
Annals of Mathematics and Artificial Intelligence 9(1993)133-150 133

Top-down development of layered fault tolerant systems
and its problems- a deontic perspective

J. Coenen*
Department of Mathematics and Computing Science, Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

Although the top-down development paradigm has successfully been applied to
master the complexity of large systems, it has not yet been accepted as a useful paradigm
for fault tolerant system design. This is mainly due to a problem that is sometimes
referred to as the "lazy programmers" paradox. The "lazy programmer" paradox was
already present and solved in top-down development methods for non-critical systems.
However, the problem has re-appeared in an even more serious variant for critical
systems. A few "toy" examples concerning exception handling in an Ada-like language
are used to explain and illustrate the paradox. One possible solution to the problem is
to use a specification language in which one can express that certain behaviours of a
system are preferred over others. This paper proposes deontic logic as such a specification
language. Therefore, a short and rather informal introduction to deontic logic is included.
A non-trivial example is included to illustrate how deontic logic can be used to solve
the "lazy programmer" paradox.

1. Introduction

As computing systems are used more often for critical applications, the
importance of formal design methods for fault tolerant systems becomes more
apparent (cf. [12]). Such design methods should provide not only formal specification
and verification methods, but also a design methodology which supports the structuring
of the system under development and the development process itself. Formal methods
that meet these requirements adopt the top-down development paradigm. Top-down
development methods incorporate some refinement method which is used to gradually
transform a high-level abstract specification into a low-level concrete implementation.

*Supported by NWO/SION Project 612-316-022: "Fault Tolerance: Paradigms, Models, Logics,
Construction".

�9 J.C. Baltzer AG, Science Publishers

134 J. Coenen, Fault tolerant systems

Each transformation step creates a new layer beneath the previously generated
layers of the system, hence the name layered systems. One of the earliest descriptions
of a layered system can be found in [6].

To overcome the complexity of its design, a fault tolerant system may, like
most complex systems, be structured in layers. On the one hand, a layer may use
the services delivered by its lower level layer to provide a service to its upper level
layer. On the other hand, a layer may receive an exception from its lower level layer
or raise an exception to signal its upper layer that it cannot provide a requested
service. At each level, the system tries to handle the exceptions raised by the layer
below. If the current layer is unable to cope with the current situation, it may decide
to raise an exception itself. In this way, a malfunctioning of the underlying execution
mechanism may gradually propagate to a layer which can deal with it in a satisfactory
manner. A layer can therefore be regarded as an ideal fault tolerant component in
the sense of Anderson and Lee [2], see fig. 1. The arc directed from "exceptional

services exceptions

normal behaviour

I 1
services

except ional behaviour

\ J T
exceptions

Fig. 1. Layer viewed as an ideal fault tolerant component.

behaviour" to "normal behaviour" represents the case that the current layer handles
an exception raised by a lower level (or the current level). The arc directed from
"exceptional behaviour" to "normal behaviour" represents the case that the current
layer handles an exception raised by a lower level (or the current level). The arc
directed from "normal behaviour" to "exceptional behaviour" represents the case
that an exception is raised by a lower level (or the current level). Notice that in
order to achieve a layered structure as described above, it must be possible to
program a deliberately raised exception.

Any formal method that supports top-down development of layered fault
tolerant systems has to solve the following two problems. Firstly, the method must
provide a formal language to reason over faults and their effects. For example,
Hoare's proof system as it was presented in [9] cannot deal with fault tolerance,
because in this proof system, a program is considered correct if it behaves according
to its specification under the assumption of a faultless execution mechanism.

J. Coenen, Fault tolerant systems 135

In [5], Cristian extended Hoare's logic to deal with exceptions. However, in
Cristian's formalism it is not possible to distinguish between deliberately raised
exceptions and exceptions due to a physical fault in the executing hardware. Now,
consider a specification of a program that computes the factorial N! for input N.
If an intermediate result of the computation causes an integer overflow, signalled
by the exception ovf, it is specified that the result is zero. A lazy programmer might
be tempted to write a program that outputs zero immediately and raises the exception
ovf deliberately. This is of course not an acceptable implementation - the exception
should only be raised due to an overflow in the underlying hardware - which can
be avoided by explicitly stating that the programmer is not allowed to raise the
exception ovf. This works well for this particular example, but it was already
mentioned that it should be allowed to raise certain exceptions deliberately, e.g. to
prevent undefined results. Because it is in general not possible to predict when such
exceptions may occur, the lazy programmer cannot be prohibited from abusing his
privilege to raise exceptions deliberately. This is a particular case of the second
problem that has to be solved in any top-down development method for fault
tolerant programs. The more general case of this problem is referred to as the "lazy
programmer" paradox, and will be discussed in more detail in section 4.

This paper is a first step towards a deontic specification language for fault
tolerant systems. It does not include a semantic model, nor does it include a complete
proof theory. It merely discusses and illustrates the problems encountered when
specifying the operations of fault tolerant systems when adapting a top-down
development strategy. This is unlike the work in [11] where (monadic) deontic logic
is reduced to dynamic logic, thereby obtaining a logic for specifying the behaviour
of programs without considering faults.

The merits of a dyadic deontic specification language is that it is possible to
distinguish the behaviour in a perfect world (i.e. a computation without faults) from
the one (preferred) in a less than perfect world. For example, if a program should
satisfy a property ~0 but due to some fault it does not, we can specify a property
~' it should satisfy instead. Using dyadic deontic logic, this can be specified as
follows:

Og,^ (--, q~)O ~.

The conjunct O~0 is used instead of simply q~, because q~ is not always satisfied but
it ought to be if possible. The second conjunct specifies that it q~ is not satisfied,
then ~ ought to be satisfied instead. If one would replace the second conjunct by
an implication (--, ~0)~ g, the program that satisfies --1 ~0 A Ig would be a correct
implementation, which was not intended. Replacing (--,~0)Ov by O(--,q~---~ ~g) or
--1 q~ ~ O g causes similar problems (see [8]).

The remainder of this paper is organized as follows. In section 2, a programming
language is defined and an intuitive explanation of the language constructs is given.
In this section, three small programs are explained. These programs are also used
in section 3 to motivate the introduction, and explain the meaning of, dyadic modalities

136 J. Coenen, Fault tolerant systems

in the deontic logic specification language. Section 3 introduces deontic logic. The
"lazy programmer" paradox is discussed in somewhat more detail in section 4.
Section 5 includes an informal description of a non-trivial fault tolerance system.
The application of deontic logic as a specification language to solve the "lazy
programmer" paradox is illustrated in section 6 by specifying part of the example
outlined in section 5. Finally, section 7 contains a comparison with related work
and some suggestions for future work.

2. Program notation

In this section, a small subset of an Ada-like "programming" language [1],
called @rog, is defined. This programming language is also used in section 5 to
describe some of the operations used in the example. The main feature of the
programming language @rog is that it provides a notation for exception handling.

Given the following basic sets:

�9 Tar, the set of program variables, with typical element x,

�9 %xc, the set of exceptions, with typical element exc,

�9 %xpr, the set of expressions with occurrences of program variables, with
typical element exp,

�9 ~exp , the set of Boolean expressions with occurrences of program variables,
with typical element b,

the syntactic class @rog of programs, with typical element S is defined by

S ::= null Ix := exp I raise exc I begin S end I $1; $2

[i f b t h e n S f i [i f b t h e n S l e l s e S 2 f i l w h i l e b d o S

I begin So exception when excl =r S 1 . . . when exck ::~ Sk end

The meaning of the programming language constructs in ~'rog is as follows.

�9 The empty statement null has no effect other than skipping to the next
statement.

�9 The assignment statement x := exp assigns the value of the expression exp to
the program variable x.

�9 The raise statement raise exc raises the exception exc. As a side effect, it
causes the execution of the program to continue at the innermost enclosing
exception handler that handles exc exceptions. If such an enclosing exception
handler does not exist, program execution is aborted.

�9 The simple block statement begin S end groups the statements in S in a single
block. It may be regarded as a pair of parenthesis.

J. Coenen, Fault tolerant systems 137

~ $1; $2 is the sequential composition of the program $1 and $2, First $1 is
executed, and if S~ terminates successfully, then $2 is executed.

~ In case of the alternative statement if b then S~ else $2 ti, the subprogram S~is
executed if the Boolean guard b is true, and $2 is executed otherwise. The
construct if b then S ti is an abbreviation of if b then S else null ft.

�9 The iterative statement while b do S is skipped if b is initially false. If b
initially is true, then execution of S is repeated until b becomes false.

�9 begin So exception when excl ~ $1 �9 �9 when exck ~ Sk end is executed as
follows. The program starts with the execution of So. If during the execution
of So an exception exci (i = 1 k) is raised, then the execution of So is
aborted and the program resumes with the execution of Si. If an exception
other than exci (i = 1 k) is raised, then execution of So is aborted, and
the exception is passed to the next enclosing block. If there is not an enclosing
block, the program is aborted. If So terminates without raising an exception,
then the program terminates normally.

For example, the programs listed in fig. 2 are executed as follows. Program a
assigns the factorial of N to variable x unless an ov f exception occurs - meaning
that an overflow has been detected - in which case x is set to zero. Program b sets
x to zero and then raises ov f deliberately. Program c assigns N! to x if initially N
is less than or equal to K, and sets x to zero in case N is larger than K.

(a) begin x := N! exception when o v f ~ x := 0 end

(b) begin x := 0 ; raise ovf end

(c) begin i f N < K t h e n x : - N ! e l s e x : = 0 f i e n d

Fig. 2. Running examples.

3. Deontic logic

The specification language combines deontic logic with first-order predicate
logic, and is inspired by the logic used in [7]. A systematic introduction to deontic
logic in general is given in [4]. The basic modality of the deontic logic used in this
paper is the dyadic obligation q~V. A more philosophical motivation of dyadic
deontic logic can be found in [14, 15]. The first-order predicates in the specification
language are used to quantify over logical variables only.

Assume that the following sets are defined:

�9 %xpr ' , the extended set of expressions over program variables, which may
be decorated with a prime. Thus, ~ x p r c ~xpr ' .

138 J. Coenen, Fault tolerant systems

�9 ~var, the set of logical variables, such that ~s c~ %xpr = O. LogiCal variables
never have primes attached to them.

A primed program variable x' refers to the value of the variable x before executing
a program, whereas an unprimed variable x refers to the value ofx after the execution
of the program. The use of primed and unprimed variables in expressions captures
the concept of initial and final states syntactically.

Given the above sets, the syntax of assertions q~, g ~ ~ s s n is defined by
(expo, expl E~xpr ' , exc E%xc, and g E~s

~p ::= truelexpo = expd expo -< expfl&(exc)l--,~pl~ ---> wl3g(q~)l~pOv.

Notice that quantification is only allowed over logical variables. In addition to the
usual abbreviations for predicate logic (such as Vg(cp) for ~ 3g(--, ~p)), the following
derived operators are defined:

Ocp a= true 0~o,

q~F~" __a q~O--, ~, F~p __a true Fop,

q~Pv =a ~(~pO~ V/), P~p __a true P~p.

The meaning of &(exc) is that exception exc was raised. The notation S is used to
stress the difference with variables that refer to states instead of events. The meaning
of r is that in all ~perfect worlds (worlds that are perfect except that q~ is the
case) g is true. Hence, O~p expresses that r is the case in all perfect worlds.
Similarly, q~Pg and cpFg express that in all q~-perfect worlds, g is, respectively,
permitted and forbidden.

A formula with primed and unprimed variables specifies a relation between
the initial and final states of a program. Hence, it cannot distinguish between the
individual actions of a program. The primed variables provide the specification
language with the dynamic aspect needed to reason about programs. For instance,
x = x" + 1 specifies an action that increases the value of program variable x by one.

Below, two standard derivation rules of deontic logic are given (see, for
example, [4]):

~p,~p ~ ~ k ~
(Modus Ponens) ~ (Necessitation).

The axioms below are more typical for the application discussed in the
introduction. The first two are still quite common axioms, which should cause no
problems. The third axiom is more typical for the logic. It expresses that all relative
perfect worlds are perfect alternatives to themselves, Or more loosely, there is only

J. Coenen, Fault tolerant systems 139

one perfect alternative for each world. It is motivated by the fact that the set of
possible executions of a program does not change unless new faults are introduced.

~-~oO(u/ ~ ;r ~ (q,Og --, q, OZ),

I- ~pO(~ A Z) ~ (~pO g A r

t- ~pO(O g) ~ r ~.

This is not, of course, intended to be a complete axiomatization. The axiomatization
of the logic itself is part of ongoing research in which there are still many questions
to be settled.

The most characteristic difference between the deontic logic defined above
and the ones that can be found in the literature about system specification is that
the above logic includes dyadic modalities. For example, Khosla [10] uses the
monadic modalities Oa, respectively, P~, to express that the action a must,
respectively, may, be performed. Thus, the deontic aspect of the specification language
in [10] is used only to reason over the freedom of choice. In particular, a predicate
O a is defined such that a is the only action that is obliged. Hence, the formula
O a ^ Off is equivalent to false per definition if a s ft. When specifying fault tolerant
systems, this causes a problem, which in the more general context of deontic logic
is known as the Chisholm paradox (see [3]).

Consider the following specification for a program that tries to anticipate a
possible division by zero, when computing l ix for input x:

O(x" =t= O) A O(x" ~ 0 ~ y = 1/x') A (X" = 0 ~ O(y = 0)). (1)

This specification expresses that the input x is expected not to be zero, and it should
be the case that if input x is not zero, then y is 1/x, and if x is zero, then y ought
to be zero. This seemingly correct specification is inconsistent in case the input x
is zero. Using the above axioms and proof rules only it is possible to derive
O(y = 1/x') from O(x" =t= O) and O(x" ~ 0 ~ y = 1/x'), and O(y = 0) from x" = 0 and
(x" = 0 ~ O (y = 0)). The problem is that the monadic modalities refer to perfect
worlds only, which may lead to a conflict of duties once one finds oneself in a less
than perfect world. The behaviour of a fault tolerant system in less than perfect
conditions should be specified, as the predicate "fault tolerant" suggests.

Of course, one might argue that if in the above specification O (x ' ~ 0
y = 1Ix') is replaced by x" ~ 0 --~ O (y = 1/x') or (x ' = 0 ~ O (y = 0)) by

O(x' = 0 ~ y = 0), then there is no problem if x is initially zero. The philisiphical
objections to do so (see, e.g. [8]) might be irrelevant to system specifications. The
specification of fault tolerant systems is a difficult task even if one does not have
to bother with such subtle paradoxes. Therefore, it is preferable to use a specification
language in which such paradoxes can easily be avoided.

140 d. c oenen, l~ault tolerant systems

Dyadic deontic logic allows one to make assertions about less than perfect
worlds. For example, the last conjunct of (1) may be replaced by (x" = O)O(y = 0),
which does not result in an inconsistency if x" = 0 because there is no detachment
rule which allows one to derive O (y = 0) from x' = 0 and (x ' = O)O(y = 0). Notice
that in the intuitive meaning of ,POv it is implicit that V ought to be established,
but tp is "provided" for and not to be established. This observation is the key to the
solution of the "lazy programmer" paradox in section 4.

In this paper, the use of dyadic modalities is restricted to the special case in
which only exceptions occur on the left side of the modality, i.e. dyadic modalities
occur in specifications only according to the format tS(exc)Ov. However, i t is
permitted to have predicates on the left side also. This is illustrated in the next
section.

A standard technique to obtain a higher degree of reliability is the duplication
of system components. For example, one may use two different algorithms to
compute a certain value and compare the outcomes, say x and y, of these computations.
In case x ~ y, at least one of the computations resulted in an error, and in case x = y,
either both computations were correct or both computations yielded the same erroneous
result. If one assumes that the probability of the latter case occurring is zero, the
system sketched above is fault tolerant. A schematic drawing of a component that
compares the outputs x and y is pictured in fig. 3.

Fig. 3. Comparator.

The comparator may be specified by

O(z = x A z = y ^ --, alarm) ^ (x r y)O(alarm).

According to its specification, the comparator ought to set z equal to x and y, and
set alarm to false. In case x r y - and hence it is not possible to set z equal to both
x and y - alarm must be set to true.

4. The 'qazy programmer" paradox

Lazy programmers were already a problem in Hoare's logic because it is a part ial

correctness formalism, which means that it is not possible to specify that a program must
terminate. Hence, each divergent program is a correct implementation of every
specification. This particular version of the "lazy programmer" paradox is solved in
total correctness formalisms in which one can specify that a program must terminate.

J. Coenen, Fault tolerant systems 141

The particular formulation of the "lazy programmer" paradox for fault tolerance
has a striking similarity with the "Good Samaritan" paradox (see [3]). A program
that is designed to tolerate only faults intentionally caused by that program itself
hardly deserves the predicate "fault tolerant", just as little as a thief who salvages
his own victims deserves to be called a Good Samaritan.

The programs i n fig. 2 serve to illustrate the previous discussion. Consider
the following naive specification for a program that is to compute the factorial of N:

0((..-, r ---) x = N!) A (S(ovf) ---) x = 0)). (2)

The specifier has anticipated that, due to hardware limitations, it is possible that
during the computat ion of N! an overflow, signalled by exception ovf, occurs. I f the
overflow indeed occurs, then x should be set to zero, otherwise x ought to be equal
to N!. However, nothing prevents the lazy programmer from simulating an overflow
as in program b of fig. 2. Because program b ought to raise the exception ovg and
set x to zero, it satisfies

O(x = 0 A ~(ov f)) . (3)

Unfortunately, (3) specifies a correct implementation of (2), which can formally be
proved as follows:

1. b (x = 0 A 8 (ov f)) ---) ((9 tS(ovf) ---) X = N!) A (tS(ovf) ---) X = 0));

2. ~- O((x = 0 A tS(ovf)) ---) ((9 ~(ov f) ---) x = N!) A (tS(ovf) --~ x = 0)));

. 1- O((x = 0 A 6 (ov f)) .-) ((7 r ---) x = N!) A (~ (ov f) ---) X = 0)))

---) (O(x = 0 A tS(ovf)) ~ 0 ((7 tS(ovf) --~ x = N!) A (S (ov f) --~ x = 0)));

4. F O(x = 0 A •(ovf)) ---) 0((--, 8 (ov f) ---) x = N!) A (~ (ov f) --) x = 0)).

The individual steps of the above derivation are justified as follows:

~

2.

3.

4.

is a valid predicate logic formula;

is obtained by the application of the Necessitation rule to 1;

is an instance of the first axiom listed in section 3 ;

is obtained by applying Modus Ponens to 2 and 3.

Using dyadic modalities, one can specify program a as follows:

O (x = N!) A 8 (o v f) O (x = 0). (4)

This specification expresses that it is preferred to set x equal to N!, and if this is
not possible due to an overflow, x ought to be zero. Provided that the axiomatization
of the deontic logic does not allow one to derive (4) from (3), it is not possible to

142 J. Coenen, Fault tolerant systems

prove that program b is a correct implementation of (4). As a matter of fact,
program b can be excluded more explicitly by adding the conjunct FtS(ovf) to (4).
Hence, the lazy programmer has to think of other means to avoid working.

Basically, the "lazy programmer" paradox is solved by making the specification
language more expressive. This imposes some requirements on the semantics and
axiomatization of the programming language to avoid the situation in which an
intuitively correct program does not satisfy a given specification. For example,
suppose that the maximum number, say Maxlnt, that can be computed without
causing an overflow is known. I fK is chosen such that K! <_ Maxlnt < (K + 1)!, then
program c in fig. 2 is intuitively a correct implementation of (4). The specification
of program c is, however, as follows:

O((N < K A x = N!) V (--1N < K A X = 0)). (5)

The only way to prove that (5) specifies a correct implementation, i.e. to prove that
(5) implies (4), is by making the knowledge about the hardware limitation explicit.
For instance, by including the following axioms:

F O(N <_ K), (6)

F 0(..-, N < K --> (0) --.-> ~(ovf)O(0. (7)

Axiom (6) expresses that it ought to be the case that N __. K. Axiom (7) expresses
that if one is obliged to establish (0 if --,N < K in a faultless world, this implies that
(0 ought to be established even if an overflow occurred. The second axiom is
motivated by the knowledge that the overflow would have occurred anyway if
--,N-< K, because (5) is equivalent to

O(N < K ---> x = N!) ^ O(---, N < K --> x = 0). (8)

This can be proved as follows. Let V, (0~, and (02 be defined by

V A_ (N < K A x = N I) v (- - , N < K A x = O) ,

(or b- N < K ---> x = N!,

(02 a= --, N <_ K ---> x = O.

We give the major steps of the derivation of (8) from (5):

t-V ~ (~01 ̂ ~) ,

t - 0 (V / ~ (~ A ~)) ,

V 0 V <-+ 0 (~ A ~) ,

V 0 V e+ (0q~ A 0 ~) ,

Predicate logic.

Necessitation.

Axioms and Modus Ponens.

Axioms and Modus Ponens.

J. Coenen, Fault tolerant systems 143

Because it is easily seen that (8) implies

(O(N < K) ---> O(x = N!)) A 0(--1N < K ---> x = 0),

we may conclude from (6) and (7) that program c is a correct implementation of O),
provided the above assumptions hold. Thus, only if the hardware limitations are
such that the axioms are justified does the above reasoning hold.

It is possible to think of clever variations on the programs in fig. 2, e.g. the
ones in fig. 4, for which the correct arguments to accept or reject them as correct
implementations of (4) are not so easily found. For example, program d should be
rejected, but just including Ft~(ovf) in the specification would also exclude program

(d) begin x := N!; raise ovf exception w h e n o v f ~ x := 0 end

(e) begin
if N < K

then x : = N!
else raise ovf

fi
exception

w h e n ovf =~ x : = 0
end

Fig. 4. The lazy programmer strikes backJ)

e which might be acceptable. However, these problems should be solved in the
semantics and the axiomatization of the programming language. The purpose of the
previous discussion is to demonstrate that dyadic deontic logic, if provided with
adequate semantics, can be expressive enough to distinguish deliberate errors from
unintentional ones.

5. A stable storage

An important concept in fault tolerant computing is the atomicity of actions.
An action is atomic if it is either executed successfully or n o t executed at all.
Atomic actions can be implemented by creating a checkpoint before the action is
executed, and if an error is detected by recovering the original state from this
checkpoint. The checkpoint should be recorded on a reliable medium, called a
stable storage. This section contains a summary of some aspects of a particular

1) Or is it a too diligent programmer?

144 J. Coenen, Fault tolerant systems

stable storage and focuses on the implementation of the read operation. A more
complete description of the stable storage described below is given in [13].

The stable storage consists of three layers. At the lowest level, the stable
storage is implemented by a number of physical disks. These physical disks, with
the appropriate operations on them, are grouped in the so-called "physical disk"
layer. Each physical disk has a corresponding logical disk that abstracts from the
physical location of sectors on the physical disk by maintaining a flexible mapping
between logical addresses and physical sector numbers. The logical disks are grouped
together in the "logical disk" layer. The layer at the top level is called the "reliable
disk" layer. The reliable disk layer provides a single stable storage, which is implemented
by several logical disks.

It is assumed that the only relevant errors are caused by damaged sectors of
the physical disks. In the remainder of this section, the layers are examined in
somewhat more detail.

5.1. RELIABLE DISK LAYER

The reliable disk layer provides a read_sector operation, with the intention
that the contents of the sector with logical address address is retrieved in the
variable sector. For this purpose, the reliable disk layer records which logical disks
are still operational, i.e. which logical disks have not yet caused a logical_disk_crash
exception. The numbers of the operational logical disks are administered in the set
operational_disks. On invocation of the read_sector operation, an operational logical
disk is selected on which a read_logical_disk operation is performed.

The reliable disk layer must anticipate two exceptions that may be raised by
the logical disk layer. The exception logical_sector_lost indicates that this logical
disk is unable to return the contents of the sector with logical address address. The
exception logical_disk_crash is raised when the logical disk layer can no longer
guarantee consistency of the information stored in the logical disk. In case of a
logical_sector_lost exception, the reliable disk layer attempts to retrieve the sector
from another logical disk. The retrieve operation will be left unspecified, but notice
that retrieving the lost section might include a recursive call of read_sector.

The logical_disk_crash exception is handles simply by deleting the corresponding
disk number from the set operational_disks. If the reliable disk layer runs out of
operational logical disks, it raises a reliable_disk_crash exception. See also fig. 5.

Notice that the nondeterminism in the selection of an operational disk needs
to be resolved. This freedom of choice may be exploited to obtain a more efficient
read_sector operation.

5.2. LOGICAL DISK LAYER

Whereas the reliable disk layer achieves a higher degree of reliability through
the redundancy of the logical disks, the logical disk layer, in its turn, achieves a

J. Coenen, Fault tolerant systems 145

begin
success := false;
while ~ s u c c e s s do
begin

disknr := a member of operational_disks;
read_logical_disk(disknr, address);
success := true

exception
when logical_sector_lost

retrieve the lost sector
when logical_disk_crash

operational_disks : = operational_disks - { disknr } ;
if operational_disks = 0

then raise reliable_disk_crash
fi

end
end

Fig. 5. read_sector.

higher degree of reliability through the redundancy of so-called spare sectors on
each logical disk. The spare sectors are recorded in the set spare_sectors. Furthermore,
the logical disk layer abstracts from the physical location of sectors by maintaining
a mapping log_to_phys between logical addresses and sector numbers.

The read operation at the logical disk level is listed in fig. 6. The logical disk
layer simple calls the read_physical_disk operation with the converted address. If

begin
read_physic al_sector(lo g_to_phys(address))
exception

when invalid_crc =~
if spare_sectors = 0

then raise logical_disk_crash
else new_sector := a member of spare_sectors;

spare_sectors := spare_sectors - {new_sector};
update log_to_phys;
raise logical_sector_lost

fi
end

Fig. 6. readlogicaldisk.

146 J. Coenen, Fault tolerant systems

the physical disk layer raises the invalid_crc exception and there are no spare
sectors left, then the logical disk layer raises a logical_disk_crash exception. If the
invalid_crc exception is raised and there are spare sectors, then one of the spare
sectors is selected and the mapping log_to_phys is updated, and the logical_sector_
lost is raised.

5.3. PHYSICAL DISK LAYER

The physical disk layer achieves reliability by using information redundancy.
The contents of each logical sector is augmented with a cyclic redundancy code.
It is assumed that all relevant faults can be detected with this code. Or more
precisely, the probability of not detecting a relevant error is sufficiently small. This
means the faults like damaged disk drives, etc. are not considered relevant in this
example. The read_physical_sector operation is listed in fig. 7.

begin
sector : = physical_disk[sector_nr];
if --, cyc_r ed_c hec k(sector)

then raise invalid_crc
fi

end

Fig. 7, read_physical_sector.

The cyclic redundancy code is checked by the function cyc.red_check, which
may be implemented by special purpose hardware.

6. Deontic logic specifications of the read operations

A specification of an operation of a fault tolerant system typically has the
following format:

~plO ~l A �9 �9 �9 ̂ tp,,O gt,,.

Each ~ specifies how the operation of this layer should behave, provided the lower
level created the condition tpi. Because the upper level layer cannot interfere with
the actions of the lower level layer, the conditions q~i are established facts for the
upper level layer to which it is supposed to react according to 1/,~. For example, at
the top level of the stable storage, the read operation may have been specified as
follows:

O(sector = reliable_disk'(address')) A 6(reliable_disk_crash)O V,

J. Coenen, Fault tolerant systems 147

where V is left open for the moment, Thus, it is specified that the read operation
ought to assign the initial contents of the stable storage at address address to sector.
In case a reliable_disk_crash exception was raised, v o u g h t to be established. Of
course, one might also have specified that, for example, the address or contents of
the storage ought to be left unchanged.

Because the physical disk layer is the lowest level of the stable storage and
it is assumed that cyc_red_check detects all errors, there are no faults (from lower
levels) that must be anticipated by this layer. Therefore, the specification of the
read_physical_sector operation (fig. 7) contains only monadic modalities. The read_
physical_sector operation (for physical disk i) is specified by

0 (sector = physical_disk~ [sector'])

A O(8(invalid_crc) ---> --1 cyc_red_check(sector')).

The first conjunct expresses that if the underlying execution mechanism functions
correctly, then sector is set equal to the contents of physical disk i at location
sectornr. The second conjunct of this specification can be rewritten as

F(S(invalid_crc) ^ cyc_red_check(sector')),

which forbids to raise the invalid_crc exception when the sector passes the cyclic
redundancy check. Now suppose an invalid_crc exception ought to be raised, i.e.

O ~(invalid_crc).

From the specification of the read_physical_sector operation, it follows that

O (8(invalid_crc) ---> ~ cyc_red_check(sector ")).

This together with the following axiom instance:

O (8(invalid_crc) ---> --, cyc_red_check(sector'))

---> (0 8(invalid_crc) ---> 0 --, cyc_red_check(sector')),

is sufficient to derive

0 8(invalid_crc) --> 0 ~ cyc_red_check(sector')

with modus ponens. One more application of modus ponens results in

0 ~ cyc_red_check(sector').

Hence, under the assumption that the physical disk functions correctly, it is established
that the invalid_crc exception ought to be raised only if the sector did not pass the
cyclic redundancy check.

148 J. Coenen, Fault tolerant systems

Notice that if the second conjunt in the specification of read_physical_sector
is replaced by

tS(invalid_crc) ~ 0 ~ cyc_red_check(sector'),

then an invalid_ere exception ensures that sector did not pass the cyclic redundancy
check regardless of whether the exception was raised by the read_physical_sector
operation itself or by another operation.

The logical disk layer must anticipate an invalid_crc exception, but is allowed
to raise a logical_disk_crash exception or a logical_sector_lost exception depending
on whether there are any spare sectors available (fig. 6). The read_logical..sector
operation (for logical 'disk i) is specified by

O(sector = logical_disk[(address')) A

t~(invalid_crc)O((~(logical_disk._crash) A spare_sectors[= ~)) v

(~(logical_sector_lost) A spare_sectors[~ ~)).

A single logical disk cannot handle an invalid_crc exception by itself, but achieves
graceful degradation through the discrimination between the fatal situation in which
are no spare sectors left and the less harmful situation when there are enough
redundant sectors. Assuming that this layer functions correctly, it follows that a
logical_disk_crash exception is raised if an invalid_ere exception was detected and
initially the number of spare sectors was zero. To ensure that a logical_disk_crash
or logical..sector_lost is raised only in the situation described above, the
specification may be strengthened by adding the conjunct F(6(logical_disk_crash)
A 6(logicaLsector_lost)), which forbids raising these exceptions deliberately. Notice
that this specification is not complete because it does not specify that the mapping
log_to_phys should be updated before raising the logical_sector_lost exception.

Although the reliable disk layer must handle both exceptions that may possibly
be raised by the logical disk layer, the specification below only anticipates the
occurrence of a logical_disk_crash exception. Therefore, also this specification is
not complete. The read_sector operation (fig. 5) of the reliable disk layer is specified
by

03i(i E operational_disks' ^ sector = logical_disk~ (address'))

A S(logical_disk_crash)O(t~(reliabIe_disk_crash) --~ operationaLdisks = 0).

Suppose that it is forbidden to raise the reliable_disk_crash exception deliberately,
which may be accomplished by adding the conjuct Ft,(reliable_disk_crash) to the
specification above. Then it follows that a reliable_disk_crash exception is only
raised if there are no other operational disks left and a logical_disk_crash was
raised. Thus, the only initially operational disk does not have the appropriate information.

J. Coenen, Fault tolerant systems 149

7. Conclusions

The previous section illustrates how deontic logic provides the possibility to
specify fault tolerant systems in a natural way. It turns out that to derive certain
properties of a specified system, one needs to make the assumptions about faults
and their effect on the behaviour of the system explicit. The possibility to express
the preference of some behaviours over others allows one to distinguish between
conditions created by a possible malfunctioning of a lower level and the conditions
created by the layer under discussion itself. Although deontic logics have been
suggested to system specification before, for example in [10], the application to
fault tolerant systems seems to be new, which partly explains the differences between
the specification language used in this paper and those appearing in the literature
about system specification.

The deontic logic described in this paper differs from the deontic logics for
system specification in the existing literature mainly in two ways. Firstly, the logic
in this paper is a dyadic deontic logic, whereas the logics in, for example, [11] and
[10], are monadic deontic logics. Secondly, primed and unprimed variables are used
to capture the dynamic aspect of programs in the specification language, whereas
Meyer [11] and Khosla [10] use a dynamic logic in combination with the deontic
logic.

The first difference, which seems to be the most essential one, can be explained
by the particular application to fault tolerant systems. An important concept in fault
tolerance is graceful degradation, which allows a system to temporarily sacrifice a
service in favour of a more important one if a fault occurs. This corresponds in a
natural way with deontic logic specification of the format q~O(yl ^ . �9 �9 r that
specifies the behaviour of ~ of a system under less than perfect conditions tpl
(i = 1 n). Moreover, dyadic deontic logic offers a solution to the "lazy programmer"
paradox described in section 4. Also, although the examples used to illustrate this
paradox may be regarded as "toy" examples, it should be evident from the example
in section 5 that this problem becomes more important as the complexity of a
system increases.

The second difference concems primed variables. A nice property of the
logic is that it captures state predicates as well as action predicates. State predicates
are predicates with either only primes variables or only unprimed variables. Action
predicates and predicates with both primed and unprimed variables. A serious
disadvantage of the primed and unprimed variables is that it is not clear how this
method can be extended to deal with (distributed) real-time systems, which is an
important application area of fault tolerance. Such systems may be specified in a
logic that mixes deontic logic with a temporal logic, or in a logic with combined
deontic-temporal modalities like the one in [7].

The next step which must be taken is the definition of an adequate formal
semantics for the deontic logic discussed in this paper. A first study shows that a
Kripke semantics can be obtained by introducing residuals of reachability relations.

150 J. Coenen, Fault tolerant systems

Acknowledgements

The author i s grateful to Henk Schepers for providing the stable storage
example, and Tijn Borghuis and Wim Koole for many helpful discussions.

References

[1] American National Standards Institute, Inc., The Programming Language Ada Reference Manual,
ANSI/MIL-STD-1815A-1983, LNCS 155 (Springer, 1983).

[2] T. Anderson and P.A. Lee, Fault Tolerance: Principles and Practice, 2nd revised ed. (Springer,
1990).

[3] L. Aqvist' Good Samaritans, contrary-to-duty imperatives, and epistemic obligations, Nofis 2(1967)
361-379.

[4] L. Aqvist' Deontic logic, in: Handbook of Philosophical Logic, Vol. II, ed. D. Gabbay and
F. Guenthner (Reidel, 1983) pp. 605-714.

[5] F. Cristiart, A rigorous approach to fault-tolerant programming, IEEE Trans. Software Eng. SE-11
(1985)23-31.

[6] E.W. Dijkstra, The structure of the "THE"-multiprogramming system, Commun. ACM 11(1968)
341-346.

[7] LA. van Eck, A system of temporally relative modal and deontic predicate logic and its philosophical
appfications, Logique et Analyse 100(1982)249-381.

[8] D. Fr and R. Hilpinen, Deontic logic: an introduction, in: Deontic Logic: Introductory and
Systematic Readings, ed. R. Hilpinen (Reidel, 1971) pp, 1-35.

[9] C.A.R. Hoare, An axiomatic base for computer programming, Commun. ACM 12(1969)576-580.
[10] S. Khnsla, System specification: a deontic approach, Ph.D. Thesis, Imperial College of Science and

Technology, University of london (1988).
[11] J.-L Ch. Meyer, Using programming concepts in deontic reasoning, Report IR-161, Free University

Amsterdam (1988).
[12] W.-P. de Roever, Foundations of computer science: leaving the ivory tower, Bull. EATCS 44(1991)

455 -492.
[13] H. Schepers, Terminology and paradigms for fault tolerance, Report CSN-9108, Eindhoven University

of Technology 0991); to appear in: Format Techniques in Real-Time and Fault Tolerant Systems,
ed. J. Vytopil (Kluwer, 1993).

[14] G.H. yon Wright, A new system of deontic logic, in: Deontic Logic: Introductory and Systematic
Readings, ed. R. Hilpinen (Reidel, 1971) pp. 105-120.

[15] G.H. yon Wright, Problems and prospects of deontic logic: a survey, in: Modern Logic -A Survey:
Historical, Philosophical, and Mathematical Aspects of Modern Logic and Its Applications, ed.
E. Agazzi (Reidel, 1981) pp. 399-423.

