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Abstract 

We describe and test computationally a branch-and-cut algorithm for solving inference 
problems in propositional logic. The problem is written as an integer program whose 
variables correspond to atomic propositions. We generate cuts for the integer program using a 
separation algorithm based on the resolution method for theorem proving. We find that the 
algorithm substantially reduces the size of the search tree when it is large. It is faster than 
Jeroslow and Wang's method on hard problems and slower on easy problems. 
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1. Introduction 

The inference problem in proposit ional logic is notoriously hard. It is equiv- 
alent to the satisfiability problem, which was the original NP-comple te  problem 
[2]. It has traditionally been solved by  nonnumeric  methods,  such as the various 
resolution procedures [7,13]. But recent evidence indicates that mathematical  
programming methods provide one of the more promising approaches for solving 
hard inference problems. These methods are based on the fact that an inference 
or satisfiability problem can be  written as integer program that can in turn be  
solved with methods that exploit its structure. Our purpose here is to test the 
effectiveness of a particular method for solving the integer program, namely a 
branch-and-cut  method that uses a new separation algorithm based on a connec- 
tion between resolution and cutting plane theory. 

The two best-known methods for solving integer programs, b ranch-and-bound 
and cutting plane methods, have been applied to the integer program underlying 
an inference problem. The branch-and-bound technique was used by  Blair, 
Jeroslow and Lowe [1], who pioneered the mathematical  programming approach 
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to inference in propositional logic. They showed that a straightforward branch- 
and-bound algorithm can solve a large class of random problems by enumerating 
only a few nodes in the search tree. Their motivating idea is that by solving the 
linear programming (LP) relaxation of the problem at each node of the branch- 
and-bound tree, they may happen upon an integer solution early in the process 
and thereby solve the problem quickly. Moreover, the objective function in the 
integer program directs the search for a solution in a way that is not available in 
such symbolic methods as the Davis-Putnam procedure with "splitting" [3,13], 
which is the nonnumeric analogue of branch-and-bound for satisfiability prob- 
lems. 

The cutting plane approach has been applied by one of us (Hooker), who 
exploited the fact that a resolvent is a particular type of " rank 1" cutting plane 
[8,10]. This means that resolution can be viewed as a technique that generates 
cutting planes for solving the underlying integer program. Since resolution tends 
to generate a very large number of formulas, nonnumeric resolution methods 
must often use heuristics to select which resolvents to generate. The integer 
programming context, however, provides a natural guide for generating only a 
few useful resolvents (namely, those that are "separating" cuts, which we define 
below). Computational tests of a method based on this principle showed that 
resolution cuts, with occasional recourse to branch-and-bound, can check whether 
a conclusion follows from a set of 40-100 randomly generated premises more 
than 1000 times more rapidly than resolution when the conclusion does not 
follow, and about twice as rapidly otherwise. (In the latter case only two or three 
premises are generally needed to obtain the conclusion, so that resolution does 
not lead to an exponential explosion.) In some instances, however, no resolution 
cut was separating, and this happens quite often in the more difficult problems 
we generated for the present study. It is therefore useful to have stronger cuts. 

Both branch-and-bound and cutting plane approaches require the costly solu- 
tion of highly degenerate LP relaxations. Jeroslow and Wang addressed this 
problem by replacing a relatively sluggish LP routine with a heuristic for 
generating integer solutions ([12], also presented in [9]). The resulting algorithm 
was an order of magnitude faster than LP-based branch-and-bound. This raises 
doubt as to whether an LP-based algorithm can ever compete effectively with 
techniques in which a nonnumeric algorithm replaces the LP. Our purpose is to 
try to determine whether this doubt is warranted. 

In this paper we do two things: (1) we combine the branch-and-bound and 
cutting plane approaches to obtain a branch-and-cut algorithm, and (2) we 
enlarge the class of cutting planes so as to increase the probability that a 
separating cut can be found with a reasonable amount  of computation. We test 
the resulting algorithm computationally and compare it with a pure branch-and- 
bound approach as well as the Jeroslow-Wang method. The problems are 
randomly generated in such a way that many are quite hard, much harder than 
those studied in [10]. 
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We find that the branch-and-cut method requires substantially less time on 
random problems than branch-and-bound when the latter must enumerate a 
relatively large number of nodes, which indicates that our cutting planes are 
useful in the harder problems where they are needed most. We also find that the 
branch-and-cut method is superior to the Jeroslow-Wang method on hard 
problems (those requiring a large number of branch-and-bound nodes), whereas 
the Jeroslow-Wang method is better on relatively easy problems. This suggests 
that when the problem is hard, the substantial overhead of solving an LP 
relaxation is normally more than offset by the direction-finding capability pro- 
vided by an objective function and separating cuts. We do not compare branch- 
and-cut with resolution-based methods, since our experience in [10] indicates that 
the latter would run far too slowly to solve problems of the size solved here. 

Our method for generating cuts is suggested by a resolution-based separation 
algorithm developed by one of us (Hooker, [11]). This earlier algorithm generates 
a clause that is a rank one separating cut if such a cut exists, but it can be 
impractical to use. Here we modify the algorithm to make it more practical and 
prove that it nonetheless generates any separating cut that the original algorithm 
does, plus perhaps some additional separating cuts. 

2. Logical fundamentals 

The formulas of propositional logic consist of atomic propositions or variables xj 
joined by such connectives as and, or, not, and implies. A literal is an atomic 
proposition x I or its negation --,xj. A clause is a disjunction of literals, such as 

xl v --,x2 v x3. (1) 

One loses no generality by dealing only with clauses, since any formula is 
equivalent to a conjunction of clauses [7]. A unit clause contains exactly one 
literal, and the empty clause contains no titerals and is necessarily false. 

A truth assignment is an assignment of true or false to every variable. A set S 
of clauses is satisfiable if some truth assignment makes every clause in S true. S 
implies a clause C if every truth assignment that makes all the clauses in S true 
makes C true. It is not hard to see that clause C implies clause D if and only if C 
absorbs D; that is, every literal of C occurs in D. 

If exactly one variable xj occurs negated in one clause and unnegated in 
another, the two clauses have as their resolvent on xj the clause containing all 
literals occurring in either parent, except xj and --,xj. 
the resolvent of (1) and (2). 

---3X 1 V --3X 2 V ---nX4, 

- -nX 2 V X 3 V ---~X 4 . 

The resolvent is implied by its parents jointly but by neither individually. 

For instance, (3) below is 

(2) 
(3) 
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A resolution proof of a clause C from a set of premises is a finite sequence of 
clauses beginning with the premises and ending with C, such that every clause is 
the resolvent of two earlier clauses in the sequence. Let us say that a clause in a 
resolution proof is a unit support clause if it contains exactly one variable that 
does not appear in the conclusion C. A unit support proof of C, as defined in [11], 
is a resolution proof in which at least one parent  of every resolvent is a unit 
support clause. 

3. Integer programming fundamentals 

Any clause can be written as a linear inequality in binary variables. For 
instance, (1) can be written, 

x 1 + (1 - x2) + x 3 >/1 or x 1 - -  X 2 Jr" X 3 ~ 0 ,  

where each xj ~ (0, 1}. We interpret xj = 1 to mean  xj is true, and xj = 0 to 
mean xj is false. Let a set S of m clauses in n variables be written as an m • n 
system Ax  >1 a of linear inequalities, where each a, is equal to 1 minus the 
number  of - l ' s  in row i of A. Clearly, S is satisfiable if and only if the 
minimum value of the artificial variable x 0 is one in the following integer 
program, 

minimize x 0 

subject to xoe+Ax>~a,  all xj ~ {0,1},  (4) 

where e is a column of m ones. We can also determine whether  a set S '  of 
clauses implies a clause C by solving a problem hat ing  the form of (4). For  each 
literal xj (or --,xj) of C, augment the linear system representing S '  with that 
literal's denial, namely the inequality - x j  >i 0 (or xj >/1). If Ax  >~ a is the 
augmented system, then S '  implies C if and only if the min imum value of x 0 in 
(4) is one. Since we can thus solve inference problems by solving satisfiability 
problems, we will concern ourselves only with the latter. 

Consider the following linear programming relaxation of (4): 

minimize x0 

subject to Xo e + A z > l l ,  0~<xj~<l  for a l l j .  (5) 

Let (x~', x * )  be a (possibly nonintegral) optimal solution of (5), if one exists. 
Three cases are relevant to solving the satisfiability problem that (4) represents: 
(a) x~' > 0, which means already that S is unsatisfiable, since any solution (x0, 
x)  of (4) must have x 0 >/x~ and therefore x0 = 1 (since x 0 is integral); (b) x~ = 0 
and x* is integral, in which case S is satisfiable; (c) x~" = 0 and x is not  integral, 
in which case S may or may not be satisfiable. 

A cut for (5) is an inequality satisfied by all feasible solutions of (4). A 
separating cut for a solution (x~', x * )  of ( 5 )  is a cut that (xd", x * )  violates. A 
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cutting plane approach to solving the satisfiability problem would be to add one 
or more separating cuts to (5), solve the resulting problem, add more  cuts if 
necessary, a n d  so on until case (a) or (b) is obtained. 

In a branch-and-bound approach to solving (4), the optimal solution x * of the 
LP relaxation (5) is regarded as the root node of a search tree. One then branches 
on a variable xj with a fractional value x7 by first re-solving (5) with the 
additional constraint xj = 0 and then re-solving (5) with the additional constraint 
xj. = 1. This creates two successor nodes of the root  node, at each of which the 
procedure is repeated in a recursive fashion. A node is fathomed (i.e., all 
successor nodes pruned) when case (b) occurs, at which point the search back- 
tracks. The algorithm terminates with satisfiability when case (c) is obtained at a 
node, or with unsatisfiability when the search is completed without obtaining case 
(b). 

A branch-and-cut algorithm simply generates cuts at every node of the search 
tree. 

A cut belongs to the elementary closure of a linear system Ax >1 a if it is the 
result of taking a positive linear combination of inequalities in the system and 
rounding up any nonintegers that result. A cut is a rank I cut if it is a positive 
linear combination of inequalities in the elementary closure. 

The resolvent of two clauses is easily seen to be a cut, which we call a 
resolution cut. In fact, it is a rank 1 cut with respect to the inequalities that the 
clauses represent (and bounds of the form 0 ~< xj ~< 1). For  instance, the resolvent 
(3) of (1) and (2) can be obtained by taking a weighted sum in which inequalities 
representing (1) and (2) and the bounds x 3 >~ 0 and - x 4 >t - 1 all get weight 1 /2 .  
The result is - x 2 + x 3 - x 4 >~ - 3 /2 ,  in which the right hand side can be rounded 
up to obtain an inequality representing the resolvent (3). Not  all clauses that are 
rank 1 cuts, however, need be resolvents of the original premises. 

4. The problem of finding separating cuts 

Since resolvents are cuts, one way to obtain separating cuts is to generate 
resolvents of the clauses in (4) and retain those that are separating cuts. But it 
was found in [10] that in many cases, none of these resolvents are separating. In 
this event one might use resolvents as parents to generate still more  resolvents, 
and so on repeatedly, until finding a separating cut. But since the number  of 
resolvents tends to grow explosively, this is not a practical approach. 

In [11] one of us (Hooker) proposed reducing the number  of resolvents by 
generating only clauses that are rank 1 cuts. It was proved in [11] that we can 
obtain all such cuts by using unit support proofs alone, which do not  produce 
nearly so many resolvents as general resolution proofs. In fact, [11] shows that the 
following algorithm generates a clause that is a rank 1 separating cut if one exists. 
Given a solution (x~', x * )  of (5), let the truth value of literal x i be x 7 and of --,xj 
be 1 - x * .  
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4.1. SEPARATION ALGORITHM 1 

Step O. Let S be the set of clauses represented by Ax >t a in (4), and solve the 
LP relaxation (5). Set k = 0. 

Step 1. Set k = k + 1. If k > n, stop. 
Step 2. Set T- -  S, and pick a set K of k variables (a set not  already picked) 

with fractional values in the solution of (5). If no such sets remain, go to Step 1. 
Step 3 (truth value condition). Pick a clause D in T with exactly one variable xj 

in K, such that the sum of the truth values of the other literals in D is strictly less 
than 1. If there is no such D, go to Step 2. 

Step 4 (unit support resolution). Derive all possible resolvents on xj of D with 
other clauses in T, and add the resolvents to T. Go to Step 3, unless one of these 
resolvents is separating (and no more separating cuts are desired), in which case 
the algorithm stops. 

Yet even this algorithm can be impractical, since a prohibitively large number  
of sets K may need to be enumerated (even if we terminate the algorithm before 
k becomes large). We can obtain a more practical algorithm by dropping the set 
K and accumulating resolvents rather than resetting T to S in Step 2. We retain 
the truth value conditions in Step 3, however, and they continue to limit the 
production of resolvents. We will show that the resulting algorithm, below, 
generates any separating cut that Algorithm 1 does and thus in particular 
generates a rank I separating cut if such a clause exists. 

4.2. SEPARATION ALGORITHM 2 

Step O. Let S be the set of clauses Ax >~ a in (4), and solve the LP relaxation 
(5). Set k = 0. 

Step 1. Set k =  k + 1. If k > n, stop. 
Step 2 (truth value condition). Pick from S a clause D containing a variable 

with a fractional value in the solution of (5), such that the sum of the truth 
variables of the other variables in D is strictly less than 1. If there is no such D, 
go to Step 1. 

Step 3 (resolution). Derive all possible resolvents of D and other clauses in S 
that take place on a variable xj with a fractional value in the solution of (5). Add 
the resolvents to S. Go to Step 2, unless one of these resolvents is separating (and 
no more separating cuts are desired), in which case the algorithm stops. 

To illustrate the algorithm, suppose that (6)-(10) below are among the con- 
straints in (4). The solution x * of (5) is shown in the first row. 
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x*  = 0 1 /5  

X 0 -1- X 1 

x 0 q- X 1 

X 0 - -  X 1 

X o 

X o 

+ 

2 /5  1 /5  4 / 5  2 / 5  2 / 5  

-{- X 3 "4- X 4 "4- X 5 >~1, (6) 

- x 3 + x 5 >I 0 ,  ( 7 )  

X 2 "Jr- X 5 + X 6 ~ 0 ,  ( 8 )  

x2 + x4 + x6>10, (9) 

- -  X 4 "~ X 6 >/ 0. (10) 

Since the truth values of literals other than - x  3 in (7) sum to 3 /5 ,  which is less 
than 1, we can resolve (7) and (6) to obtain (11) below. Similarly, we resolved (6) 
and (10) to obtain (12), and (9) and (10) to obtain (13). 

X 0 + X 1 "~- X4 + X5 >I 1, (11) 

X 0+  X 1 + X 3 + X 5 + X 6>/1, (12) 

X 0 -- X 2 + X 6 >t 0. (13) 

We can now resolve (13) and (8) to obtain (14) below, and (11) and (10) to obtain 
(15). 

x 0 -  x 1 + x 5 + x 6>10, (14) 

X 0 "q- X 1 -I- X 5 + X 6 >i 1. (15) 

These two resolve to produce, 

x 0 + x5 + x6>/1,  (16) 

which is a separating cut. It is a rank 1 cut, as can be verified by taking a linear 
combination in which (6)-(10) and the bound x 5 >i 0 respectively have weights 
1 /7 ,  1/7,  2 /7 ,  2 /7 ,  3 /7 ,  3/7.  By comparison, Algori thm 1 must  enumerate  15 
test K and generate 33 resolvents before discovering a separating cut, namely 
(16), when K =  { xl, X2,  X3, X 4 } .  

We now show that Algorithm 2 is at least as powerful as Algori thm 1. 

THEOREM 1 
Algorithm 2 finds all separating cuts found by Algori thm 1 and therefore 

generates a clause that is a rank 1 cut if one exists. 

Proof 
Let Algorithm 1 or 2 generate a clause C if C ~ S or C is a resolvent obtained 

in the algorithm. It suffices to show that Algori thm 2 generates all the clauses 
that Algorithm 1 does. Let a resolvent obtained in Algori thm 1 have depth d + 1 
if the maximum depth of its parents is d, where all clauses in S are assigned 
depth zero. The proof is by induction on depth. 

Obviously, Algorithm 1 generates all clauses of depth zero that Algori thm 2 
does. Now, supposing that Algorithm 2 generates all clauses of depth d that 
Algorithm 1 does, we will prove the same for depth d + 1. 
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Let R be any resolvent of depth d + 1 that Algorithm 1 generates. Let D* be 
the clause D that Algorithm 1 uses in Step 4 to obtain R, and E * a clause with 
which the algorithm resolves D * to obtain R. Then D* and E*  have depth d or 
less. Also D* contains exactly one variable xj in K, and the sum of the truth 
values of the variables in D* other than xj is strictly less than 1. By the 
induction hypothesis Algorithm 2 generates D* and E* ,  which at some point 
have been added to S in Step 3. Thus in some execution of Step 2, Algorithm 2 
picks D* as the clause D and resolves it on x I with E* ,  thus obtaining R. [] 

Algorithm 2 can also generate cuts that have rank greater than 1. Given the 
clauses, 

X 0 "4- X 1 "Jr- X 2 "4- X 3 ~ 1, 

X 0"4- X 1 --  X 2 " ~ X  3 ~ 0 ,  

X 0 -  X 1"~ X 2"[- X 3 ~ 0 ,  

X 0 - X  x - X  2 + X  3 ~ - - 1 ,  

and supposing ( x ~ , . . . ,  x~') = (0, 1 /2 ,  1 /2 ,  0), Algorithm 2 yields the separating 
cut x 0 + x 3 >/1, which is not a rank 1 cut and is not produced by Algorithm 1. 

5. A branch-and-cut algorithm 

We now present a branch-and-cut algorithm that exploits the special properties 
of the satisfiability problem. The algorithm makes essential use of unit resolution, 
which repeatedly looks for a unit clause, and removes all clauses that contain the 
literal in the unit clause, as well as all occurrences of the literal's negation in the 
remaining clauses. The procedure terminates when no unit clauses remain or the 
empty clause is generated. In the latter case, we know the original set of clauses 
was unsatisfiable. 

The branch-and-cut algorithm is as follows. At any node of the branch-and- 
bound tree, let (4) be the original satisfiability problem, plus all cuts generated at 
predecessor nodes. We first apply unit resolution to (4). If the empty clause 
results, we know (4) is inconsistent, and we fathom the current node and 
backtrack. Otherwise we compute the solution (x~', x *) of the LP relaxation (5) 
of (4). If x~* > 0 then (4) is inconsistent, and we fathom the node and backtrack. 
If x~* = 0 and x * is integral, the problem is satisfiable, and we can stop. 

If we can neither stop nor fathom the current node, we use our separation 
algorithm to generate some cuts, add the cuts to (4), and re-solve the relaxation 
(5) for (x~, x*) .  Again we backtrack if x~ > 0 and stop if we find a satisfying 
solution. Otherwise we use a heuristic (described below) to pick a fractional 
variable x/* on which to branch, and to pick which branch to explore first. If we 
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have already branched at the current node, however, we simply take the unex- 
plored branch, unless both branches have been explored, in which case we fathom 
the node and backtrack. If we branch we create a new node, to which we apply 
the same procedure. If we fathom every node without finding a satisfying 
solution, the problem is unsatisfiable, and otherwise it is satisfiable. 

Note that the problem (4) tends to shrink as we move deeper into the tree, 
since more variables are fixed at the deeper nodes, which allows the unit 
resolution step to eliminate more clauses and literals. This contrasts favorably 
with most branch-and-cut procedures, in which the problem grows with depth. 
But we must either store the problem associated with each node at which we 
branch, or regenerate it when we backtrack to the node. We choose the latter 
option, since it requires only that we add to the original problem the fixed 
variables and the cuts generated at the node's predecessors, and apply unit 
resolution. 

We use the heuristic of Jeroslow and Wang to choose the variable on which to 
branch. If S is the set of clauses represented by the constraints of (4), define a 
weight function w(S)= ]EkN(k)2 -k, where k ranges over positive integers and 
N(k) is the number of clauses in S containing k literals. If S(j, v) is the set of 
clauses of S in which xj occurs (for v = 1) or in which --,xj occurs (for v = 0), let 
j *  and v* be arguments that maximize w(S(j, v)) over all j such that xj* is 
fractional. We then branch on xj. by first assigning it the value v*. 

The LP relaxation tends to be highly degenerate and therefore difficult to 
solve. We found that we can accelerate the solution substantially with a simple 
stepwise process. We first solve (5) using only the constraints with no negative 
coefficients. We add the violated constraints and re-solve, and continue in this 
fashion until all constraints are satisfied. Each time we add violated constraints 
or new cuts we start with the previous optimal basis, augmented with surplus 
variables as necessary. 

Finally, our separation algorithm (Algorithm 2) allows several practical im- 
provements. Let us refer to the value of k as the number of passes that have been 
executed. To keep execution time reasonable we use at m o s t  kma  x (<  n ) passes. 
We also observe that prior to the last pass there is no point in saving nonseparat- 
ing resolvents in Step 3 that contain no variables with fractional values, since they 
cannot be used as parents of further resolvents. Furthermore, if the truth value of 
a clause is the sum of the truth values of its literals, then the truth value of a 
parent cannot exceed that of its resolvent by more than 1. Since we want the 
resolvents obtained in the last pass to be separating (i.e., to have truth value less 
than 1), the resolution parents we consider in pass k should have truth value less 
than kma x -- k + 2. 

The more effective cuts are generally those that contain fewer literals, particu- 
larly those that are unit clauses. We found empirically that these tend to be 
generated in the later passes. But the algorithm often generates an unmanageable 
number of cuts before the later passes are reached, so that it must be prematurely 
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terminated before obtaining the best cuts. To solve this problem we permitted 
only unit resolvents to be generated in the last pass. Since the length of a parent 
cannot exceed that of its resolvent by more than 1, this permits us to consider in 
pass k only parents of length at most km~ x - k  + 2. We also place an upper 
bound N on the number of cuts to be generated on each pass. 

The improved separation algorithm followg~ 

5.1. SEPARATION ALGORITHM 2' 

Step O. Let T = S',  k --- 0, C = ~ .  
Step 1. Set k = k + 1. If k > kmax ,  stop. 
Step 2 (truth value condition). Pick from T a clause D of length at most 

k m a  x - k + 2 that contains a variable with a fractional variable xT, such that the 
sum of the truth values of the other variables in D is strictly less than 1. If there 
is no such D, go to Step 1. 

Step 3 (resolution). Derive all possible resolvents of D with other clauses E in 
T that take place on a variable with a fractional value xT, where E has length at 
most km~, - k + 2 and truth value strictly less than k m a  x - k + 2. Add to T the 
resolvents containing at least one variable with a fractional value, until the 
cardinality of T reaches N. Add to (4) the resolvents that are separating. If more 
separating resolvents are desired, go to Step 2; otherwise stop. 

6. Implementation 

The branch-and-cut algorithm was written in Microsoft FORTRAN 4.1. The 
LP relaxations were solved by calls to Marsten's XMP [14]. The data structure for 
the set S of clauses consisted of two linked lists for each clause, one containing 
the indices of the positive literals and one those of the negative literals. To 
perform the resolutions in Step 3 of the separation algorithm, two additional 
linked lists were used for each clause: one of positive literals with fractional truth 
values, and one of negative literals with fractional truth values. This accelerates 
checking whether two clauses can be resolved on a variable with a fractional 
value. 

7. Problem generation 

Two probability models are generally used for generating random satisfiability 
problems in n variables [5,6,16]. 

Fixed density model. Build each clause by randomly choosing k distinct 
variables from (x  I . . . . .  x,  ) and negating each with probability 1/2. 
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Fixed probability model. Build each clause by letting each variable xj appear in 
the clause with probability p, and negate each variable that appears with 
probability 1/2. If the resulting clause is empty, generate another. 

The fixed density model is highly unrealistic. It is hard to imagine an 
application, in either artificial intelligence or computer engineering, in which the 
number of literals per clause would be constant. It is reasonable, however, that 
the expected number of literals per clause would be more or less independent of 
the number of clauses or variables. The length of propositions in large knowledge 
bases, for instance, would probably be about the same as in small ones. This 
suggests that we should use the fixed probability model and set the expected 
number np of literals per clause to a constant, perhaps between 3 and 10. We 
choose np = 5. 

One difficulty with the fixed probability model, however, is that a set of m 
clauses will generally contain several unit clauses. Let bn(k ) be the binomial 
probability bn(k)=(~)pk(1 _p ) , - k .  The expected number of unit clauses is 
mb,(1)/(1 - b,(0)), or 3% of the clause for a problem typical of our test problems 
(n = 100, np = 5). The presence of unit clauses permits one to simplify the 
problem, often substantially, by preprocessing it with unit resolution, so that the 
residual problems actually solved with a branch-and-cut method have widely 
varying sizes. To remove this source of variability, we exclude unit clauses and 
keep generating random clauses until m nonunit clauses are obtained. 

Another difficulty with the fixed probability model is that satisfiable problems 
tend to have a very large number of solutions and therefore to be easy to solve, 
since a solution can often be found with relatively little backtracking. The 
probability that a given binary vector x satisfies a random clause containing k 
literals is 1 -  (1/2) k. Since the probability that a nonunit clause C contains k 
literals (k >/2) is the truncated binomial probability bn(k) = b,(k)_/(1 - bn(0) - 
b,(1)), the probability that x satisfies C is P, = E~=2(1-  (1/2)k)b,(k). So, the 
probability that x satisfies m clauses is P~, and the expected number of 
solutions is 2"P m. For n = 100 and np = 5, a problem with 740 clauses has an 
expected number of more than 101~ solutions, and the number is much larger for 
smaller problems. Conversely, a problem with 1200 clauses has an expected 
number of 0.05 solutions and is therefore almost certainly unsatisfiable, and the 
number drops precipitously for larger problems. We will find in fact that nearly 
all problems with 900 clauses are unsatisfiable. This suggests that satisfiable 
problems are likely to be easy except when the number of clauses begins to 
approach 900, at which point satisfiable problems become scarce. 

Unsatisfiable problems also tend to be easy on the fixed probability model, 
because when there are enough clauses to make unsatisfiability probable, assign- 
ing values to only a few variables is likely to falsify all the literals in some clause. 
When this happens it may be unnecessary to probe deeply into the search tree to 
verify unsatisfiability. The probability Pn(i) that a partial vector (Xl . . . .  , x,) 
falsifies all the literals in a nonunit clause C is the probability (1 _ p ) , - i  that all 
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of  C ' s  literals have received a t ru th  value  t imes the p robab i l i t y  they  are all false. 
Thus  Pn(i) (1 n- i  i = = - - p )  Y , k = 2 ( 1 - ( 1 / 2 ) k ) b , ( k ) .  W h e n  n = 100 an d  np 5 the 
p robab i l i t y  that  fixing, say, five variables  will falsify one  of  700 clauses is abou t  
0.73, bu t  the p robab i l i ty  it will falsify one  of  2000 clauses is 0.98. W e  should  
there fore  expect  unsat isf iable  p rob lems  to  b e c o m e  steadi ly  easier  as the n u m b e r  
of  clauses increases. These  cons idera t ions  suggest  tha t  the ha rdes t  p rob lems  
should  occur  as m increases to the po in t  where  the  p r e p o n d e r a n c e  o f  p rob lems  
shifts f r om satisfiable to unsatisf iable.  T h e  shift occurs  fair ly rap id ly  due  to the 
prec ip i tous  d rop  in the expec ted  n u m b e r  of  solutions.  W e  the re fo re  fix n at 100 
and  let m range f rom somewhat  be low 900 to somewha t  above  900. W e  also do  a 
similar exper iment  for  n = 50. 

8. Computational results 

The  F O R T R A N  rout ines  were run  on  an  I B M  P S / 2  M o d e l  80 persona l  
c o m p u t e r  using the O S / 2  Vers ion 1.1 opera t ing  system. W e  p e r m i t t e d  a maxi-  
m u m  of  three  passes (km~ , -- 3) in the separa t ion  a lgor i thm and  a m a x i m u m  of  
200 cuts to be  genera ted  at each pass ( N  = 200). 

Table  1 summarizes  the results for  r a n d o m  prob lems  having  50 and  100 
variables.  The  b ranch -and-cu t  m e t h o d  is c o m p a r e d  wi th  a pu re  b r a n c h - a n d - b o u n d  
m e t h o d  ( the b ranch-and-cu t  a lgor i thm with  Step 3 omit ted) .  I t  is also c o m p a r e d  

Table 1 
Computational results. Computer times are minutes on an IBM PS-2 Model 80 personal computer 

No. No. No. 
rows prob- satis- 

lems fiable 

Branch & bound Jeroslow & Wang Branch & cut 

Avg. no. Avg. Avg. no. Avg. Avg. no. Avg. 
nodes time nodes time nodes time 

lOOvariables 
700 10 10 
800 20 11 
850 ~ 20 4 
900 10 1 

1000 10 0 
1500 10 0 

50 variables 
300 10 10 
400 10 8 
450 10 4 
500 10 0 
750 10 0 

107 91 61 13 29 43 
138 169 219 138 34 77 
144 206 160 117 28 69 
136 213 116 93 34 93 
30 64 33 32 7.0 28 

9.4 39 9.4 16 3.8 22 

12 1.6 25 0.3 11 2.3 
14 3.4 22 1.6 10 4.5 
22 8.4 25 4.4 10 7.1 
13 5.9 12 3.1 4.6 4.5 
3.9 3.8 4.1 2.0 1.0 1.9 

a) To avoid obscuring the typical pattern, these averages (and the two plots) omit one unusually 
hard problem for which the three methods respectively searched 1823, 1807 and 471 nodes and 
required 1007, 1422 and 1078 minutes of computation time. 
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Table 2 
Cuts generated in the 80 problems having 100 variables 

135 

Number of rows: 700 800 850 900 1000 1500 Total 

% of nodes requiring cuts 84 72 61 60 56 55 67 

Of those nodes requiring cuts: 
% for which cuts were found 70 90 91 95 97 95 92 
% for which pass 3 cuts were found a) 30 50 53 54 64 62 55 
% for which no resolution (pass 1) 

cuts were found 45 30 31 25 21 33 35 

Of those nodes for which no resolution cuts were found: 
% for which other cuts were found 33 68 70 78 88 86 62 

a) All pass 3 cuts are unit clauses. 
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Fig. 1. Comparison of computation times for the Jeroslow-Wang and branch-and-cut methods vs 
the number of nodes in the branch-and-bound tree. 
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with our FORTRAN implementation of the Jeroslow-Wang method. The varia- 
ble-fixing at.~d unit resolution subroutines of the latter, which consume nearly all 
of the computation time, are the same as those used in our algorithm. 

As predicted, the difficulty of the problems peaks as they make the transition 
from satisfiability to unsatisfiability. We also see in the results for 100 variables 
that the cutting planes are quite effective when the branch-and-bound tree is 
large. The trees never became large in the problems with 50 variables, and in 
these problems the cutting planes are not helpful. 

Table 2 displays the performance of the separation algorithm on problems with 
100 variables. Of all nodes generated in branch-and-cut trees, 67% required cuts 
(i.e., required that Step 3 of the Branch-and-Cut Algorithm be executed). At the 
other nodes, the LP relaxation (in Step 2) had either an integer solution or a 
positive objective function value. 

Figure 1 plots computation times for the Jeroslow-Wang and branch-and-cut 
methods against the number of nodes in the branch-and-bound tree (without 
cuts). The problems represented are those with 100 variables and 800, 850 or 900 
rows. The trend of points shows clearly that the relative advantage of branch- 
and-cut increases with the size of the tree. 

Figure 2 plots the computation times for branch-and-cut against those for 
Jeroslow-Wang. The problems represented are all those with 100 variables. 
Branch-and-cut is usually superior when the computation times are large. 

The stepwise method was quite effective for solving LP relaxations. For 
problems with 100 variables and 700 rows, it ran 4.3 times faster than the dual 
simplex method (applied to the full problem) and 3.9 times faster than the primal 
simplex method on the 10 initial LP relaxations. For problems with 100 variables 
and 1000 rows, it ran 6.3 times faster than dual simplex and 4.0 times faster than 
primal simplex. 

9. Conclusions 

Since problems that require more branch-and-bound nodes tend to be harder 
for all three methods tested here, it is meaningful for our purposes to measure the 
difficulty of a problem by the size of its branch-and-bound tree. Given this, the 
branch-and-cut method is substantially better for relatively hard inference and 
satisfiability problems, and the Jeroslow-Wang method substantially better for 
easier problems. The pure branch-and-bound method is nearly always dominated 
by one of the other two. 

Our extension from resolution cuts to a larger class of cuts is clearly worthwhile 
for the type of problems solved here, for at least two reasons (table 2). First, it 
usually permits us to find separating cuts when there are no separating resolution 
cuts. Second, it leads to the generation of very effective unit-clause cuts in most 
instances. 
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The branch-and-cut method acquires a certain amount  of direction-finding 
"intelligence" by solving the LP relaxation and identifying separating cuts, 
activities that consume substantial overhead. The Jeros low-Wang method,  on the 
other hand, is directed only by a heuristic that fixes variables in an order more 
likely to simplify the problem quickly. The branch-and-cut  overhead becomes 
worthwhile when a satisfiability problem is "a lmost"  unsatisfiable (not too many  
solutions) or "almost"  satisfiable (many variables must be fixed before the 
probability of falsifying a clause is high). In the implementat ion tested here, 
branch-and-cut becomes superior when the size of the branch-and-bound tree 
(without cuts) exceeds 150 nodes or so. 

It is likely that this breakeven point can be decreased. Whereas the Jeroslow- 
Wang method can probably not  be much improved algorithmically (aside from 
the use of parallel algorithms), the branch-and-cut  method is bott lenecked by the 
necessity of solving LP relaxations. The solution of the LP can certainly be 
accelerated, if only by using one of the faster LP routines now available, in 
conjunction with our stepwise method. Another  alternative would be to replace 
the stepwise approach with a more sophisticated technique based on a similar 
idea. One option would be the pivot and probe algorithm of Sethi and Thompson 
[17], which reduces dual degeneracy by avoiding redundant  constraints. 
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