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Abstract 

We introduce a new algorithm for computing Euclidean shortest paths in the plane in the 
presence of polygonal obstacles. In particular, for a given start point s, we build a planar 
subdivision (a shortest path map) that supports efficient queries for shortest paths from s to 
any destination point t. The worst-case time complexity of our algorithm is O(kn log2n), 
where n is the number of vertices describing the polygonal obstacles, and k is a parameter we 
call the "illumination depth" of the obstacle space. Our algorithm uses O(n) space, avoiding 
the possibly quadratic space complexity of methods that rely on visibility graphs. The 
quantity k is frequently significantly smaller than n, especially in some of the cases in which 
the visibility graph has quadratic size. In particular, k is bounded above by the number of 
different obstacles that touch any shortest path from s. 

1. Introduction 

Shortest path problems have been of interest in computational  geometry for 
several years, due in a large part to their various applications in motion planning, 
visibility problems, terrain navigation, and wire routing. See [1,16,19,27] for 
several pointers to some relevant literature. A fundamental  problem is that of 
finding shortest paths between two points in a space that is cluttered with 
"obstacles". Euclidean shortest paths among a collection of polygonal obstacles 
in the plane can be found in worst-case quadratic time (e.g., [26]), while the 
problem of finding shortest paths among polyhedral obstacles in three dimen- 
sions is known to be NP-hard [4]. 

In this paper, we present a new algorithm for computing Euclidean shortest 
paths in the plane among a set of disjoint polygonal obstacles bounded by n 
segments. Our algorithm actually computes the shortest pa th  map (SPM) corre- 
sponding to a given start point s. An SPM is a planar subdivision which allows 
,one to find the length of a shortest path to a query point in time O(log n) by 
point location, and to produce a shortest path in time O(log n + K) ,  where K is 
the number of bends in the shortest path. See section 4 for more details. 
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The time complexity of our algorithm is O(kn log n + kV(n)), where k is an 
output-sensitive quantity we call the illumination depth of the obstacle space, and 
V(n) is the time to compute a geodesic Voronoi diagram of O(n) points on the 
boundary of a simple polygon of size n. Currently, the best bound for V(n) is 
O(n log2n), given by [2], yielding a running time of O(kn log2n) for our 
algorithm. The space complexity of our algorithm is O(n), which compares 
favorably with many existing algorithms requiring up to quadratic space. 

The illumination depth k is bounded above by the maximum number of 
different obstacles with which a shortest path from s comes in contact, which in 
turn is bounded above by the maximum number of bends in a shortest path from 
s. Frequently, though, k is much less than either of these estimates. In the worst 
case, k = O(n), our algorithm performs slightly worse than the known O(n 2) 
algorithms [3,9,13,22,23,26]; however, when k is small, our algorithm performs 
very well. If k is bounded, then our algorithm is nearly optimal. 

If we are interested only in finding a shortest path from s to a fixed target 
point t, then our algorithm can be stopped as soon as the SPM it constructs first 
encounters t; in this case, k is bounded above by the illumination depth of the 
point t, which may be significantly less than the illumination depth of the entire 
obstacle space. 

Our algorithm is unlike most previous shortest path algorithms in that it does 
not build a visibility graph; rather, we introduce a methodology which combines 
ideas from efficient visibility computation with ideas from shortest path map 
construction. We use a partial shortest path map, which does not  include the 
effect of all obstacles, to trim down the amount of necessary visibility computa- 
tion, and we use visibility considerations to simplify the computation of shortest 
path maps. In this way, we make a first step towards understanding the interplay 
between visibility graphs and shortest path maps. 

2. Overview of the algorithm 

We give a brief and informal summary of our algorithm. Precise definitions 
will be given later. 

First, we compute the visibility polygon from the start point s. Then we build 
the shortest path map with respect to the set of "seen" obstacles that are wholly 
or partially visible from s. This is done in time O(n log2n) by reducing the 
problem to that of computing a Voronoi diagram within an appropriately defined 
simple polygon and then appealing to the algorithm of [2]. 

Next, by applying the results of [11] for finding a face in an overlay of two 
arrangements, we compute the region of "accessibility" corresponding to the 
subset of "seen" obstacles that define our current shortest path map. We say that 
a point  p is accessible if there exists a shortest path from s to p that does not 
bend at a vertex of an "unseen" obstacle. Obstacles that are on the boundary of 
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the region of accessibility and that were previously "unseen" are now considered 
to be "seen". 

We now extend the shortest path map to include the effect of the newly "seen" 
obstacles by defining appropriate geodesic Voronoi diagram problems on simple 
polygons, and appealing again to the results of [2]. We continue iterating this 
process, computing accessibility and then extending the shortest path map, until 
all obstacles have been "seen". The number of iterations is called the illumination 
depth, k, of the obstacle space. 

3. A brief survey of existing algorithms 

Many algorithms have been developed to find shortest paths among obstacles 
in the plane. We survey in table 1 the algorithms known to us at this time, 
together with their worst-case space and time bounds. A less current but more 
detailed survey is provided in [16]. All algorithms except (7) and (11) proceed by 
building a visibility graph (or a subgraph thereof) and then searching it using 
Dijkstra's algorithm [7] or A* [21]. 

The table includes only those algorithms that apply to general sets of disjoint 
polygonal obstacles in the plane. Various special cases have faster algorithms. For 
example, the case in which all obstacles are convex was considered by [16] and 
[24]. The case of vertical line segment obstacles was solved in optimal time by 
[15], and this result was generalized to the case of obstacles with disjoint 
projections onto some given line [16]. An important special case is that of finding 
shortest paths within a simple polygon (without holes), which can be solved in 
linear time for a triangulated simple polygon [10]. 

We have restricted our attention to the case of Euclidean shortest paths. The 
problem of finding shortest paths according to the L 1 metric (or any fixed 

Table 1 
A comparison of shortest path algorithms 

Alg. Space S (n )  Time T(n)  Ref. 

(1) Evo  ?/3 [28] 
(2) Evo n 2 log n [14,25] 
(3) Eva  n 2 log m 
(4) n n 2 log m 
(5) n Kn log rn 
(6) n 2 n z [3,26] 
(7) n n m +  n log n [23] 
(8) E v e  E v e  + n log n [9] 
(9) n Eve  log n [22] 

(10) Ese Esp + n log n [13] 
(11) n kn log2n 
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orientation metric) has been solved in nearly optimal time by [6] and [17]. These 
results, and others, have also led to efficient approximation algorithms for finding 
paths whose length is within a constant factor of the true geodesic distance [5,17]. 

Our notation is as follows: the obstacle space consists of m disjoint polygonal 
obstacles bounded by a total of n segments, Evc <~ (~) is the number of edges in 
the visibility graph, and Es~, is the number of edges in the visibility graph that are 
locally tangent at both endpoints, meaning that these edges are sufficient for 
searching for shortest paths [13,16]. (An edge uo is locally tangent at v if the line 
through uo is tangent to the set B,(o) (~ obst(v) for some c > 0, where B,(o) is the 
ball of radius c about o and obst(v) is the obstacle at vertex v.) The quantities K 
and k are defined below. 

The main result we present in this paper is algorithm (11) (see table 1). A few 
words are in order about the other bounds that are listed in table 1 without 
references to the literature: 

(3) The time bound of O(n21og m) is a result of the simple observation that the 
visibility polygon with respect to a fixed point of a set of m simple 
polygonal obstacles can be computed in time O(n log m) [3]. 

(4) We can reduce the space complexity of algorithm (3) by doing the visibility 
calculations "on the fly" while running Dijkstra's algorithm. The idea is 
simply not to build the entire visibility graph and then search it, but rather 
to compute the visibility from a vertex only at the moment  when the vertex 
is about to be "expanded" by Dijkstra's algorithm. We compute the visibil- 
ity from the vertex, update the labels on the vertices found to be adjacent to 
it, and discard those edges that did not result in label improvement. The 
result of this is that we need to keep a data structure of only linear size. 

(5) This complexity bound is a result of the trivial observation that it suffices to 
terminate the search for a shortest path to a prespecified target point t once 
t has been permanently labeled. Here, K is the number of nodes expanded 
by Dijkstra's algorithm before t is reached. 

) 

(2) 
/ 

Fig. 1. Dominance graph of shortest path algorithms. 
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(11) This is the main algorithm described in this paper. Here, k is the "illumina- 
tion depth" of the obstacle space, as defined in section 8. Frequently, k will 
be bounded by a small number, in which case this algorithm performs very 
well. 

It is difficult to say which of the many techniques will be best in practice. We 
can, however, give the relationships among the worst-case running times and 
space requirements. We will say that algorithm (i) is dominated by algorithm ( j )  
if ( j )  has both space and time bounds that are as good as or better than those of 
algorithm (i). We can then construct the dominance graph, as shown in fig. 1. 
Algorithms (5), (7), (9), (10), and (11) (see table 1) are undominated, meaning that 
there are cases in which each of them is best, either in terms of space or in terms 
of time complexity. 

4. Notation and preliminaries 

The input to our algorithm will be (~ ' ,  s), where .~- is a closed multiply- 
connected polygonal domain in the plane, and s ~ is the start (or source) 
point. We refer to ~ as free space, and we let V denote the set of n vertices of 
~-. For simplicity of presentation, we will assume that ~- is bounded; our results 
extend easily to the unbounded case. Thus, . ~  consists of a simple polygon P,  
minus a set of m disjoint polygonal holes (obstacles). 

We let (9 denote the obstacle space, which is the complement of the free space 
~ .  Thus, (9 consists of m (open, bounded) simple polygonal holes, and the 
(unbounded) complement of the simple polygon P. 

For any two points p, q ~ ,  let g(p, q) denote a geodesic (i.e., shortest 
obstacle-avoiding) path from p to q, and let d(p,  q) be its Euclidean length. 
When we need to emphasize the set (9 of obstacles with respect to which the path 
is geodesic, we will write go( P, q) and do( p, q), and we call the path geodesic((9). 
Note that, while d(p, q) is always well-defined and unique, there may, in 
general, be many geodesic paths from p to q. 

It is well-known (e.g., [14]) that geodesic paths in polygonal domains are 
polygonal paths with turn points at vertices of the domain. We say that r ~ V is a 
root of p ~o~  if, for some geodesic path g(s, p), r is the last vertex along 
g(s, p ) \ { p }  at which g(s, p) turns. If the line segment sp is a geodesic path, 
then s is a root of p. The set of all roots of p is denoted by ~ ( p ) .  

In the remainder of this paper, we make the following general position 
assumption: for any (9'___ (9, and for any vertex v ~ V, there is a unique 
geodesic((9') path from s to v. With this assumption, every vertex o ~ V has a 
unique root, which we denote by root(o). Our algorithm can be modified to 
handle the general case, but the details are tedious. 

The shortest path tree, SPT(s, (9), with respect to point s and obstacle space (9 
is the tree whose nodes are the vertices v ~ V and whose edges link each node v 
to root(v). With our general position assumption, SPT(s, (9) is unique. 
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Fig. 2. A shortest path map. 

While SPT(s, (9) gives the tree of shortest paths from s to every vertex, a 
"shortest  path map" gives a description of the set of shortest paths from s to all 
points of free space. The shortest path map, SPM(s, (9), with respect topoint s and 
obstacle space (9 is a partition of o~- into maximal regions (called cells) that 
correspond to sets of points with the same root or set of roots with respect to s. 
More formally, SPM(s, (9) is the partitioning of ~ into cells C ( ~ ) =  P{x 
~-[  ~ t=  ~ ( x ) }  corresponding to subsets ~ c  V U (s  }. If ~ =  { v) is a singleton, 
we write C(v) to denote the cell of the SPM rooted at vertex v. 

In general, C ( ~ )  will not be connected. If ~ =  (v} is a singleton, then it is 
easy to show that C(v) is two-dimensional and connected. In particular, the cell 
C(s) rooted at s is simply the visibility polygon about s with respect to (9. If 
~ =  {v,, vj} is a pair, then one can show that C ( ~ )  is one-dimensional and 
possibly disconnected, and we call C(( v,, vj }) the bisector of vertices v, and vj. If 

has cardinality at least three, then C ( ~ )  is either empty or a single point, 
called an SPM-vertex. We denote the set of all bisectors and SPM-vertices by ~ .  
An example of an SPM is shown in fig. 2. 

We define a vertex v to be locally tangent if the line segment joining root(v) 
and v is locally tangent at v, as defined in section 3. Note  that the segment 
joining root(v) and v is necessarily locally tangent at root(v). It is easy to see 
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that if v is not  locally tangent, then the cell C(v) is empty, while if v is locally 
tangent, then the cell C(v) will be nonempty.  

For  each vertex v, we can define the extension segment rooted at v as follows: 
extend a ray from the point root(v) through v until the point  y where it first 
leaves ~-. The segment vy is the extension segment rooted at v. If v is not locally 
tangent, then the extension segment is just  the point  v. 

We state now a few simple facts about  bisectors and shortest path maps. 

FACT 4.1 

Each bisector is the union of a finite set of closed subarcs of a common 
hyperbola. (A straight line is considered to be a degenerate case of a hyperbola.) 

Proof 
This follows from basic analytic geometry. [] 

FACT 4.2 

Each cell C(v) of an SPM is star-shaped with respect to v. Furthermore,  the 
boundary  of C(v)  consists of straight line segments, which arise as subsegments 
of obstacle boundaries or as subsegments of extension segments rooted at v, and 
hyperbolic arcs, which arise as the bisectors between v and the roots of cells 
neighboring C(v).  

Proof 
This follows directly from fact 4.1 and the definition of an SPM. [] 

FACT 4.3 

No geodesic path from s can cross a bisector or go through an SPM-vertex. 

Proof 
Assume that g(s, t) does cross a bisector at a point  x. (The case of  going 

through an SPM-vertex is handled similarly.) There must be  another path 
g'(s, x) that is shortest but  which has a different root than that of the subpath  of 
g(s, t) from s to x. Now path g(s, t) cannot bend at point  x (otherwise, it could 
be  shortened). Also, the path we get by appending g'(s, x) to the subpath of 
g(s, t) from x to t must be a shortest path from s to t, so it too cannot  bend at 
point  x. This is inconsistent with the fact that the two paths have different roots. 
[] 

FACT 4.4 

forms a forest. 

Proof 
If not, then there must be a cycle. Take any point  t separated from s by  the 

cycle and note that any geodesic path to it must cross a bisector or go through an 
SPM-vertex, violating fact 4.3. [] 
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FACT 4.5 

There is at least one bisector point on the boundary of each obstacle. 

Proof 
Let x ~ 20  be a point of obstacle O that is closest to s (in geodesic distance) 

and fix a geodesic path g(s, x). Now parameterize the points on the boundary  
20  according to the arc length from x to each point, going clockwise about 20.  
The parameter  (call it 8) ranges from 0 to S, where S is the total length of the 
perimeter of O. 

We say that a p a t h / 7  from s to y (6 )  goes around 0 on the right if the region 
enclosed by the following cyOe contains O: go from s to y(O) a long /7 ,  then go 
from y(8) to x counterclockwise along the perimeter of O, then go back to s 
along (the reverse of) g(s, x). We similarly define the notion of going around O 
on the left. 

A shortest path from s to any y (8 )  will go around O either on the left or on 
the right. Let F (0 )  (resp., G(8)) be the length of the shortest path from s to 
point y (8 )  ~ aO that goes around O on the right (resp., left). For 0 sufficiently 
close to 0, the shortest path to y (6 )  will go around O on the right, while for /9 
sufficiently close to S, it will go around O on the left. Functions F and G are 
continuous, so by the intermediate value theorem, there must be a crossing point 
y (8  *) on the boundary of O. Such a crossing point must correspond to a bisector 
point. [] 

FACT 4.6 

0 U ~ is simply connected. 

Proof 
Suppose that 0 u ~ is not connected. Then, there must be a maximal con- 

nected component  C of the set 0 U ~ that is not connected to the boundary of P,  
the polygon that forms the outer boundary of free space ~ .  No geodesic path 
crosses C, since C is composed of obstacles and bisectors (refer to fact 4.3). Thus, 
we may think of C as if it were an "obstacle". Following the proof of fact 4.5, 
with trivial modifications to allow for the curved boundary of C, we know that 
there is anc ~her bisector incident on the boundary of C that separates geodesics 
that go around C on the right from those that go around C on the left. This 
contradicts the maximality of the component  C. 

The fact that 0 U ~ is simply connected follows from the same reasoning as in 
fact 4.4: if 0 U ~ had a hole, then points x within the hole are in free space, but  
any path from s to x must either cross an obstacle or a bisector. Thus, by fact 
4.3, there can be no geodesic path from s to a point x in a hole, contradicting the 
fact that there must be a geodesic path from s to every point of free space, since 
free space is assumed to be connected. [] 
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Remark 
Note that if we had not assumed ~ to be bounded, then fact 4.6 remains true 

if we connect all unbounded bisector arcs to a common point at infinity. 

FACT 4.7 
o ~ \ ~  is a simply connected region. 

Proof 
This follows from fact 4.6 by noting that if the set were multiply connected, 

then its holes would be connected components of 0 u ~ .  Another way to see this 
is by noting that any path within o ~ \ ~  joining two points of ~ \ ~  can be 
contracted to the point s by the continuous mapping that carries points along 
their geodesic paths to s. [] 

FACT 4.8 
An SPM is a planar map of combinatorial size O(n). 

Proof 
Consider the planar dual of an SPM in which a node is associated with each 

two-dimensional cell. If the boundaries of cells C(o) and C(o')  intersect, then 
draw an edge between node o and node v' for each connected component of the 
intersection OC(v) n OC(o'). Edges of this graph are of two varieties: those that 
are dual to extension segments, and those that are dual to arcs of bisectors. There 
are only O(n) extension segments, since there is only one per vertex. The only 
remaining issue is that there may be many edges between the same two nodes o 
~nd v', since a bisector C(( o, v'}) may have many connected components. But 
between any two edges joining nodes o and o' there must be an obstacle, so we 
can charge off these multiple occurrences to the obstacles, yielding an overall 
linear bound on the size of the graph. [] 

We use data structures such as that of [12] to store shortest path maps (and 
other planar maps), so that basic operations, such as traversing a cell's boundary, 
can be done efficiently. Furthermore, applying the methods of [8], a subdivision 
of size N can be processed in time O(N log N) to support O(log N) point 
location queries. Then, from fact 4.8, we can conclude 

FACT 4.9 
Given SPM(s, 0), one can, with O(n log n) preprocessing time, construct a 

data structure of size O(n) such that for any query point t, one can determine the 
length of a shortest path from s to t in time O(log n) and can produce a shortest 
path g(s, t) in additional time O(B), where B = O(n) is the number of bends in 
the path g( s, t ). 
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Proof 
By locating point t in the subdivision SPM, we can identify in O(log n) time a 

root r on a shortest path g(s, t). Since the SPM can store distances d(s, v) for 
all vertices v, and we know the root vertex r for t, we simply compute 
d(s, t) = d(s, r) + I rt I- We can output a path by following the sequence of root 
pointers from r back to s. r-q 

5. Defining accessibility 

The usual definition of visibility with respect to an "obstacle" set 0 c R d is 
that points p and q are visible if and only if the line segment joining them does 
not intersect 0. A more general notion of visibility can be defined in terms of any 
pair of distance functions, as discussed in an earlier draft of this paper [18]. For  
our purposes here, we use a notion of generalized visibility that we call "accessi- 
bility". 

Given two sets of obstacles, 01 and ~)2, we  say that two points p, q ~ ~ 2 ~  ( (.01 
U 02 } are accessible with respect to 0 1 modulo 0 2 if and only if there exists a 
geodesic(01) path from p to q that does not intersect 02. The usual notion of 
visibility among a set of obstacles �9 is the special case in which �9 1 -- ~ ,  (02 = 0. 
We use the mnemonic of the subscript "1" on the primary set of obstacles 01 and 
the subscript "2"  on the secondary set of obstacles 02. The primary obstacles are 
those that define the geodesic metric, while the secondary obstacles are those that 
define what is hidden. 

We let Y-'~(01, 02) denote the set of all points accessible from s with respect to 
01 modulo 02. Thus Y,~(01, 02) is the union of the points on all geodesic(01) 
paths from s that do not intersect 02. Note that the set Y/~(~, 0)  is just  the 
(usual) visibility polygon of s among obstacles 0. Figure 3 shows an example of 
the accessibility region Y/~(O1, 02): the primary obstacles 01 are shown with 
diagonal hatching, the secondary obstacles (.02 are shown with cross hatching, and 
the inaccessibility region is shown shaded with dots. Note that points that lie in 
cells of the SPM whose roots are not accessible from s are necessarily, not  
accessible from s. 

We define a set A c R 2 ~ 0 to be O-star-shaped about s ~ A if for every x ~ A 
there exists a geodesic(O) path vr from s to x with ~" c A. Finally, we define an 
obstacle O to be accessible from s (with respect to (91 modulo 02) if there exists 
a point  x ~ O such that x is accessible from s (with respect to (.01 modulo (.02). 

FACT 5.1 
~ (  01, O 2) is precisely the maximal star-shaped (with respect to the geodesic( 01) 

metric) subset of  R 2 ~  { 0 1 ~.) 0 2 }. 
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Fig. 3. Accessibility region ~'s(t~l, ~2). 

Proof 
This follows directly from the definition of accessibility. [] 

FACT 5.2 
The boundary of ~(d)a, d~2) consists of O(n 1 + n2) straight line segments 

(which arise as subsegments of obstacle boundaries or as subsegments of exten- 
sion segments rooted at vertices of d72) and hyperbolic arcs (which arise as 
subarcs of bisectors present in SPM(s, d~)). Here, n 1 and n 2 are the number of 
vertices describing d)~ and 02, respectively. 

Proof 
This fact will be shown in the proof of theorem 6.1 in the following section, 

when we prove correctness of the algorithm that computes the region ~ (01 ,  02). 
[] 

6. Computing accessibility regions 

We consider in this section the problem of computing the accessibility region 
r 02). We will assume that we are given SPM(s, 01), the shortest path map 



94 J.S.B. Mitchell / Shortest paths among obstacles 

with respect to s and obstacle space (91. Let n, be the number  of vertices in 
obstacle space (9, (i = 1, 2). 

In  an early draft  [18], we gave a means of comput ing  ~r (92) in t ime 
O((n I + n2) log(n 1 + n2) ) by sweeping a geodesic((91) path  about  s, in a manner  
very similar to the s tandard method  of comput ing  a visibility profile by an 
angular  sweep (see [14]). The  method  relied on judiciously "break ing"  the 
obstacles 02 at selected points  on the boundary,  so as to assure that  the " lower  
envelope" can be determined.  We omit  the discussion of this method  here, since 
we will present instead a very simple means of obtaining the same time bound  
using some recent results on comput ing  arrangements  of curves [11]. We are 
grateful to one of the referees for devising the method  presented below. 

ALGORITHM A 

Input: Point s, obstacle spaces (9,. for i = 1, 2 (vertex set V, of size n,), and the 
shortest pa th  map  SPM(s,  (91). 

Output: A description of the boundary  of ~V's((91, (92) in terms of a sequence of 
straight line segments and hyperbolic arcs. 

(0) Locate each of the vertices v ~ V 2 of the secondary obstacles in the map  
SPM(s,  01). This can be done in time O(n 2 log nl), assuming that we have 
already done  the O(n I log nl)  preprocessing on SPM(s,  (91) so that it can 
suppor t  point  location queries (see [8]). Let r v be the root for vertex v. For  each 
v, produce  a pseudo-extension segment extending f rom v away f rom r v until  it hits 
the boundary  of C(rv). This can be done  in O(n 2 log n 2 + n I + n2) t ime by 
sorting the (92 vertices about their respective roots, and then scanning about  the 
roots to determine where the pseudo-extension segments terminate on the cell 
boundaries.  
(1) Let -'r be the arrangement  formed by the pr imary obstacle boundaries,  the 
bisector set ~ corresponding to SPM(s,  (91), and the pseudo-extension segments 
produced  in step (0). This arrangement  has complexity O(n 1 + n2) (since the 
SPM has complexity O(nl) and the pseudo-extension segments were constructed 
in such a way as not  to cross bisectors of pr imary obstacle boundaries).  In 
particular, the face of ~//1 that  contains s will have linear complexity, and we can 
assume we have a boundary  description of the face. 
(2) Let ~ '2  be the arrangement  formed by the boundaries  of the secondary 
obstacles (91. This arrangement  has size 0(n2) ,  and, again, we can assume we 
have a boundary  description of the face containing s. 
(3) Consider  the overlay arrangement,  .~r one gets by superimposing J / a  and 
J /z -  We prove below ( theorem 6.1) that  the face of ~r that  contains s is precisely 
the set ~s((91, (92). The Combina t ion  L e m m a  of [11] implies that  the face 
containing s in the overlay arrangement  ~r has complexi ty O(n I + n2). The  
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merge algorithm of [11] finds the face containing s in time O(log(na + n2) ) times 
the size of the input plus output (which is O(n I + n=) in our case), yielding an 
overall bound of O((n 1 + n2) log(n I + n2) ) to produce a boundary  description of 

(9=). 

THEOREM 6.1 
Algorithm A computes the accessibility region ze~((ga, (9=) in time O((na + 

nz) log(n 1 + n=)). 

Proof 
The time complexity follows immediately from the statement of the algorithm 

above. Thus, we will be done with the proof of the theorem, as well as a proof of 
fact 5.2, once we show that the cell containing s in ~r is indeed the region 
<((91' (92)" 

Consider a point p in free space. If p ~ YPss((91, (92), then there exists a 
geodesic((91 u (92) path from s to p that does not  bend at a vertex of (92- This 
implies that there exists a root r ~ ( p )  for p in SPM(s, (91) such that rp does 
not intersect (92 and the unique geodesic path gol(s, r) from s to r does not  
intersect (92- Since the path from s to r (along go,(s, r))  to p (along rp) does not  
cross any obstacle boundaries of (91 and (92 and does not cross any pseudo-exten- 
sion segments or bisectors, the point p must  lie in the cell of d containing s. 

Conversely, if p lies in the same cell with s in e~r then the segment rp does not  
intersect (92 for some root r ~ ~ ( p ) ,  since otherwise p would be disconnected 
from s by the union of pseudo-extension segments and obstacle boundaries of (92. 
Similarly, the segment joining r to its (unique) root root(r) must not cross (92, 
since r must be in the same cell as s and p. Thus, g~l(s, r) must lie in the cell 
containing s, showing that p is indeed accessible from s. [] 

7. Extending the shortest path map 

A simple consequence of the definition of accessibility is the fact that the 
accessibility region is correctly subdivided by the current shortest path map: 

LEMMA 7.1 
The partitioning of Y'~((91, (92) according to SPM(s, (91) is exactly the same as 

the partitioning of ~r @2) according to SPM(s, (ga u (92). 

Proof 
Consider any t ~ <((91, (92)- If t lies in cell C(v) of SPM(s, (901) , then it is 

visible to v (fact 4.2). Before the addition of the secondary obstacles (92, the 
shortest path from s to t went from s to v along a geodesic((90 path, and then 
went from v to t along vt. The fact that t is accessible implies that this path  is 
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still feasible after the addition of the secondary obstacles (02. Clearly, adding the 
secondary obstacles (92 cannot make this path any shorter, so t must lie in cell 
C(o) of SPM(s, (.01 t_) (02)- 

Conversely, if t is an accessible point that lies in cell C(v) of SPM(s, (01 U (02), 
then the geodesic((0 a u (02) path from s to t with root v must have no vertices of 
(02 along it, so it is also a geodesic((01) path. Thus, t lies in cell C(o) in the map 
SPM(s, (01)- [] 

The problem we consider in this section is that of extending the shortest path 
map into the region which is not accessible. 

We begin by identifying those secondary obstacles that are fully hidden from 
view; they may be ignored for the moment,  since they will be incorporated into 
the shortest path map in a later iteration of the main algorithm. We concentrate 
only on the set 0 a _c (01 ~.) (02 of obstacles that are accessible with respect to  (01 
modulo (02- Given the boundary description of zr (02), it is easy to identify 
the set (0a by traversing the boundary of Y/~((01, (02), noting those obstacles that 
have vertices or edges in common with the boundary. 

We let ~ '=  P \  { ze~((01, (02) t.) (0a) be the set of inaccessible (" unseen") points, 
including those points that lie in obstacles that do not border the accessible 
region. From fact 5.2 we know that the boundary of q/consists  of straight line 
segments (which are subsegments of obstacle edges or extension segments) and 
hyperbolic arcs (which are subarcs of the bisectors in the original shortest path 
map). If no point on the boundary of P is accessible, then ~ is a connected 
region R 0 with a single hole. Otherwise, ~ is a union of a set of simply 
connected regions, R1,. . .  , Rj.  

The basic idea of our algorithm is to transform the problem of building the 
shortest path map partition of ~ into that of building a geodesic Voronoi 
diagram of an appropriate set of sources in an appropriate set of simple polygons. 

The geodesic Voronoi diagram of a set of point sites in a simple polygon P is 
defined in precisely the same manner as the usual Voronoi diagram of a set of 
point  sites in the plane, except that the distance function used is that of geodesic 
distance within the polygon. Thus, the interior of the polygon is partitioned into 
cells according to the lengths of Euclidean shortest paths to the sites. 

Geodesic Voronoi diagrams for a set of point sites in a simple polygon are 
discussed in [2], where an O(n logZn) algorithm for constructing such diagrams is 
given. In fact, Aronov [2] builds the "shortest path partition" of the geodesic 
Voronoi diagram, in which each Voronoi cell is further subdivided according to 
the last vertex along the unique shortest path from the cell's site to the points of 
the cell. 

Before giving details of our algorithm, we make a few important remarks 
concerning our application of the results of [2]: 

(1) Aronov [2] requires a general position assumption in order for the al- 
gorithm to work as he states. Our general position assumption is strong enough to 
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imply his. It is possible, but  tedious, to remove the assumpt ion f rom the 
algori thm of [2]. 

(2) In the case that the unseen region ~ consists of a single connected 
componen t  with one hole, we will need to compute  a geodesic Voronoi  diagram 
within a polygon with a single hole. We can still apply the algori thm of [2], with a 
minor  modification. First, we make  a cut along a chord joining the hole to the 
outer  boundary  of the polygon. In the resulting simple polygon,  we compute  the 
diagram by applying [2]. We then must  use the extend and merge procedures  of 
[2] to obtain the correct diagram in the original polygon with the hole. 

(3) The sites in our Voronoi  problems will always occur on the boundary  of 
the enclosing polygon. We think of the sites as being " jus t  inside" the polygon.  

(4) We will need to compute  weighted geodesic Voronoi  diagrams in which 
there is an additive nonnegative weight associated with each site. More  precisely, 
this means that the distance f rom a point  p to a site r is defined to be the 
geodesic distance f rom p to r plus the weight of r. It is easy to check that  the 
resulting weighted geodesic Voronoi  diagram has cells with straight or hyperbolic  
boundaries.  It is also not  difficult to modify  the algori thm of [2] to handle  the 
case of weights without  affecting the worst-case running time. Instead of present- 
ing the details here, we can refer the reader to an alternate approach that  we 
presented in an earlier draft  of this paper  [18], where we showed that the 
weighted geodesic Voronoi problems that  arise in our applicat ion can be solved 
directly by the method  of [2] as follows. First we note  that  the sites in our 
application will always be on the boundary  of the polygon. Then,  for each site r, 
we construct  a very skinny straight corridor (a "leg") extending f rom r with 
length equal to the weight of r. We then consider there to be a source (without  
weight) at the end of the leg. Al though the legs may intersect the polygon, this is 
not  impor tant  in being able to run the algori thm of [2] on the new polygon;  we 
can think of the legs as lying in different Riemann  sheets so that  they do not  
interfere with the execution of the algorithm. 

ALGORITHM B 

Input: Point s, the shortest pa th  map  SPM(s,  (91), a description of the boundary  
of r 02). 

Output: A subdivision of the set of unseen points, ~ (92) ['j (ga}, 
according to the shortest pa th  map  SPM(s,  (ga), where (ga _c (91 u (92 is the set of 
obstacles that  are accessible with respect to (91 modu lo  02 . 

(0) By traversing the boundary  of SPM(s,  (91), determine the set (ga - (91 U (92 of 
obstacles that  are accessible with respect to (91 modulo  (_92 . 
(1) Construct  the planar  map  describing the boundary  of the set of unseen 
points,  q l=  P \  (Y'~((91, (92) U ~ }. q/ is either a single connected region R 0 with 
a single hole (Y/~((91, (92) U (ga) or a union of simply connected regions, R1 , . . . ,  R s. 
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Fig. 4. Adding wedges to R 1 and R 2. 

(2) Traverse the boundary of q/, keeping the set ~ on the right, replacing each 
hyperbolic arc ab with the pair of line segments ar and rb, where r is the root 
whose cell C(r) lies to the left of arc ab. The result of adding "wedges" in this 
way is a new set, q/' _ ~ ,  with straight boundary segments. We refer to the roots 
r that form the apices of the wedges as wedge roots. In fig. 4, the hyperbolic arc 
ab is replaced by line segments ar 2 and rzb, which bound a wedge with wedge root 
r 2. Note  that there may be many wedge roots occupying the same location; we 
assume that separate instances are created for each. In fig. 4, the original regions 
R 1 and R: are shown shaded, and there are three wedges (with dashed 
boundaries), with two wedge roots at location r 1 and one wedge root at location 
r 2. By lemma 7.2 below, the set ~ will either be a polygon Q0 with a single 
polygonal hole (in the case that ~ was a single component R 0 with a hole) or a 
set of disjoint simple polygons, Q1 . . . .  , Qs (in the case that ~ is a union of 
simple regions R1, . . . ,  R j).  
(3) Identify the set of shadow-producing vertices: a vertex u of ~2 is shadow-pro- 
ducing if it is accessible (with respect to 01 modulo 02) from s, and u is not on 
the boundary of a wedge. In fig. 4, points u;, i = 3 , . . . ,  7, are shadow-producing 
vertices (two other vertices, u I and u2, are not shadow-producing since they lie 
on wedge boundaries). 
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u 7 

u6 

r 1 

Fig. 5. The polygonal regions Q1 and Q2: 

r 2 

(4) For each connected component Qj of ~ ' ,  define an instance of a weighted 
geodesic Voronoi problem (WVDj) within Qj in which the set Sj of sites for 
WVDj is the set of all shadow-producing vertices and wedge roots on the 
boundary of Q j, with each site weighted by its geodesic distance from s (which is 
known from SPM(s, 01) ). Figure 5 illustrates the two Voronoi problems corre- 
sponding to the polygons Q1 and Q2 that arise from fig. 4; the sites are 
S 1 = {r 1, u 6, u7} and S 2 = {r l, r2, u3, u4, us}. 

LEMMA 7.2 
The process of enlarging q/ by adding wedges in step (2) yields a new region 

~ '  that is either a polygon Q0 with a single polygonal hole (in the case that q/ 
has one connected component R 0 with a single hole) or a set of disjoint simple 
polygons Qa,---, QJ (in the case that qg is the union of simple regions R1,... , R j). 

Proof 
Consider the wedge w bounded by rb, arc ba, and ar. Since w is a subset of the 

cell C(r), it is free of primary (01) obstacles. It must also be free of secondary 
(02) obstacles, since otherwise arc ab could not have been on the boundary of a 
connected component of q/. Since the shortest path map is a planar subdivision, 
no other wedge could intersect the interior of w. (There may be other wedges with 
wedge root at position r.) Thus, the wedges we add to ~ to obtain ~ '  are 
nonoverlapping, implying that the connected components of qr are also non- 
overlapping. Note too that we have not created any holes by the addition of 
nonoverlapping wedges. Furthermore, ~ '  has only straight boundary segments. 
[] 
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LEMMA 7.3 
Solving the weighted Voronoi diagram problem WVDj yields a subdivision of 

Rj identical to that of SPM(s, (ga) restricted to Rj. 

Proof 
A geodesic path from s to point t ~ Rj must enter Qj either through a wedge 

root or through a shadow-producing vertex, since a geodesic path cannot cross a 
bisector (fact 4.3) or relative interior of the portion rx of an extension segment 
that bounds an SPM cell (since points on rx can be reached by a shortest path 
with root r, by definition of the cell C(r)). Thus, the SPM partitioning of Qj is 
equivalent to the weighted Voronoi diagram partitioning (with the refinement of 
the shortest path partitioning) of Pj in which the weights assigned to source 
points equal their distances from s with respect to obstacle space (ga. By our 
construction, WVDj solves precisely this problem. [] 

THEOREM 7.4 
Algorithm B correctly extends the shortest path map into the set q /=  P \  

{ zr (92) u (9 a ) of unseen points and its running time is O(V(n I + n2)), where 
V(n) = O(n logZn) is the time required to solve a weighted geodesic Voronoi 
diagram problem of size n within a simple polygon. 

Proof 
Correctness was established in the previous lemma. Since ~r (92) and 

SPM(s, (91) are of linear size, the total input size of all of the Voronoi diagram 
problems WVDj is O( n I -n2) .  [] 

8. The main algorithm 

ALGORITHM C 

Input: Point s, a set (9 of m disjoint polygonal obstacles within an enclosing 
simple polygon P, with a total of n edges bounding P and the obstacles. 

Output: The shortest path map SPM(s, (9). 

(0) Let (91 = ~ ,  and let (92 = (9" Let k = 0. Initially, let SPM be the trivial planar 
subdivision consisting of a single cell corresponding to the entire polygon P. 
(1) If (92 = ~ ,  then stop. Otherwise, go on to step (2). 
(2) Compute ~s((91, (92) using algorithm A of section 6. This requires O(n log n) 
time. Let (9 a be the set of all obstacles that are accessible from s with respect to 
(91 modulo (92 , i.e., those that have part of their boundary in common with the 
boundary of 3U's((91, (92). 
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(3) Extend the SPM subdivision into the set of unseen points qg using algorithm 
B of section 7. This requires O(V(n)) = O(n log2n) time and yields SPM(s, (9a)- 
(4) Set (ga *-- (ga, (92 ~ (92\0a, and k ~ k + 1. Go to step (1). 

Remarks 
(a) Note that we only place accessible obstacles in the set  (91, SO there will 

never be a primary (91 obstacle that is not accessible with respect to (91 modulo 
(92; thus, it will always be the case that (91 c (9 a. 

(b) The first time that we enter step (2) of the algorithm, we compute 
~r (9), which is simply the visibility polygon about s with respect to all 
obstacles. While this can be done using algorithm A, one would usually prefer to 
do this in time O(n log n) by a standard visibility sweep about s. 

(c) If we are interested only in finding a shortest path from s to a destination 
point t, given in advance, then step (1) of the above algorithm can be modified to 
stop as soon as t becomes accessible. This may greatly reduce the number  of 
iterations necessary. 

(d) The following simple observation can potentially lead to a considerable 
improvement in the running time when a destination point t is given in advance. 
For  a given point t, we notice that it suffices to extend the shortest path map only 
into the component,  R j, of q/ that contains t, not  into the entire set q/. This 
saves us the effort of solving many Voronoi diagram problems each time we call 
algorithm B. A related observation was made in [16], where it was shown that one 
only needs to consider the component  of the "cone of overlapping obstacle 
profiles" that contains a given destination t. 

The value of k at the conclusion of the algorithm records the total number  of 
major iterations required until termination. If a destination point t is given in 
advance, then k is called the illumination depth of t and is denoted by k( t ) ;  

t 

s 

Fig. 6. A case in which k(O) = 12(n). 
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otherwise, k = max t ~ .~k( t )  is called the illumination depth of the obstacle space 
and is denoted by k(O). In the worst case, k(O) can be ~2(n) (see fig. 6), but it 
will frequently be much smaller than n. For example, if we know that s can see at 
least part of the boundary of every obstacle, then k ( 0 ) =  1. We can show a 
simple upper bound on k((9). 

FACT 8.1 
k ( t)  is bounded above by the number  of different obstacles in contact with any 

geodesic path from s to t. In particular, k(t)  (and, hence, k(O)) is bounded 
above by m, the number  of obstacles. 

Proof 
Let g(s, t) be any geodesic path from s to t. Let 01 . . . .  , 0  M be the set of 

obstacles touched by g(s, t), in order of increasing distance from s to x j, the first 
point of Oj encountered by g(s, t). With each major iteration of our algorithm, at 
least one new obstacle becomes accessible. The algorithm terminates once OM 
becomes accessible. This implies that k(t)  <. M. [] 

COROLLARY 8.2 
k(t)  is bounded above by the number  of edges in any geodesic path from 

s t o t .  

In conclusion, we have the following: 

THEOREM 8.3 
The shortest path map of a polygonal obstacle space of size n can be found in 

time O(kn log n + kV(n)), where k = k((9) is the ilumination depth of the space 
and F(n)  is the time required to compute the geodesic Voronoi diagram of a set 
of O(n) sites within a simple polygon of size n. The current bound of F ( n ) =  
O(n log2n) yields an overall bound of O(kn log2n). 

9. Dynamic shortest path map maintenance 

Our algorithm can also be used in a natural way to maintain a shortest path 
map, given a sequence of insertions and deletions of obstacles. In the dynamic 
problem, one would like to avoid doing a complete recomputation of the shortest 
path map if the change induced by the inser t ion/dele t ion is minor. 

First, note that if we want to insert one or more obstacles into an SPM, we 
may end up altering the diagram in a very significant way. For example, placing 
just one obstacle in such a way as to cross an edge of the current shortest path 
tree results in modifying the shortest path map involving all of the vertices in the 
subtree that was cut off. So the size of the change can be s 
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We can accommodate an insertion by applying our algorithm as follows: 
Assume that we have SPM(s, O), and we are given a new set of obstacles, O', to 
add to our obstacle space. First, we apply algorithm A to compute zr O'). 
Then, by a traversal of the boundary of ~'~'~((9, (9'), we determine the set 
60 a _c (gu (9' of accessible obstacles with respect to (9 modulo (9'. Now, we simply 
apply algorithm C, starting at step (3) with (91 = (9 and (9 2 = ((9 u ( 9 ' ) \  (9~. The 
running time is bounded by O(kn log2n), where k is now the number  of major 
iterations that we must do in order to correct for the addition of the new 
obstacles. One may expect that k will be small in many  cases, but  it can be I2(n) 
in the worst case. 

Just as an insertion can cause a linear-size change in the SPM, so can a 
deletion. In order to handle a deletion of a set (9' _c (9 of obstacles, we proceed as 
follows. We are given SPM(s, (9). The points that are not accessible with respect 
to (99\(9' modulo (9' are those points x that have roots ~?(x) that are vertices of 
(9' or descendents of vertices of (9' in the shortest path tree SPT(s, (9), since such 
points x have a vertex of (9' on every shortest path from s to x. Thus, we first 
traverse the boundaries of all cells rooted at vertices of the deleted obstacles or at 
descendants of these vertices in SPT(s, (9). This allows us to construct the 
accessible region Y/~((9\(9', (9'). Let (91 be the accessible obstacles (those that 
appear on the boundary of ~t~((9\(9', (9')), and let (9 2 -~-(9k(91. We now apply 
algorithm C starting at step (3). Again, the running time is bounded by 
O(kn log2n), where k is now the number  of major iterations required to correct 
for the deletion of (9'. 

10. Conclusion 

There are a variety of algorithms known for computing shortest paths, but  at 
the present time there is no one algorithm that is fastest in every case. We have 
presented here a new technique which is an improvement over previous al- 
gorithms in many cases and is nearly optimal (O(n log2n)) in cases in which the 
illumination depth k is bounded. Unfortunately,  there are situations in which our 
algorithm is worse than existing O(n 2) solutions to the shortest path problem. 
Several open questions remain: 

(1) Can the geodesic Voronoi diagram of a set of source points in a simple 
polygon be computed in time O(n log n)? If the current  bound of V(n)= 
o ( n  log/n) were to be improved, it would imply a corresponding improvement  in 
the time bound of our algorithm. Also, it may be possible to take advantage of 
the special structure present in our case. In particular, how efficiently can one 
find the geodesic Voronoi diagram of a set of sources all of which are on the 
polygon boundary? 

(2) Can the running time of our algorithm be improved to something like 
O(kn + V(n))? Such an improvement would reduce the worst-case running time 
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of our algorithm to quadratic. It is not likely that such an improvement will be a 
trivial extension to our algorithm, since we require O(n  log n) time at each 
iteration just to do the point location queries in algorithm A. 

(3) Can we get an algorithm with running time O ( L n  log2n), where L is the 
minimum number  of line segments in any obstacle-free polygonal path from s to 
t? (L  is called the "link distance" from s to t.) We know that the illumination 
depth k is bounded above by the number  of links in any shortest path from s to 
t, but it is not true in general that k ~< L. 

(4) Can we combine the ideas presented here with those of other existing 
algorithms to obtain an algorithm that is optimal or nearly optimal in more 
cases? In particular, some of the cases that are bad for our algorithm are quite 
easy for existing algorithms (e.g., the visibility graph may be sparse, as in fig. 6). 
Loosely speaking, it seems that our algorithm works well in many cases in which 
the visibility graph is dense and poorly in some cases in which it is sparse. 
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