
Annals of Mathematics and Artificial Intelligence, 1 (1990) 123-139 123

BRANCH-AND-CUT SOLUTION OF INFERENCE P R O B L E M S
IN P R O P O S I T I O N A L L O G I C

J.N. H O O K E R *

Graduate School of Industrial Administration, Carnegie Mellon Unioersity, Pittsburgh, PA 15213, USA

C. F E D J K I *

Ecole El Ghazali, Rue Suidani Boudjemaa, Constatine 25000, Algeria

Abstract

We describe and test computationally a branch-and-cut algorithm for solving inference
problems in propositional logic. The problem is written as an integer program whose
variables correspond to atomic propositions. We generate cuts for the integer program using a
separation algorithm based on the resolution method for theorem proving. We find that the
algorithm substantially reduces the size of the search tree when it is large. It is faster than
Jeroslow and Wang's method on hard problems and slower on easy problems.

Keywords: Propositional logic, cutting planes, integer programming.

1. Introduction

The inference problem in proposit ional logic is notoriously hard. It is equiv-
alent to the satisfiability problem, which was the original NP-comple te problem
[2]. It has traditionally been solved by nonnumeric methods, such as the various
resolution procedures [7,13]. But recent evidence indicates that mathematical
programming methods provide one of the more promising approaches for solving
hard inference problems. These methods are based on the fact that an inference
or satisfiability problem can be written as integer program that can in turn be
solved with methods that exploit its structure. Our purpose here is to test the
effectiveness of a particular method for solving the integer program, namely a
branch-and-cut method that uses a new separation algorithm based on a connec-
tion between resolution and cutting plane theory.

The two best-known methods for solving integer programs, b ranch-and-bound
and cutting plane methods, have been applied to the integer program underlying
an inference problem. The branch-and-bound technique was used by Blair,
Jeroslow and Lowe [1], who pioneered the mathematical programming approach

* Supported in part by the US Air Force Office of Scientific Research, grant AFOSR-87-0292.

�9 J.C. Baltzer A.G. Scientific Publishing Company

124 J.N. Hooker, C. Fedjki / Branch-and-cut solution of inference problems

to inference in propositional logic. They showed that a straightforward branch-
and-bound algorithm can solve a large class of random problems by enumerating
only a few nodes in the search tree. Their motivating idea is that by solving the
linear programming (LP) relaxation of the problem at each node of the branch-
and-bound tree, they may happen upon an integer solution early in the process
and thereby solve the problem quickly. Moreover, the objective function in the
integer program directs the search for a solution in a way that is not available in
such symbolic methods as the Davis-Putnam procedure with "splitting" [3,13],
which is the nonnumeric analogue of branch-and-bound for satisfiability prob-
lems.

The cutting plane approach has been applied by one of us (Hooker), who
exploited the fact that a resolvent is a particular type of " rank 1" cutting plane
[8,10]. This means that resolution can be viewed as a technique that generates
cutting planes for solving the underlying integer program. Since resolution tends
to generate a very large number of formulas, nonnumeric resolution methods
must often use heuristics to select which resolvents to generate. The integer
programming context, however, provides a natural guide for generating only a
few useful resolvents (namely, those that are "separating" cuts, which we define
below). Computational tests of a method based on this principle showed that
resolution cuts, with occasional recourse to branch-and-bound, can check whether
a conclusion follows from a set of 40-100 randomly generated premises more
than 1000 times more rapidly than resolution when the conclusion does not
follow, and about twice as rapidly otherwise. (In the latter case only two or three
premises are generally needed to obtain the conclusion, so that resolution does
not lead to an exponential explosion.) In some instances, however, no resolution
cut was separating, and this happens quite often in the more difficult problems
we generated for the present study. It is therefore useful to have stronger cuts.

Both branch-and-bound and cutting plane approaches require the costly solu-
tion of highly degenerate LP relaxations. Jeroslow and Wang addressed this
problem by replacing a relatively sluggish LP routine with a heuristic for
generating integer solutions ([12], also presented in [9]). The resulting algorithm
was an order of magnitude faster than LP-based branch-and-bound. This raises
doubt as to whether an LP-based algorithm can ever compete effectively with
techniques in which a nonnumeric algorithm replaces the LP. Our purpose is to
try to determine whether this doubt is warranted.

In this paper we do two things: (1) we combine the branch-and-bound and
cutting plane approaches to obtain a branch-and-cut algorithm, and (2) we
enlarge the class of cutting planes so as to increase the probability that a
separating cut can be found with a reasonable amount of computation. We test
the resulting algorithm computationally and compare it with a pure branch-and-
bound approach as well as the Jeroslow-Wang method. The problems are
randomly generated in such a way that many are quite hard, much harder than
those studied in [10].

J.N. Hooker, C. Fedjki / Branch-and-cut solution of inference problems 125

We find that the branch-and-cut method requires substantially less time on
random problems than branch-and-bound when the latter must enumerate a
relatively large number of nodes, which indicates that our cutting planes are
useful in the harder problems where they are needed most. We also find that the
branch-and-cut method is superior to the Jeroslow-Wang method on hard
problems (those requiring a large number of branch-and-bound nodes), whereas
the Jeroslow-Wang method is better on relatively easy problems. This suggests
that when the problem is hard, the substantial overhead of solving an LP
relaxation is normally more than offset by the direction-finding capability pro-
vided by an objective function and separating cuts. We do not compare branch-
and-cut with resolution-based methods, since our experience in [10] indicates that
the latter would run far too slowly to solve problems of the size solved here.

Our method for generating cuts is suggested by a resolution-based separation
algorithm developed by one of us (Hooker, [11]). This earlier algorithm generates
a clause that is a rank one separating cut if such a cut exists, but it can be
impractical to use. Here we modify the algorithm to make it more practical and
prove that it nonetheless generates any separating cut that the original algorithm
does, plus perhaps some additional separating cuts.

2. Logical fundamentals

The formulas of propositional logic consist of atomic propositions or variables xj
joined by such connectives as and, or, not, and implies. A literal is an atomic
proposition x I or its negation --,xj. A clause is a disjunction of literals, such as

xl v --,x2 v x3. (1)

One loses no generality by dealing only with clauses, since any formula is
equivalent to a conjunction of clauses [7]. A unit clause contains exactly one
literal, and the empty clause contains no titerals and is necessarily false.

A truth assignment is an assignment of true or false to every variable. A set S
of clauses is satisfiable if some truth assignment makes every clause in S true. S
implies a clause C if every truth assignment that makes all the clauses in S true
makes C true. It is not hard to see that clause C implies clause D if and only if C
absorbs D; that is, every literal of C occurs in D.

If exactly one variable xj occurs negated in one clause and unnegated in
another, the two clauses have as their resolvent on xj the clause containing all
literals occurring in either parent, except xj and --,xj.
the resolvent of (1) and (2).

---3X 1 V --3X 2 V ---nX4,

- -nX 2 V X 3 V ---~X 4 .

The resolvent is implied by its parents jointly but by neither individually.

For instance, (3) below is

(2)
(3)

126 J.N. Hooker, C. Fedjki / Branch-and-cut solution of inference problems

A resolution proof of a clause C from a set of premises is a finite sequence of
clauses beginning with the premises and ending with C, such that every clause is
the resolvent of two earlier clauses in the sequence. Let us say that a clause in a
resolution proof is a unit support clause if it contains exactly one variable that
does not appear in the conclusion C. A unit support proof of C, as defined in [11],
is a resolution proof in which at least one parent of every resolvent is a unit
support clause.

3. Integer programming fundamentals

Any clause can be written as a linear inequality in binary variables. For
instance, (1) can be written,

x 1 + (1 - x2) + x 3 >/1 or x 1 - - X 2 Jr" X 3 ~ 0 ,

where each xj ~ (0, 1}. We interpret xj = 1 to mean xj is true, and xj = 0 to
mean xj is false. Let a set S of m clauses in n variables be written as an m • n
system Ax >1 a of linear inequalities, where each a, is equal to 1 minus the
number of - l ' s in row i of A. Clearly, S is satisfiable if and only if the
minimum value of the artificial variable x 0 is one in the following integer
program,

minimize x 0

subject to xoe+Ax>~a, all xj ~ {0,1}, (4)

where e is a column of m ones. We can also determine whether a set S ' of
clauses implies a clause C by solving a problem hat ing the form of (4). For each
literal xj (or --,xj) of C, augment the linear system representing S ' with that
literal's denial, namely the inequality - x j >i 0 (or xj >/1). If Ax >~ a is the
augmented system, then S ' implies C if and only if the min imum value of x 0 in
(4) is one. Since we can thus solve inference problems by solving satisfiability
problems, we will concern ourselves only with the latter.

Consider the following linear programming relaxation of (4):

minimize x0

subject to Xo e + A z > l l , 0~<xj~<l for a l l j . (5)

Let (x~', x *) be a (possibly nonintegral) optimal solution of (5), if one exists.
Three cases are relevant to solving the satisfiability problem that (4) represents:
(a) x~' > 0, which means already that S is unsatisfiable, since any solution (x0,
x) of (4) must have x 0 >/x~ and therefore x0 = 1 (since x 0 is integral); (b) x~ = 0
and x* is integral, in which case S is satisfiable; (c) x~" = 0 and x is not integral,
in which case S may or may not be satisfiable.

A cut for (5) is an inequality satisfied by all feasible solutions of (4). A
separating cut for a solution (x~', x *) of (5) is a cut that (xd", x *) violates. A

J.N. Hooker, C. Fedjki / Branch-and-cut solution of inference problems 127

cutting plane approach to solving the satisfiability problem would be to add one
or more separating cuts to (5), solve the resulting problem, add more cuts if
necessary, a n d so on until case (a) or (b) is obtained.

In a branch-and-bound approach to solving (4), the optimal solution x * of the
LP relaxation (5) is regarded as the root node of a search tree. One then branches
on a variable xj with a fractional value x7 by first re-solving (5) with the
additional constraint xj = 0 and then re-solving (5) with the additional constraint
xj. = 1. This creates two successor nodes of the root node, at each of which the
procedure is repeated in a recursive fashion. A node is fathomed (i.e., all
successor nodes pruned) when case (b) occurs, at which point the search back-
tracks. The algorithm terminates with satisfiability when case (c) is obtained at a
node, or with unsatisfiability when the search is completed without obtaining case
(b).

A branch-and-cut algorithm simply generates cuts at every node of the search
tree.

A cut belongs to the elementary closure of a linear system Ax >1 a if it is the
result of taking a positive linear combination of inequalities in the system and
rounding up any nonintegers that result. A cut is a rank I cut if it is a positive
linear combination of inequalities in the elementary closure.

The resolvent of two clauses is easily seen to be a cut, which we call a
resolution cut. In fact, it is a rank 1 cut with respect to the inequalities that the
clauses represent (and bounds of the form 0 ~< xj ~< 1). For instance, the resolvent
(3) of (1) and (2) can be obtained by taking a weighted sum in which inequalities
representing (1) and (2) and the bounds x 3 >~ 0 and - x 4 >t - 1 all get weight 1 /2 .
The result is - x 2 + x 3 - x 4 >~ - 3 /2 , in which the right hand side can be rounded
up to obtain an inequality representing the resolvent (3). Not all clauses that are
rank 1 cuts, however, need be resolvents of the original premises.

4. The problem of finding separating cuts

Since resolvents are cuts, one way to obtain separating cuts is to generate
resolvents of the clauses in (4) and retain those that are separating cuts. But it
was found in [10] that in many cases, none of these resolvents are separating. In
this event one might use resolvents as parents to generate still more resolvents,
and so on repeatedly, until finding a separating cut. But since the number of
resolvents tends to grow explosively, this is not a practical approach.

In [11] one of us (Hooker) proposed reducing the number of resolvents by
generating only clauses that are rank 1 cuts. It was proved in [11] that we can
obtain all such cuts by using unit support proofs alone, which do not produce
nearly so many resolvents as general resolution proofs. In fact, [11] shows that the
following algorithm generates a clause that is a rank 1 separating cut if one exists.
Given a solution (x~', x *) of (5), let the truth value of literal x i be x 7 and of --,xj
be 1 - x * .

128 J.N. Hooker, C. Fedjki / Branch-and-cut solution of inference problems

4.1. SEPARATION ALGORITHM 1

Step O. Let S be the set of clauses represented by Ax >t a in (4), and solve the
LP relaxation (5). Set k = 0.

Step 1. Set k = k + 1. If k > n, stop.
Step 2. Set T- - S, and pick a set K of k variables (a set not already picked)

with fractional values in the solution of (5). If no such sets remain, go to Step 1.
Step 3 (truth value condition). Pick a clause D in T with exactly one variable xj

in K, such that the sum of the truth values of the other literals in D is strictly less
than 1. If there is no such D, go to Step 2.

Step 4 (unit support resolution). Derive all possible resolvents on xj of D with
other clauses in T, and add the resolvents to T. Go to Step 3, unless one of these
resolvents is separating (and no more separating cuts are desired), in which case
the algorithm stops.

Yet even this algorithm can be impractical, since a prohibitively large number
of sets K may need to be enumerated (even if we terminate the algorithm before
k becomes large). We can obtain a more practical algorithm by dropping the set
K and accumulating resolvents rather than resetting T to S in Step 2. We retain
the truth value conditions in Step 3, however, and they continue to limit the
production of resolvents. We will show that the resulting algorithm, below,
generates any separating cut that Algorithm 1 does and thus in particular
generates a rank I separating cut if such a clause exists.

4.2. SEPARATION ALGORITHM 2

Step O. Let S be the set of clauses Ax >~ a in (4), and solve the LP relaxation
(5). Set k = 0.

Step 1. Set k = k + 1. If k > n, stop.
Step 2 (truth value condition). Pick from S a clause D containing a variable

with a fractional value in the solution of (5), such that the sum of the truth
variables of the other variables in D is strictly less than 1. If there is no such D,
go to Step 1.

Step 3 (resolution). Derive all possible resolvents of D and other clauses in S
that take place on a variable xj with a fractional value in the solution of (5). Add
the resolvents to S. Go to Step 2, unless one of these resolvents is separating (and
no more separating cuts are desired), in which case the algorithm stops.

To illustrate the algorithm, suppose that (6)-(10) below are among the con-
straints in (4). The solution x * of (5) is shown in the first row.

J.N. Hooker, C. Fedjki /Branch-and-cut solution of inference problems 129

x* = 0 1 /5

X 0 -1- X 1

x 0 q- X 1

X 0 - - X 1

X o

X o

+

2 /5 1 /5 4 / 5 2 / 5 2 / 5

-{- X 3 "4- X 4 "4- X 5 >~1, (6)

- x 3 + x 5 >I 0 , (7)

X 2 "Jr- X 5 + X 6 ~ 0 , (8)

x2 + x4 + x6>10, (9)

- - X 4 "~ X 6 >/ 0. (10)

Since the truth values of literals other than - x 3 in (7) sum to 3 /5 , which is less
than 1, we can resolve (7) and (6) to obtain (11) below. Similarly, we resolved (6)
and (10) to obtain (12), and (9) and (10) to obtain (13).

X 0 + X 1 "~- X4 + X5 >I 1, (11)

X 0+ X 1 + X 3 + X 5 + X 6>/1, (12)

X 0 -- X 2 + X 6 >t 0. (13)

We can now resolve (13) and (8) to obtain (14) below, and (11) and (10) to obtain
(15).

x 0 - x 1 + x 5 + x 6>10, (14)

X 0 "q- X 1 -I- X 5 + X 6 >i 1. (15)

These two resolve to produce,

x 0 + x5 + x6>/1, (16)

which is a separating cut. It is a rank 1 cut, as can be verified by taking a linear
combination in which (6)-(10) and the bound x 5 >i 0 respectively have weights
1 /7 , 1/7, 2 /7 , 2 /7 , 3 /7 , 3/7. By comparison, Algori thm 1 must enumerate 15
test K and generate 33 resolvents before discovering a separating cut, namely
(16), when K = { xl, X2, X3, X 4 } .

We now show that Algorithm 2 is at least as powerful as Algori thm 1.

THEOREM 1
Algorithm 2 finds all separating cuts found by Algori thm 1 and therefore

generates a clause that is a rank 1 cut if one exists.

Proof
Let Algorithm 1 or 2 generate a clause C if C ~ S or C is a resolvent obtained

in the algorithm. It suffices to show that Algori thm 2 generates all the clauses
that Algorithm 1 does. Let a resolvent obtained in Algori thm 1 have depth d + 1
if the maximum depth of its parents is d, where all clauses in S are assigned
depth zero. The proof is by induction on depth.

Obviously, Algorithm 1 generates all clauses of depth zero that Algori thm 2
does. Now, supposing that Algorithm 2 generates all clauses of depth d that
Algorithm 1 does, we will prove the same for depth d + 1.

130 J.N. Hooker, C. Fedjki /Branch-and-cut solution of inference problems

Let R be any resolvent of depth d + 1 that Algorithm 1 generates. Let D* be
the clause D that Algorithm 1 uses in Step 4 to obtain R, and E * a clause with
which the algorithm resolves D * to obtain R. Then D* and E* have depth d or
less. Also D* contains exactly one variable xj in K, and the sum of the truth
values of the variables in D* other than xj is strictly less than 1. By the
induction hypothesis Algorithm 2 generates D* and E* , which at some point
have been added to S in Step 3. Thus in some execution of Step 2, Algorithm 2
picks D* as the clause D and resolves it on x I with E* , thus obtaining R. []

Algorithm 2 can also generate cuts that have rank greater than 1. Given the
clauses,

X 0 "4- X 1 "Jr- X 2 "4- X 3 ~ 1,

X 0"4- X 1 -- X 2 " ~ X 3 ~ 0 ,

X 0 - X 1"~ X 2"[- X 3 ~ 0 ,

X 0 - X x - X 2 + X 3 ~ - - 1 ,

and supposing (x ~ , . . . , x~') = (0, 1 /2 , 1 /2 , 0), Algorithm 2 yields the separating
cut x 0 + x 3 >/1, which is not a rank 1 cut and is not produced by Algorithm 1.

5. A branch-and-cut algorithm

We now present a branch-and-cut algorithm that exploits the special properties
of the satisfiability problem. The algorithm makes essential use of unit resolution,
which repeatedly looks for a unit clause, and removes all clauses that contain the
literal in the unit clause, as well as all occurrences of the literal's negation in the
remaining clauses. The procedure terminates when no unit clauses remain or the
empty clause is generated. In the latter case, we know the original set of clauses
was unsatisfiable.

The branch-and-cut algorithm is as follows. At any node of the branch-and-
bound tree, let (4) be the original satisfiability problem, plus all cuts generated at
predecessor nodes. We first apply unit resolution to (4). If the empty clause
results, we know (4) is inconsistent, and we fathom the current node and
backtrack. Otherwise we compute the solution (x~', x *) of the LP relaxation (5)
of (4). If x~* > 0 then (4) is inconsistent, and we fathom the node and backtrack.
If x~* = 0 and x * is integral, the problem is satisfiable, and we can stop.

If we can neither stop nor fathom the current node, we use our separation
algorithm to generate some cuts, add the cuts to (4), and re-solve the relaxation
(5) for (x~, x*) . Again we backtrack if x~ > 0 and stop if we find a satisfying
solution. Otherwise we use a heuristic (described below) to pick a fractional
variable x/* on which to branch, and to pick which branch to explore first. If we

J.N. Hooker, C. Fedjki / Branch-and-cut solution of inference problems 131

have already branched at the current node, however, we simply take the unex-
plored branch, unless both branches have been explored, in which case we fathom
the node and backtrack. If we branch we create a new node, to which we apply
the same procedure. If we fathom every node without finding a satisfying
solution, the problem is unsatisfiable, and otherwise it is satisfiable.

Note that the problem (4) tends to shrink as we move deeper into the tree,
since more variables are fixed at the deeper nodes, which allows the unit
resolution step to eliminate more clauses and literals. This contrasts favorably
with most branch-and-cut procedures, in which the problem grows with depth.
But we must either store the problem associated with each node at which we
branch, or regenerate it when we backtrack to the node. We choose the latter
option, since it requires only that we add to the original problem the fixed
variables and the cuts generated at the node's predecessors, and apply unit
resolution.

We use the heuristic of Jeroslow and Wang to choose the variable on which to
branch. If S is the set of clauses represented by the constraints of (4), define a
weight function w(S)=]EkN(k)2 -k, where k ranges over positive integers and
N(k) is the number of clauses in S containing k literals. If S(j, v) is the set of
clauses of S in which xj occurs (for v = 1) or in which --,xj occurs (for v = 0), let
j * and v* be arguments that maximize w(S(j, v)) over all j such that xj* is
fractional. We then branch on xj. by first assigning it the value v*.

The LP relaxation tends to be highly degenerate and therefore difficult to
solve. We found that we can accelerate the solution substantially with a simple
stepwise process. We first solve (5) using only the constraints with no negative
coefficients. We add the violated constraints and re-solve, and continue in this
fashion until all constraints are satisfied. Each time we add violated constraints
or new cuts we start with the previous optimal basis, augmented with surplus
variables as necessary.

Finally, our separation algorithm (Algorithm 2) allows several practical im-
provements. Let us refer to the value of k as the number of passes that have been
executed. To keep execution time reasonable we use at m o s t kma x (< n) passes.
We also observe that prior to the last pass there is no point in saving nonseparat-
ing resolvents in Step 3 that contain no variables with fractional values, since they
cannot be used as parents of further resolvents. Furthermore, if the truth value of
a clause is the sum of the truth values of its literals, then the truth value of a
parent cannot exceed that of its resolvent by more than 1. Since we want the
resolvents obtained in the last pass to be separating (i.e., to have truth value less
than 1), the resolution parents we consider in pass k should have truth value less
than kma x -- k + 2.

The more effective cuts are generally those that contain fewer literals, particu-
larly those that are unit clauses. We found empirically that these tend to be
generated in the later passes. But the algorithm often generates an unmanageable
number of cuts before the later passes are reached, so that it must be prematurely

132 J.N. Hooker, C. Fedjki / Branch-and-cut solution of inference problems

terminated before obtaining the best cuts. To solve this problem we permitted
only unit resolvents to be generated in the last pass. Since the length of a parent
cannot exceed that of its resolvent by more than 1, this permits us to consider in
pass k only parents of length at most km~ x - k + 2. We also place an upper
bound N on the number of cuts to be generated on each pass.

The improved separation algorithm followg~

5.1. SEPARATION ALGORITHM 2'

Step O. Let T = S', k --- 0, C = ~ .
Step 1. Set k = k + 1. If k > kmax , stop.
Step 2 (truth value condition). Pick from T a clause D of length at most

k m a x - k + 2 that contains a variable with a fractional variable xT, such that the
sum of the truth values of the other variables in D is strictly less than 1. If there
is no such D, go to Step 1.

Step 3 (resolution). Derive all possible resolvents of D with other clauses E in
T that take place on a variable with a fractional value xT, where E has length at
most km~, - k + 2 and truth value strictly less than k m a x - k + 2. Add to T the
resolvents containing at least one variable with a fractional value, until the
cardinality of T reaches N. Add to (4) the resolvents that are separating. If more
separating resolvents are desired, go to Step 2; otherwise stop.

6. Implementation

The branch-and-cut algorithm was written in Microsoft FORTRAN 4.1. The
LP relaxations were solved by calls to Marsten's XMP [14]. The data structure for
the set S of clauses consisted of two linked lists for each clause, one containing
the indices of the positive literals and one those of the negative literals. To
perform the resolutions in Step 3 of the separation algorithm, two additional
linked lists were used for each clause: one of positive literals with fractional truth
values, and one of negative literals with fractional truth values. This accelerates
checking whether two clauses can be resolved on a variable with a fractional
value.

7. Problem generation

Two probability models are generally used for generating random satisfiability
problems in n variables [5,6,16].

Fixed density model. Build each clause by randomly choosing k distinct
variables from (x I x,) and negating each with probability 1/2.

J.N. Hooker, C. Fedjki / Branch-and-cut solution of inference problems 133

Fixed probability model. Build each clause by letting each variable xj appear in
the clause with probability p, and negate each variable that appears with
probability 1/2. If the resulting clause is empty, generate another.

The fixed density model is highly unrealistic. It is hard to imagine an
application, in either artificial intelligence or computer engineering, in which the
number of literals per clause would be constant. It is reasonable, however, that
the expected number of literals per clause would be more or less independent of
the number of clauses or variables. The length of propositions in large knowledge
bases, for instance, would probably be about the same as in small ones. This
suggests that we should use the fixed probability model and set the expected
number np of literals per clause to a constant, perhaps between 3 and 10. We
choose np = 5.

One difficulty with the fixed probability model, however, is that a set of m
clauses will generally contain several unit clauses. Let bn(k) be the binomial
probability bn(k)=(~)pk(1 _p) , - k . The expected number of unit clauses is
mb,(1)/(1 - b,(0)), or 3% of the clause for a problem typical of our test problems
(n = 100, np = 5). The presence of unit clauses permits one to simplify the
problem, often substantially, by preprocessing it with unit resolution, so that the
residual problems actually solved with a branch-and-cut method have widely
varying sizes. To remove this source of variability, we exclude unit clauses and
keep generating random clauses until m nonunit clauses are obtained.

Another difficulty with the fixed probability model is that satisfiable problems
tend to have a very large number of solutions and therefore to be easy to solve,
since a solution can often be found with relatively little backtracking. The
probability that a given binary vector x satisfies a random clause containing k
literals is 1 - (1/2) k. Since the probability that a nonunit clause C contains k
literals (k >/2) is the truncated binomial probability bn(k) = b,(k)_/(1 - bn(0) -
b,(1)), the probability that x satisfies C is P, = E~=2(1- (1/2)k)b,(k). So, the
probability that x satisfies m clauses is P~, and the expected number of
solutions is 2"P m. For n = 100 and np = 5, a problem with 740 clauses has an
expected number of more than 101~ solutions, and the number is much larger for
smaller problems. Conversely, a problem with 1200 clauses has an expected
number of 0.05 solutions and is therefore almost certainly unsatisfiable, and the
number drops precipitously for larger problems. We will find in fact that nearly
all problems with 900 clauses are unsatisfiable. This suggests that satisfiable
problems are likely to be easy except when the number of clauses begins to
approach 900, at which point satisfiable problems become scarce.

Unsatisfiable problems also tend to be easy on the fixed probability model,
because when there are enough clauses to make unsatisfiability probable, assign-
ing values to only a few variables is likely to falsify all the literals in some clause.
When this happens it may be unnecessary to probe deeply into the search tree to
verify unsatisfiability. The probability Pn(i) that a partial vector (Xl , x,)
falsifies all the literals in a nonunit clause C is the probability (1 _ p) , - i that all

134 J.N. Hooker, C. Fedjki /Branch-and-cut solution of inference problems

of C ' s literals have received a t ru th value t imes the p robab i l i t y they are all false.
Thus Pn(i) (1 n- i i = = - - p) Y , k = 2 (1 - (1 / 2) k) b , (k) . W h e n n = 100 an d np 5 the
p robab i l i t y that fixing, say, five variables will falsify one of 700 clauses is abou t
0.73, bu t the p robab i l i ty it will falsify one of 2000 clauses is 0.98. W e should
there fore expect unsat isf iable p rob lems to b e c o m e steadi ly easier as the n u m b e r
of clauses increases. These cons idera t ions suggest tha t the ha rdes t p rob lems
should occur as m increases to the po in t where the p r e p o n d e r a n c e o f p rob lems
shifts f r om satisfiable to unsatisf iable. T h e shift occurs fair ly rap id ly due to the
prec ip i tous d rop in the expec ted n u m b e r of solutions. W e the re fo re fix n at 100
and let m range f rom somewhat be low 900 to somewha t above 900. W e also do a
similar exper iment for n = 50.

8. Computational results

The F O R T R A N rout ines were run on an I B M P S / 2 M o d e l 80 persona l
c o m p u t e r using the O S / 2 Vers ion 1.1 opera t ing system. W e p e r m i t t e d a maxi-
m u m of three passes (km~ , -- 3) in the separa t ion a lgor i thm and a m a x i m u m of
200 cuts to be genera ted at each pass (N = 200).

Table 1 summarizes the results for r a n d o m prob lems having 50 and 100
variables. The b ranch -and-cu t m e t h o d is c o m p a r e d wi th a pu re b r a n c h - a n d - b o u n d
m e t h o d (the b ranch-and-cu t a lgor i thm with Step 3 omit ted) . I t is also c o m p a r e d

Table 1
Computational results. Computer times are minutes on an IBM PS-2 Model 80 personal computer

No. No. No.
rows prob- satis-

lems fiable

Branch & bound Jeroslow & Wang Branch & cut

Avg. no. Avg. Avg. no. Avg. Avg. no. Avg.
nodes time nodes time nodes time

lOOvariables
700 10 10
800 20 11
850 ~ 20 4
900 10 1

1000 10 0
1500 10 0

50 variables
300 10 10
400 10 8
450 10 4
500 10 0
750 10 0

107 91 61 13 29 43
138 169 219 138 34 77
144 206 160 117 28 69
136 213 116 93 34 93
30 64 33 32 7.0 28

9.4 39 9.4 16 3.8 22

12 1.6 25 0.3 11 2.3
14 3.4 22 1.6 10 4.5
22 8.4 25 4.4 10 7.1
13 5.9 12 3.1 4.6 4.5
3.9 3.8 4.1 2.0 1.0 1.9

a) To avoid obscuring the typical pattern, these averages (and the two plots) omit one unusually
hard problem for which the three methods respectively searched 1823, 1807 and 471 nodes and
required 1007, 1422 and 1078 minutes of computation time.

J.N. Hooker, C. Fedjki /Branch-and-cut solution of inferenceproblems

Table 2
Cuts generated in the 80 problems having 100 variables

135

Number of rows: 700 800 850 900 1000 1500 Total

% of nodes requiring cuts 84 72 61 60 56 55 67

Of those nodes requiring cuts:
% for which cuts were found 70 90 91 95 97 95 92
% for which pass 3 cuts were found a) 30 50 53 54 64 62 55
% for which no resolution (pass 1)

cuts were found 45 30 31 25 21 33 35

Of those nodes for which no resolution cuts were found:
% for which other cuts were found 33 68 70 78 88 86 62

a) All pass 3 cuts are unit clauses.

7o0

"17 ~ r

O0 -

~oo L

o
qoo

3oo
Q

0
~.oo �9

�9 �9 0

�9 0

� 9

~ o

e~ o~ o o ,q & o
O o , , � 9 0 0 0

I n e ~ o o

, , " , , , L

Io* 2.o0 3ao qOo ,ff'oo ~o a 7uc~

Fig. 1. Comparison of computation times for the Jeroslow-Wang and branch-and-cut methods vs
the number of nodes in the branch-and-bound tree.

136 J.N. Hooker, C. Fedjki /Branch-and-cut solution of inferenceproblems

k r 5 r ~ e ~

d=

I

�9 ,o ,~

"0
0

a=

()

0

rq

J.N. Hooker, C. Fedjki / Branch-and-cut solution of inference problems 137

with our FORTRAN implementation of the Jeroslow-Wang method. The varia-
ble-fixing at.~d unit resolution subroutines of the latter, which consume nearly all
of the computation time, are the same as those used in our algorithm.

As predicted, the difficulty of the problems peaks as they make the transition
from satisfiability to unsatisfiability. We also see in the results for 100 variables
that the cutting planes are quite effective when the branch-and-bound tree is
large. The trees never became large in the problems with 50 variables, and in
these problems the cutting planes are not helpful.

Table 2 displays the performance of the separation algorithm on problems with
100 variables. Of all nodes generated in branch-and-cut trees, 67% required cuts
(i.e., required that Step 3 of the Branch-and-Cut Algorithm be executed). At the
other nodes, the LP relaxation (in Step 2) had either an integer solution or a
positive objective function value.

Figure 1 plots computation times for the Jeroslow-Wang and branch-and-cut
methods against the number of nodes in the branch-and-bound tree (without
cuts). The problems represented are those with 100 variables and 800, 850 or 900
rows. The trend of points shows clearly that the relative advantage of branch-
and-cut increases with the size of the tree.

Figure 2 plots the computation times for branch-and-cut against those for
Jeroslow-Wang. The problems represented are all those with 100 variables.
Branch-and-cut is usually superior when the computation times are large.

The stepwise method was quite effective for solving LP relaxations. For
problems with 100 variables and 700 rows, it ran 4.3 times faster than the dual
simplex method (applied to the full problem) and 3.9 times faster than the primal
simplex method on the 10 initial LP relaxations. For problems with 100 variables
and 1000 rows, it ran 6.3 times faster than dual simplex and 4.0 times faster than
primal simplex.

9. Conclusions

Since problems that require more branch-and-bound nodes tend to be harder
for all three methods tested here, it is meaningful for our purposes to measure the
difficulty of a problem by the size of its branch-and-bound tree. Given this, the
branch-and-cut method is substantially better for relatively hard inference and
satisfiability problems, and the Jeroslow-Wang method substantially better for
easier problems. The pure branch-and-bound method is nearly always dominated
by one of the other two.

Our extension from resolution cuts to a larger class of cuts is clearly worthwhile
for the type of problems solved here, for at least two reasons (table 2). First, it
usually permits us to find separating cuts when there are no separating resolution
cuts. Second, it leads to the generation of very effective unit-clause cuts in most
instances.

138 J.N. Hooker, C. Fedjki / Branch-and-cut solution of inference problems

The branch-and-cut method acquires a certain amount of direction-finding
"intelligence" by solving the LP relaxation and identifying separating cuts,
activities that consume substantial overhead. The Jeros low-Wang method, on the
other hand, is directed only by a heuristic that fixes variables in an order more
likely to simplify the problem quickly. The branch-and-cut overhead becomes
worthwhile when a satisfiability problem is "a lmost" unsatisfiable (not too many
solutions) or "almost" satisfiable (many variables must be fixed before the
probability of falsifying a clause is high). In the implementat ion tested here,
branch-and-cut becomes superior when the size of the branch-and-bound tree
(without cuts) exceeds 150 nodes or so.

It is likely that this breakeven point can be decreased. Whereas the Jeroslow-
Wang method can probably not be much improved algorithmically (aside from
the use of parallel algorithms), the branch-and-cut method is bott lenecked by the
necessity of solving LP relaxations. The solution of the LP can certainly be
accelerated, if only by using one of the faster LP routines now available, in
conjunction with our stepwise method. Another alternative would be to replace
the stepwise approach with a more sophisticated technique based on a similar
idea. One option would be the pivot and probe algorithm of Sethi and Thompson
[17], which reduces dual degeneracy by avoiding redundant constraints.

References

[1] C. Blair, R.G. Jeroslow and J.K. Lowe, some results and experiments in programming
techniques for propositional logic, Comp. Oper. Res. 13 (1988) 633-645.

[2] S.A. Cook, The complexity of theorem-proving procedures, Proc. 3rd A CM Symp. on the
Theory of Computing (1971) pp. 151-158.

[3] M. Davis and H. Putnam, A comPuting procedure for quantification theory, J. ACM 7 (1960)
201-215.

[4] W.F. Dowling and J.H. Gallier, Linear time algorithms for testing the satisfiability of Horn
formulas, J. Logic Programming 3 (1984) 267-284.

[5] J. Franco, On the probabilistic performance of algorithms for the satisfiability problem,
Information Processing Lett. 23 (1986) 103-106.

[6] J. Franco and M. Paul, Probabilistic analysis of the Davis-Putnam procedure for solving the
satisfiability problem, Discrete Appl. Math. 5 (1983) 77-87.

[7] M.R. Genesereth and N.J. Nilsson, Logical Foundations of Artificial Intelligence (Morgan
Kaufmann, Los Altos, CA, 1987).

[8] J.N. Hooker, Generalized resolution and cutting planes, Ann. Oper. Res. 12 (1988) 217-239.
[9] J.N. Hooker, A quantitative approach to logical inference, Decision Support Systems 4 (1988)

45-69.
[10] J.N. Hooker, Resolution vs cutting plane solution of inference problems: Some computational

experience, Oper. Res. Lett. 7 (1988) 1-7.
[11] J.N. Hooker, Input proofs and rank one cutting planes, ORSA J. Computing 1 (1989) 137-145.
[12] R.G. Jeroslow and J. Wang, Solving propositional satisfiability problems, Ann. Math. AI 1

(1990) 167-187.
[13] D.W. Loveland, Automated Theorem Proving: A Logical Basis (North-Holland, 1978).

J.N. Hooker, C. Fedjki / Branch-and-cut solution of inference problems 139

[14] E.R. Marsten, The design of the XMP linear programming library, ACM Trans. Math.
Software 7 (1981) 481-497.

[15] M. Minoux, LTUR: A simplified linear-time unit resolution algorithm for Horn formulae and
computer implementation, Information Processing Lett. 29 (1988) 1-12.

[16] P.W. Purdom and C.A. Brown, Polynomial-average-time satisfiability problems, Information
Sci. 41 (1987) 23-42.

[17] A.P. Sethi and G.L. Thompson, The pivot and probe algorithm for solving a linear program,
Math. Programming 29 (1984) 219-233.

