O( ( ~( logical_disk._crash ) A spare_sectors[ = ~)) v 

(~(logical_sector_lost) A spare_sectors[ ~ ~)). 

A single logical disk cannot handle an invalid_crc exception by itself, but achieves 
graceful degradation through the discrimination between the fatal situation in which 
are no spare sectors left and the less harmful situation when there are enough 
redundant sectors. Assuming that this layer functions correctly, it follows that a 
logical_disk_crash exception is raised if an invalid_ere exception was detected and 
initially the number of spare sectors was zero. To ensure that a logical_disk_crash 
or logical..sector_lost is raised only in the situation described above, the 
specification may be strengthened by adding the conjunct F(6(logical_disk_crash) 
A 6(logicaLsector_lost)), which forbids raising these exceptions deliberately. Notice 
that this specification is not complete because it does not specify that the mapping 
log_to_phys should be updated before raising the logical_sector_lost exception. 

Although the reliable disk layer must handle both exceptions that may possibly 
be raised by the logical disk layer, the specification below only anticipates the 
occurrence of a logical_disk_crash exception. Therefore, also this specification is 
not complete. The read_sector operation (fig. 5) of the reliable disk layer is specified 
by 

03i(i  E operational_disks' ^ sector = logical_disk~ (address')) 

A S(logical_disk_crash)O(t~(reliabIe_disk_crash) --~ operationaLdisks = 0). 

Suppose that it is forbidden to raise the reliable_disk_crash exception deliberately, 
which may be accomplished by adding the conjuct Ft,(reliable_disk_crash) to the 
specification above. Then it follows that a reliable_disk_crash exception is only 
raised if there are no other operational disks left and a logical_disk_crash was 
raised. Thus, the only initially operational disk does not have the appropriate information. 
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7. Conclusions 

The previous section illustrates how deontic logic provides the possibility to 
specify fault tolerant systems in a natural way. It turns out that to derive certain 
properties of a specified system, one needs to make the assumptions about faults 
and their effect on the behaviour of the system explicit. The possibility to express 
the preference of some behaviours over others allows one to distinguish between 
conditions created by a possible malfunctioning of a lower level and the conditions 
created by the layer under discussion itself. Although deontic logics have been 
suggested to system specification before, for example in [10], the application to 
fault tolerant systems seems to be new, which partly explains the differences between 
the specification language used in this paper and those appearing in the literature 
about system specification. 

The deontic logic described in this paper differs from the deontic logics for 
system specification in the existing literature mainly in two ways. Firstly, the logic 
in this paper is a dyadic deontic logic, whereas the logics in, for example, [11] and 
[10], are monadic deontic logics. Secondly, primed and unprimed variables are used 
to capture the dynamic aspect of programs in the specification language, whereas 
Meyer [11] and Khosla [10] use a dynamic logic in combination with the deontic 
logic. 

The first difference, which seems to be the most essential one, can be explained 
by the particular application to fault tolerant systems. An important concept in fault 
tolerance is graceful degradation, which allows a system to temporarily sacrifice a 
service in favour of a more important one if a fault occurs. This corresponds in a 
natural way with deontic logic specification of the format q~O(yl ^ .  �9 �9 r that 
specifies the behaviour of ~ of a system under less than perfect conditions tpl 
(i = 1 . . . .  n). Moreover, dyadic deontic logic offers a solution to the "lazy programmer" 
paradox described in section 4. Also, although the examples used to illustrate this 
paradox may be regarded as "toy" examples, it should be evident from the example 
in section 5 that this problem becomes more important as the complexity of a 
system increases. 

The second difference concems primed variables. A nice property of the 
logic is that it captures state predicates as well as action predicates. State predicates 
are predicates with either only primes variables or only unprimed variables. Action 
predicates and predicates with both primed and unprimed variables. A serious 
disadvantage of the primed and unprimed variables is that it is not clear how this 
method can be extended to deal with (distributed) real-time systems, which is an 
important application area of fault tolerance. Such systems may be specified in a 
logic that mixes deontic logic with a temporal logic, or in a logic with combined 
deontic-temporal modalities like the one in [7]. 

The next step which must be taken is the definition of an adequate formal 
semantics for the deontic logic discussed in this paper. A first study shows that a 
Kripke semantics can be obtained by introducing residuals of reachability relations. 
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