
Annals of Mathematics and Artificial Intelligence, 3 (1991) 83-106 83

A NEW A L G O R I T H M FOR S H O R T E S T PATHS A M O N G OBSTACLES
IN THE PLANE

Joseph S.B. M I T C H E L L *

School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY 14853, USA

Abstract

We introduce a new algorithm for computing Euclidean shortest paths in the plane in the
presence of polygonal obstacles. In particular, for a given start point s, we build a planar
subdivision (a shortest path map) that supports efficient queries for shortest paths from s to
any destination point t. The worst-case time complexity of our algorithm is O(kn log2n),
where n is the number of vertices describing the polygonal obstacles, and k is a parameter we
call the "illumination depth" of the obstacle space. Our algorithm uses O(n) space, avoiding
the possibly quadratic space complexity of methods that rely on visibility graphs. The
quantity k is frequently significantly smaller than n, especially in some of the cases in which
the visibility graph has quadratic size. In particular, k is bounded above by the number of
different obstacles that touch any shortest path from s.

1. Introduction

Shortest path problems have been of interest in computational geometry for
several years, due in a large part to their various applications in motion planning,
visibility problems, terrain navigation, and wire routing. See [1,16,19,27] for
several pointers to some relevant literature. A fundamental problem is that of
finding shortest paths between two points in a space that is cluttered with
"obstacles". Euclidean shortest paths among a collection of polygonal obstacles
in the plane can be found in worst-case quadratic time (e.g., [26]), while the
problem of finding shortest paths among polyhedral obstacles in three dimen-
sions is known to be NP-hard [4].

In this paper, we present a new algorithm for computing Euclidean shortest
paths in the plane among a set of disjoint polygonal obstacles bounded by n
segments. Our algorithm actually computes the shortest pa th map (SPM) corre-
sponding to a given start point s. An SPM is a planar subdivision which allows
,one to find the length of a shortest path to a query point in time O(log n) by
point location, and to produce a shortest path in time O(log n + K) , where K is
the number of bends in the shortest path. See section 4 for more details.

* Partially supported by NSF Grants IRI-8710858 and ECSE-8857642 and by a grant from Hughes
Research Laboratories, Malibu, CA.

�9 J.C. Baltzer A.G. Scientific Publishing Company

84 J.S.B. Mitchell / Shortest paths among obstacles

The time complexity of our algorithm is O(kn log n + kV(n)), where k is an
output-sensitive quantity we call the illumination depth of the obstacle space, and
V(n) is the time to compute a geodesic Voronoi diagram of O(n) points on the
boundary of a simple polygon of size n. Currently, the best bound for V(n) is
O(n log2n), given by [2], yielding a running time of O(kn log2n) for our
algorithm. The space complexity of our algorithm is O(n), which compares
favorably with many existing algorithms requiring up to quadratic space.

The illumination depth k is bounded above by the maximum number of
different obstacles with which a shortest path from s comes in contact, which in
turn is bounded above by the maximum number of bends in a shortest path from
s. Frequently, though, k is much less than either of these estimates. In the worst
case, k = O(n), our algorithm performs slightly worse than the known O(n 2)
algorithms [3,9,13,22,23,26]; however, when k is small, our algorithm performs
very well. If k is bounded, then our algorithm is nearly optimal.

If we are interested only in finding a shortest path from s to a fixed target
point t, then our algorithm can be stopped as soon as the SPM it constructs first
encounters t; in this case, k is bounded above by the illumination depth of the
point t, which may be significantly less than the illumination depth of the entire
obstacle space.

Our algorithm is unlike most previous shortest path algorithms in that it does
not build a visibility graph; rather, we introduce a methodology which combines
ideas from efficient visibility computation with ideas from shortest path map
construction. We use a partial shortest path map, which does not include the
effect of all obstacles, to trim down the amount of necessary visibility computa-
tion, and we use visibility considerations to simplify the computation of shortest
path maps. In this way, we make a first step towards understanding the interplay
between visibility graphs and shortest path maps.

2. Overview of the algorithm

We give a brief and informal summary of our algorithm. Precise definitions
will be given later.

First, we compute the visibility polygon from the start point s. Then we build
the shortest path map with respect to the set of "seen" obstacles that are wholly
or partially visible from s. This is done in time O(n log2n) by reducing the
problem to that of computing a Voronoi diagram within an appropriately defined
simple polygon and then appealing to the algorithm of [2].

Next, by applying the results of [11] for finding a face in an overlay of two
arrangements, we compute the region of "accessibility" corresponding to the
subset of "seen" obstacles that define our current shortest path map. We say that
a point p is accessible if there exists a shortest path from s to p that does not
bend at a vertex of an "unseen" obstacle. Obstacles that are on the boundary of

J.S.B. Mitchell / Shortest paths among obstacles 85

the region of accessibility and that were previously "unseen" are now considered
to be "seen".

We now extend the shortest path map to include the effect of the newly "seen"
obstacles by defining appropriate geodesic Voronoi diagram problems on simple
polygons, and appealing again to the results of [2]. We continue iterating this
process, computing accessibility and then extending the shortest path map, until
all obstacles have been "seen". The number of iterations is called the illumination
depth, k, of the obstacle space.

3. A brief survey of existing algorithms

Many algorithms have been developed to find shortest paths among obstacles
in the plane. We survey in table 1 the algorithms known to us at this time,
together with their worst-case space and time bounds. A less current but more
detailed survey is provided in [16]. All algorithms except (7) and (11) proceed by
building a visibility graph (or a subgraph thereof) and then searching it using
Dijkstra's algorithm [7] or A* [21].

The table includes only those algorithms that apply to general sets of disjoint
polygonal obstacles in the plane. Various special cases have faster algorithms. For
example, the case in which all obstacles are convex was considered by [16] and
[24]. The case of vertical line segment obstacles was solved in optimal time by
[15], and this result was generalized to the case of obstacles with disjoint
projections onto some given line [16]. An important special case is that of finding
shortest paths within a simple polygon (without holes), which can be solved in
linear time for a triangulated simple polygon [10].

We have restricted our attention to the case of Euclidean shortest paths. The
problem of finding shortest paths according to the L 1 metric (or any fixed

Table 1
A comparison of shortest path algorithms

Alg. Space S (n) Time T(n) Ref.

(1) Evo ?/3 [28]
(2) Evo n 2 log n [14,25]
(3) Eva n 2 log m
(4) n n 2 log m
(5) n Kn log rn
(6) n 2 n z [3,26]
(7) n n m + n log n [23]
(8) E v e E v e + n log n [9]
(9) n Eve log n [22]

(10) Ese Esp + n log n [13]
(11) n kn log2n

86 J.S.B. Mitchell / Shortest paths among obstacles

orientation metric) has been solved in nearly optimal time by [6] and [17]. These
results, and others, have also led to efficient approximation algorithms for finding
paths whose length is within a constant factor of the true geodesic distance [5,17].

Our notation is as follows: the obstacle space consists of m disjoint polygonal
obstacles bounded by a total of n segments, Evc <~ (~) is the number of edges in
the visibility graph, and Es~, is the number of edges in the visibility graph that are
locally tangent at both endpoints, meaning that these edges are sufficient for
searching for shortest paths [13,16]. (An edge uo is locally tangent at v if the line
through uo is tangent to the set B,(o) (~ obst(v) for some c > 0, where B,(o) is the
ball of radius c about o and obst(v) is the obstacle at vertex v.) The quantities K
and k are defined below.

The main result we present in this paper is algorithm (11) (see table 1). A few
words are in order about the other bounds that are listed in table 1 without
references to the literature:

(3) The time bound of O(n21og m) is a result of the simple observation that the
visibility polygon with respect to a fixed point of a set of m simple
polygonal obstacles can be computed in time O(n log m) [3].

(4) We can reduce the space complexity of algorithm (3) by doing the visibility
calculations "on the fly" while running Dijkstra's algorithm. The idea is
simply not to build the entire visibility graph and then search it, but rather
to compute the visibility from a vertex only at the moment when the vertex
is about to be "expanded" by Dijkstra's algorithm. We compute the visibil-
ity from the vertex, update the labels on the vertices found to be adjacent to
it, and discard those edges that did not result in label improvement. The
result of this is that we need to keep a data structure of only linear size.

(5) This complexity bound is a result of the trivial observation that it suffices to
terminate the search for a shortest path to a prespecified target point t once
t has been permanently labeled. Here, K is the number of nodes expanded
by Dijkstra's algorithm before t is reached.

)

(2)
/

Fig. 1. Dominance graph of shortest path algorithms.

J.S.B. Mitchell / Shortest paths among obstacles 87

(11) This is the main algorithm described in this paper. Here, k is the "illumina-
tion depth" of the obstacle space, as defined in section 8. Frequently, k will
be bounded by a small number, in which case this algorithm performs very
well.

It is difficult to say which of the many techniques will be best in practice. We
can, however, give the relationships among the worst-case running times and
space requirements. We will say that algorithm (i) is dominated by algorithm (j)
if (j) has both space and time bounds that are as good as or better than those of
algorithm (i). We can then construct the dominance graph, as shown in fig. 1.
Algorithms (5), (7), (9), (10), and (11) (see table 1) are undominated, meaning that
there are cases in which each of them is best, either in terms of space or in terms
of time complexity.

4. Notation and preliminaries

The input to our algorithm will be (~ ' , s), where .~- is a closed multiply-
connected polygonal domain in the plane, and s ~ is the start (or source)
point. We refer to ~ as free space, and we let V denote the set of n vertices of
~-. For simplicity of presentation, we will assume that ~- is bounded; our results
extend easily to the unbounded case. Thus, . ~ consists of a simple polygon P,
minus a set of m disjoint polygonal holes (obstacles).

We let (9 denote the obstacle space, which is the complement of the free space
~ . Thus, (9 consists of m (open, bounded) simple polygonal holes, and the
(unbounded) complement of the simple polygon P.

For any two points p, q ~ , let g(p, q) denote a geodesic (i.e., shortest
obstacle-avoiding) path from p to q, and let d(p, q) be its Euclidean length.
When we need to emphasize the set (9 of obstacles with respect to which the path
is geodesic, we will write go(P, q) and do(p, q), and we call the path geodesic((9).
Note that, while d(p, q) is always well-defined and unique, there may, in
general, be many geodesic paths from p to q.

It is well-known (e.g., [14]) that geodesic paths in polygonal domains are
polygonal paths with turn points at vertices of the domain. We say that r ~ V is a
root of p ~o~ if, for some geodesic path g(s, p), r is the last vertex along
g(s, p) \ { p } at which g(s, p) turns. If the line segment sp is a geodesic path,
then s is a root of p. The set of all roots of p is denoted by ~ (p) .

In the remainder of this paper, we make the following general position
assumption: for any (9'___ (9, and for any vertex v ~ V, there is a unique
geodesic((9') path from s to v. With this assumption, every vertex o ~ V has a
unique root, which we denote by root(o). Our algorithm can be modified to
handle the general case, but the details are tedious.

The shortest path tree, SPT(s, (9), with respect to point s and obstacle space (9
is the tree whose nodes are the vertices v ~ V and whose edges link each node v
to root(v). With our general position assumption, SPT(s, (9) is unique.

88 J.S.B. Mitchell / Shortest paths among obstacles

Fig. 2. A shortest path map.

While SPT(s, (9) gives the tree of shortest paths from s to every vertex, a
"shortest path map" gives a description of the set of shortest paths from s to all
points of free space. The shortest path map, SPM(s, (9), with respect topoint s and
obstacle space (9 is a partition of o~- into maximal regions (called cells) that
correspond to sets of points with the same root or set of roots with respect to s.
More formally, SPM(s, (9) is the partitioning of ~ into cells C (~) = P{x
~-[~ t= ~ (x) } corresponding to subsets ~ c V U (s }. If ~ = { v) is a singleton,
we write C(v) to denote the cell of the SPM rooted at vertex v.

In general, C (~) will not be connected. If ~ = (v} is a singleton, then it is
easy to show that C(v) is two-dimensional and connected. In particular, the cell
C(s) rooted at s is simply the visibility polygon about s with respect to (9. If
~ = {v,, vj} is a pair, then one can show that C (~) is one-dimensional and
possibly disconnected, and we call C((v,, vj }) the bisector of vertices v, and vj. If

has cardinality at least three, then C (~) is either empty or a single point,
called an SPM-vertex. We denote the set of all bisectors and SPM-vertices by ~ .
An example of an SPM is shown in fig. 2.

We define a vertex v to be locally tangent if the line segment joining root(v)
and v is locally tangent at v, as defined in section 3. Note that the segment
joining root(v) and v is necessarily locally tangent at root(v). It is easy to see

J.S.B. Mitchell / Shortest paths among obstacles 89

that if v is not locally tangent, then the cell C(v) is empty, while if v is locally
tangent, then the cell C(v) will be nonempty.

For each vertex v, we can define the extension segment rooted at v as follows:
extend a ray from the point root(v) through v until the point y where it first
leaves ~-. The segment vy is the extension segment rooted at v. If v is not locally
tangent, then the extension segment is just the point v.

We state now a few simple facts about bisectors and shortest path maps.

FACT 4.1

Each bisector is the union of a finite set of closed subarcs of a common
hyperbola. (A straight line is considered to be a degenerate case of a hyperbola.)

Proof
This follows from basic analytic geometry. []

FACT 4.2

Each cell C(v) of an SPM is star-shaped with respect to v. Furthermore, the
boundary of C(v) consists of straight line segments, which arise as subsegments
of obstacle boundaries or as subsegments of extension segments rooted at v, and
hyperbolic arcs, which arise as the bisectors between v and the roots of cells
neighboring C(v).

Proof
This follows directly from fact 4.1 and the definition of an SPM. []

FACT 4.3

No geodesic path from s can cross a bisector or go through an SPM-vertex.

Proof
Assume that g(s, t) does cross a bisector at a point x. (The case of going

through an SPM-vertex is handled similarly.) There must be another path
g'(s, x) that is shortest but which has a different root than that of the subpath of
g(s, t) from s to x. Now path g(s, t) cannot bend at point x (otherwise, it could
be shortened). Also, the path we get by appending g'(s, x) to the subpath of
g(s, t) from x to t must be a shortest path from s to t, so it too cannot bend at
point x. This is inconsistent with the fact that the two paths have different roots.
[]

FACT 4.4

forms a forest.

Proof
If not, then there must be a cycle. Take any point t separated from s by the

cycle and note that any geodesic path to it must cross a bisector or go through an
SPM-vertex, violating fact 4.3. []

90 J.S.B. Mitchell / Shortest paths among obstacles

FACT 4.5

There is at least one bisector point on the boundary of each obstacle.

Proof
Let x ~ 20 be a point of obstacle O that is closest to s (in geodesic distance)

and fix a geodesic path g(s, x). Now parameterize the points on the boundary
20 according to the arc length from x to each point, going clockwise about 20.
The parameter (call it 8) ranges from 0 to S, where S is the total length of the
perimeter of O.

We say that a p a t h / 7 from s to y (6) goes around 0 on the right if the region
enclosed by the following cyOe contains O: go from s to y(O) a long /7 , then go
from y(8) to x counterclockwise along the perimeter of O, then go back to s
along (the reverse of) g(s, x). We similarly define the notion of going around O
on the left.

A shortest path from s to any y (8) will go around O either on the left or on
the right. Let F (0) (resp., G(8)) be the length of the shortest path from s to
point y (8) ~ aO that goes around O on the right (resp., left). For 0 sufficiently
close to 0, the shortest path to y (6) will go around O on the right, while for /9
sufficiently close to S, it will go around O on the left. Functions F and G are
continuous, so by the intermediate value theorem, there must be a crossing point
y (8 *) on the boundary of O. Such a crossing point must correspond to a bisector
point. []

FACT 4.6

0 U ~ is simply connected.

Proof
Suppose that 0 u ~ is not connected. Then, there must be a maximal con-

nected component C of the set 0 U ~ that is not connected to the boundary of P,
the polygon that forms the outer boundary of free space ~ . No geodesic path
crosses C, since C is composed of obstacles and bisectors (refer to fact 4.3). Thus,
we may think of C as if it were an "obstacle". Following the proof of fact 4.5,
with trivial modifications to allow for the curved boundary of C, we know that
there is anc ~her bisector incident on the boundary of C that separates geodesics
that go around C on the right from those that go around C on the left. This
contradicts the maximality of the component C.

The fact that 0 U ~ is simply connected follows from the same reasoning as in
fact 4.4: if 0 U ~ had a hole, then points x within the hole are in free space, but
any path from s to x must either cross an obstacle or a bisector. Thus, by fact
4.3, there can be no geodesic path from s to a point x in a hole, contradicting the
fact that there must be a geodesic path from s to every point of free space, since
free space is assumed to be connected. []

J.S.B. Mitchell / Shortest paths among obstacles 91

Remark
Note that if we had not assumed ~ to be bounded, then fact 4.6 remains true

if we connect all unbounded bisector arcs to a common point at infinity.

FACT 4.7
o ~ \ ~ is a simply connected region.

Proof
This follows from fact 4.6 by noting that if the set were multiply connected,

then its holes would be connected components of 0 u ~ . Another way to see this
is by noting that any path within o ~ \ ~ joining two points of ~ \ ~ can be
contracted to the point s by the continuous mapping that carries points along
their geodesic paths to s. []

FACT 4.8
An SPM is a planar map of combinatorial size O(n).

Proof
Consider the planar dual of an SPM in which a node is associated with each

two-dimensional cell. If the boundaries of cells C(o) and C(o') intersect, then
draw an edge between node o and node v' for each connected component of the
intersection OC(v) n OC(o'). Edges of this graph are of two varieties: those that
are dual to extension segments, and those that are dual to arcs of bisectors. There
are only O(n) extension segments, since there is only one per vertex. The only
remaining issue is that there may be many edges between the same two nodes o
~nd v', since a bisector C((o, v'}) may have many connected components. But
between any two edges joining nodes o and o' there must be an obstacle, so we
can charge off these multiple occurrences to the obstacles, yielding an overall
linear bound on the size of the graph. []

We use data structures such as that of [12] to store shortest path maps (and
other planar maps), so that basic operations, such as traversing a cell's boundary,
can be done efficiently. Furthermore, applying the methods of [8], a subdivision
of size N can be processed in time O(N log N) to support O(log N) point
location queries. Then, from fact 4.8, we can conclude

FACT 4.9
Given SPM(s, 0), one can, with O(n log n) preprocessing time, construct a

data structure of size O(n) such that for any query point t, one can determine the
length of a shortest path from s to t in time O(log n) and can produce a shortest
path g(s, t) in additional time O(B), where B = O(n) is the number of bends in
the path g(s, t).

92 J.S.B. Mitchell / Shortest paths among obstacles

Proof
By locating point t in the subdivision SPM, we can identify in O(log n) time a

root r on a shortest path g(s, t). Since the SPM can store distances d(s, v) for
all vertices v, and we know the root vertex r for t, we simply compute
d(s, t) = d(s, r) + I rt I- We can output a path by following the sequence of root
pointers from r back to s. r-q

5. Defining accessibility

The usual definition of visibility with respect to an "obstacle" set 0 c R d is
that points p and q are visible if and only if the line segment joining them does
not intersect 0. A more general notion of visibility can be defined in terms of any
pair of distance functions, as discussed in an earlier draft of this paper [18]. For
our purposes here, we use a notion of generalized visibility that we call "accessi-
bility".

Given two sets of obstacles, 01 and ~)2, we say that two points p, q ~ ~ 2 ~ ((.01
U 02 } are accessible with respect to 0 1 modulo 0 2 if and only if there exists a
geodesic(01) path from p to q that does not intersect 02. The usual notion of
visibility among a set of obstacles �9 is the special case in which �9 1 -- ~ , (02 = 0.
We use the mnemonic of the subscript "1" on the primary set of obstacles 01 and
the subscript "2" on the secondary set of obstacles 02. The primary obstacles are
those that define the geodesic metric, while the secondary obstacles are those that
define what is hidden.

We let Y-'~(01, 02) denote the set of all points accessible from s with respect to
01 modulo 02. Thus Y,~(01, 02) is the union of the points on all geodesic(01)
paths from s that do not intersect 02. Note that the set Y/~(~, 0) is just the
(usual) visibility polygon of s among obstacles 0. Figure 3 shows an example of
the accessibility region Y/~(O1, 02): the primary obstacles 01 are shown with
diagonal hatching, the secondary obstacles (.02 are shown with cross hatching, and
the inaccessibility region is shown shaded with dots. Note that points that lie in
cells of the SPM whose roots are not accessible from s are necessarily, not
accessible from s.

We define a set A c R 2 ~ 0 to be O-star-shaped about s ~ A if for every x ~ A
there exists a geodesic(O) path vr from s to x with ~" c A. Finally, we define an
obstacle O to be accessible from s (with respect to (91 modulo 02) if there exists
a point x ~ O such that x is accessible from s (with respect to (.01 modulo (.02).

FACT 5.1
~ (01, O 2) is precisely the maximal star-shaped (with respect to the geodesic(01)

metric) subset of R 2 ~ { 0 1 ~.) 0 2 }.

J.S.B. Mitchell / Shortest paths among obstacles 93

Fig. 3. Accessibility region ~'s(t~l, ~2).

Proof
This follows directly from the definition of accessibility. []

FACT 5.2
The boundary of ~(d)a, d~2) consists of O(n 1 + n2) straight line segments

(which arise as subsegments of obstacle boundaries or as subsegments of exten-
sion segments rooted at vertices of d72) and hyperbolic arcs (which arise as
subarcs of bisectors present in SPM(s, d~)). Here, n 1 and n 2 are the number of
vertices describing d)~ and 02, respectively.

Proof
This fact will be shown in the proof of theorem 6.1 in the following section,

when we prove correctness of the algorithm that computes the region ~ (01 , 02).
[]

6. Computing accessibility regions

We consider in this section the problem of computing the accessibility region
r 02). We will assume that we are given SPM(s, 01), the shortest path map

94 J.S.B. Mitchell / Shortest paths among obstacles

with respect to s and obstacle space (91. Let n, be the number of vertices in
obstacle space (9, (i = 1, 2).

In an early draft [18], we gave a means of comput ing ~r (92) in t ime
O((n I + n2) log(n 1 + n2)) by sweeping a geodesic((91) path about s, in a manner
very similar to the s tandard method of comput ing a visibility profile by an
angular sweep (see [14]). The method relied on judiciously "break ing" the
obstacles 02 at selected points on the boundary, so as to assure that the " lower
envelope" can be determined. We omit the discussion of this method here, since
we will present instead a very simple means of obtaining the same time bound
using some recent results on comput ing arrangements of curves [11]. We are
grateful to one of the referees for devising the method presented below.

ALGORITHM A

Input: Point s, obstacle spaces (9,. for i = 1, 2 (vertex set V, of size n,), and the
shortest pa th map SPM(s, (91).

Output: A description of the boundary of ~V's((91, (92) in terms of a sequence of
straight line segments and hyperbolic arcs.

(0) Locate each of the vertices v ~ V 2 of the secondary obstacles in the map
SPM(s, 01). This can be done in time O(n 2 log nl), assuming that we have
already done the O(n I log nl) preprocessing on SPM(s, (91) so that it can
suppor t point location queries (see [8]). Let r v be the root for vertex v. For each
v, produce a pseudo-extension segment extending f rom v away f rom r v until it hits
the boundary of C(rv). This can be done in O(n 2 log n 2 + n I + n2) t ime by
sorting the (92 vertices about their respective roots, and then scanning about the
roots to determine where the pseudo-extension segments terminate on the cell
boundaries.
(1) Let -'r be the arrangement formed by the pr imary obstacle boundaries, the
bisector set ~ corresponding to SPM(s, (91), and the pseudo-extension segments
produced in step (0). This arrangement has complexity O(n 1 + n2) (since the
SPM has complexity O(nl) and the pseudo-extension segments were constructed
in such a way as not to cross bisectors of pr imary obstacle boundaries). In
particular, the face of ~//1 that contains s will have linear complexity, and we can
assume we have a boundary description of the face.
(2) Let ~ '2 be the arrangement formed by the boundaries of the secondary
obstacles (91. This arrangement has size 0(n2) , and, again, we can assume we
have a boundary description of the face containing s.
(3) Consider the overlay arrangement, .~r one gets by superimposing J / a and
J /z - We prove below (theorem 6.1) that the face of ~r that contains s is precisely
the set ~s((91, (92). The Combina t ion L e m m a of [11] implies that the face
containing s in the overlay arrangement ~r has complexi ty O(n I + n2). The

J.S.B. Mitchell / Shortest paths among obstacles 95

merge algorithm of [11] finds the face containing s in time O(log(na + n2)) times
the size of the input plus output (which is O(n I + n=) in our case), yielding an
overall bound of O((n 1 + n2) log(n I + n2)) to produce a boundary description of

(9=).

THEOREM 6.1
Algorithm A computes the accessibility region ze~((ga, (9=) in time O((na +

nz) log(n 1 + n=)).

Proof
The time complexity follows immediately from the statement of the algorithm

above. Thus, we will be done with the proof of the theorem, as well as a proof of
fact 5.2, once we show that the cell containing s in ~r is indeed the region
<((91' (92)"

Consider a point p in free space. If p ~ YPss((91, (92), then there exists a
geodesic((91 u (92) path from s to p that does not bend at a vertex of (92- This
implies that there exists a root r ~ (p) for p in SPM(s, (91) such that rp does
not intersect (92 and the unique geodesic path gol(s, r) from s to r does not
intersect (92- Since the path from s to r (along go,(s, r)) to p (along rp) does not
cross any obstacle boundaries of (91 and (92 and does not cross any pseudo-exten-
sion segments or bisectors, the point p must lie in the cell of d containing s.

Conversely, if p lies in the same cell with s in e~r then the segment rp does not
intersect (92 for some root r ~ ~ (p) , since otherwise p would be disconnected
from s by the union of pseudo-extension segments and obstacle boundaries of (92.
Similarly, the segment joining r to its (unique) root root(r) must not cross (92,
since r must be in the same cell as s and p. Thus, g~l(s, r) must lie in the cell
containing s, showing that p is indeed accessible from s. []

7. Extending the shortest path map

A simple consequence of the definition of accessibility is the fact that the
accessibility region is correctly subdivided by the current shortest path map:

LEMMA 7.1
The partitioning of Y'~((91, (92) according to SPM(s, (91) is exactly the same as

the partitioning of ~r @2) according to SPM(s, (ga u (92).

Proof
Consider any t ~ <((91, (92)- If t lies in cell C(v) of SPM(s, (901) , then it is

visible to v (fact 4.2). Before the addition of the secondary obstacles (92, the
shortest path from s to t went from s to v along a geodesic((90 path, and then
went from v to t along vt. The fact that t is accessible implies that this path is

96 J.S.B. Mitchell / Shortest paths among obstacles

still feasible after the addition of the secondary obstacles (02. Clearly, adding the
secondary obstacles (92 cannot make this path any shorter, so t must lie in cell
C(o) of SPM(s, (.01 t_) (02)-

Conversely, if t is an accessible point that lies in cell C(v) of SPM(s, (01 U (02),
then the geodesic((0 a u (02) path from s to t with root v must have no vertices of
(02 along it, so it is also a geodesic((01) path. Thus, t lies in cell C(o) in the map
SPM(s, (01)- []

The problem we consider in this section is that of extending the shortest path
map into the region which is not accessible.

We begin by identifying those secondary obstacles that are fully hidden from
view; they may be ignored for the moment, since they will be incorporated into
the shortest path map in a later iteration of the main algorithm. We concentrate
only on the set 0 a _c (01 ~.) (02 of obstacles that are accessible with respect to (01
modulo (02- Given the boundary description of zr (02), it is easy to identify
the set (0a by traversing the boundary of Y/~((01, (02), noting those obstacles that
have vertices or edges in common with the boundary.

We let ~ '= P \ { ze~((01, (02) t.) (0a) be the set of inaccessible (" unseen") points,
including those points that lie in obstacles that do not border the accessible
region. From fact 5.2 we know that the boundary of q/consists of straight line
segments (which are subsegments of obstacle edges or extension segments) and
hyperbolic arcs (which are subarcs of the bisectors in the original shortest path
map). If no point on the boundary of P is accessible, then ~ is a connected
region R 0 with a single hole. Otherwise, ~ is a union of a set of simply
connected regions, R1,. . . , Rj.

The basic idea of our algorithm is to transform the problem of building the
shortest path map partition of ~ into that of building a geodesic Voronoi
diagram of an appropriate set of sources in an appropriate set of simple polygons.

The geodesic Voronoi diagram of a set of point sites in a simple polygon P is
defined in precisely the same manner as the usual Voronoi diagram of a set of
point sites in the plane, except that the distance function used is that of geodesic
distance within the polygon. Thus, the interior of the polygon is partitioned into
cells according to the lengths of Euclidean shortest paths to the sites.

Geodesic Voronoi diagrams for a set of point sites in a simple polygon are
discussed in [2], where an O(n logZn) algorithm for constructing such diagrams is
given. In fact, Aronov [2] builds the "shortest path partition" of the geodesic
Voronoi diagram, in which each Voronoi cell is further subdivided according to
the last vertex along the unique shortest path from the cell's site to the points of
the cell.

Before giving details of our algorithm, we make a few important remarks
concerning our application of the results of [2]:

(1) Aronov [2] requires a general position assumption in order for the al-
gorithm to work as he states. Our general position assumption is strong enough to

J.S.B. Mitchell / Shortest paths among obstacles 97

imply his. It is possible, but tedious, to remove the assumpt ion f rom the
algori thm of [2].

(2) In the case that the unseen region ~ consists of a single connected
componen t with one hole, we will need to compute a geodesic Voronoi diagram
within a polygon with a single hole. We can still apply the algori thm of [2], with a
minor modification. First, we make a cut along a chord joining the hole to the
outer boundary of the polygon. In the resulting simple polygon, we compute the
diagram by applying [2]. We then must use the extend and merge procedures of
[2] to obtain the correct diagram in the original polygon with the hole.

(3) The sites in our Voronoi problems will always occur on the boundary of
the enclosing polygon. We think of the sites as being " jus t inside" the polygon.

(4) We will need to compute weighted geodesic Voronoi diagrams in which
there is an additive nonnegative weight associated with each site. More precisely,
this means that the distance f rom a point p to a site r is defined to be the
geodesic distance f rom p to r plus the weight of r. It is easy to check that the
resulting weighted geodesic Voronoi diagram has cells with straight or hyperbolic
boundaries. It is also not difficult to modify the algori thm of [2] to handle the
case of weights without affecting the worst-case running time. Instead of present-
ing the details here, we can refer the reader to an alternate approach that we
presented in an earlier draft of this paper [18], where we showed that the
weighted geodesic Voronoi problems that arise in our applicat ion can be solved
directly by the method of [2] as follows. First we note that the sites in our
application will always be on the boundary of the polygon. Then, for each site r,
we construct a very skinny straight corridor (a "leg") extending f rom r with
length equal to the weight of r. We then consider there to be a source (without
weight) at the end of the leg. Al though the legs may intersect the polygon, this is
not impor tant in being able to run the algori thm of [2] on the new polygon; we
can think of the legs as lying in different Riemann sheets so that they do not
interfere with the execution of the algorithm.

ALGORITHM B

Input: Point s, the shortest pa th map SPM(s, (91), a description of the boundary
of r 02).

Output: A subdivision of the set of unseen points, ~ (92) ['j (ga},
according to the shortest pa th map SPM(s, (ga), where (ga _c (91 u (92 is the set of
obstacles that are accessible with respect to (91 modu lo 02 .

(0) By traversing the boundary of SPM(s, (91), determine the set (ga - (91 U (92 of
obstacles that are accessible with respect to (91 modulo (_92 .
(1) Construct the planar map describing the boundary of the set of unseen
points, q l= P \ (Y'~((91, (92) U ~ }. q/ is either a single connected region R 0 with
a single hole (Y/~((91, (92) U (ga) or a union of simply connected regions, R1 , . . . , R s.

98 J.S.B. Mitchell / Shortest paths among obstacles

r 1

S

/ U7

�9 �9 � 9

/ �9 u 6

S �9 s S
S �9 �9 A

S �9 �9 S ,

, ' ,s Ul ,fR~
t �9 s ~ S ~ , ~ ,

, ' , , ; . u3
t,?,;" U4 /:,,-

b..,r wedge

- . - _ r 2

Fig. 4. Adding wedges to R 1 and R 2.

(2) Traverse the boundary of q/, keeping the set ~ on the right, replacing each
hyperbolic arc ab with the pair of line segments ar and rb, where r is the root
whose cell C(r) lies to the left of arc ab. The result of adding "wedges" in this
way is a new set, q/' _ ~ , with straight boundary segments. We refer to the roots
r that form the apices of the wedges as wedge roots. In fig. 4, the hyperbolic arc
ab is replaced by line segments ar 2 and rzb, which bound a wedge with wedge root
r 2. Note that there may be many wedge roots occupying the same location; we
assume that separate instances are created for each. In fig. 4, the original regions
R 1 and R: are shown shaded, and there are three wedges (with dashed
boundaries), with two wedge roots at location r 1 and one wedge root at location
r 2. By lemma 7.2 below, the set ~ will either be a polygon Q0 with a single
polygonal hole (in the case that ~ was a single component R 0 with a hole) or a
set of disjoint simple polygons, Q1 , Qs (in the case that ~ is a union of
simple regions R1, . . . , R j).
(3) Identify the set of shadow-producing vertices: a vertex u of ~2 is shadow-pro-
ducing if it is accessible (with respect to 01 modulo 02) from s, and u is not on
the boundary of a wedge. In fig. 4, points u;, i = 3 , . . . , 7, are shadow-producing
vertices (two other vertices, u I and u2, are not shadow-producing since they lie
on wedge boundaries).

J.S.B. Mitchell / Shortest paths among obstacles 99

u 7

u6

r 1

Fig. 5. The polygonal regions Q1 and Q2:

r 2

(4) For each connected component Qj of ~ ' , define an instance of a weighted
geodesic Voronoi problem (WVDj) within Qj in which the set Sj of sites for
WVDj is the set of all shadow-producing vertices and wedge roots on the
boundary of Q j, with each site weighted by its geodesic distance from s (which is
known from SPM(s, 01)). Figure 5 illustrates the two Voronoi problems corre-
sponding to the polygons Q1 and Q2 that arise from fig. 4; the sites are
S 1 = {r 1, u 6, u7} and S 2 = {r l, r2, u3, u4, us}.

LEMMA 7.2
The process of enlarging q/ by adding wedges in step (2) yields a new region

~ ' that is either a polygon Q0 with a single polygonal hole (in the case that q/
has one connected component R 0 with a single hole) or a set of disjoint simple
polygons Qa,---, QJ (in the case that qg is the union of simple regions R1,... , R j).

Proof
Consider the wedge w bounded by rb, arc ba, and ar. Since w is a subset of the

cell C(r), it is free of primary (01) obstacles. It must also be free of secondary
(02) obstacles, since otherwise arc ab could not have been on the boundary of a
connected component of q/. Since the shortest path map is a planar subdivision,
no other wedge could intersect the interior of w. (There may be other wedges with
wedge root at position r.) Thus, the wedges we add to ~ to obtain ~ ' are
nonoverlapping, implying that the connected components of qr are also non-
overlapping. Note too that we have not created any holes by the addition of
nonoverlapping wedges. Furthermore, ~ ' has only straight boundary segments.
[]

100 J.S.B. Mitchell / Shortest paths among obstacles

LEMMA 7.3
Solving the weighted Voronoi diagram problem WVDj yields a subdivision of

Rj identical to that of SPM(s, (ga) restricted to Rj.

Proof
A geodesic path from s to point t ~ Rj must enter Qj either through a wedge

root or through a shadow-producing vertex, since a geodesic path cannot cross a
bisector (fact 4.3) or relative interior of the portion rx of an extension segment
that bounds an SPM cell (since points on rx can be reached by a shortest path
with root r, by definition of the cell C(r)). Thus, the SPM partitioning of Qj is
equivalent to the weighted Voronoi diagram partitioning (with the refinement of
the shortest path partitioning) of Pj in which the weights assigned to source
points equal their distances from s with respect to obstacle space (ga. By our
construction, WVDj solves precisely this problem. []

THEOREM 7.4
Algorithm B correctly extends the shortest path map into the set q /= P \

{ zr (92) u (9 a) of unseen points and its running time is O(V(n I + n2)), where
V(n) = O(n logZn) is the time required to solve a weighted geodesic Voronoi
diagram problem of size n within a simple polygon.

Proof
Correctness was established in the previous lemma. Since ~r (92) and

SPM(s, (91) are of linear size, the total input size of all of the Voronoi diagram
problems WVDj is O(n I -n2) . []

8. The main algorithm

ALGORITHM C

Input: Point s, a set (9 of m disjoint polygonal obstacles within an enclosing
simple polygon P, with a total of n edges bounding P and the obstacles.

Output: The shortest path map SPM(s, (9).

(0) Let (91 = ~ , and let (92 = (9" Let k = 0. Initially, let SPM be the trivial planar
subdivision consisting of a single cell corresponding to the entire polygon P.
(1) If (92 = ~ , then stop. Otherwise, go on to step (2).
(2) Compute ~s((91, (92) using algorithm A of section 6. This requires O(n log n)
time. Let (9 a be the set of all obstacles that are accessible from s with respect to
(91 modulo (92 , i.e., those that have part of their boundary in common with the
boundary of 3U's((91, (92).

J.S.B. Mitchell / Shortest paths among obstacles 101

(3) Extend the SPM subdivision into the set of unseen points qg using algorithm
B of section 7. This requires O(V(n)) = O(n log2n) time and yields SPM(s, (9a)-
(4) Set (ga *-- (ga, (92 ~ (92\0a, and k ~ k + 1. Go to step (1).

Remarks
(a) Note that we only place accessible obstacles in the set (91, SO there will

never be a primary (91 obstacle that is not accessible with respect to (91 modulo
(92; thus, it will always be the case that (91 c (9 a.

(b) The first time that we enter step (2) of the algorithm, we compute
~r (9), which is simply the visibility polygon about s with respect to all
obstacles. While this can be done using algorithm A, one would usually prefer to
do this in time O(n log n) by a standard visibility sweep about s.

(c) If we are interested only in finding a shortest path from s to a destination
point t, given in advance, then step (1) of the above algorithm can be modified to
stop as soon as t becomes accessible. This may greatly reduce the number of
iterations necessary.

(d) The following simple observation can potentially lead to a considerable
improvement in the running time when a destination point t is given in advance.
For a given point t, we notice that it suffices to extend the shortest path map only
into the component, R j, of q/ that contains t, not into the entire set q/. This
saves us the effort of solving many Voronoi diagram problems each time we call
algorithm B. A related observation was made in [16], where it was shown that one
only needs to consider the component of the "cone of overlapping obstacle
profiles" that contains a given destination t.

The value of k at the conclusion of the algorithm records the total number of
major iterations required until termination. If a destination point t is given in
advance, then k is called the illumination depth of t and is denoted by k(t) ;

t

s

Fig. 6. A case in which k(O) = 12(n).

102 J.S.B. Mitchell /Shortestpaths among obstacles

otherwise, k = max t ~ .~k(t) is called the illumination depth of the obstacle space
and is denoted by k(O). In the worst case, k(O) can be ~2(n) (see fig. 6), but it
will frequently be much smaller than n. For example, if we know that s can see at
least part of the boundary of every obstacle, then k (0) = 1. We can show a
simple upper bound on k((9).

FACT 8.1
k (t) is bounded above by the number of different obstacles in contact with any

geodesic path from s to t. In particular, k(t) (and, hence, k(O)) is bounded
above by m, the number of obstacles.

Proof
Let g(s, t) be any geodesic path from s to t. Let 01 , 0 M be the set of

obstacles touched by g(s, t), in order of increasing distance from s to x j, the first
point of Oj encountered by g(s, t). With each major iteration of our algorithm, at
least one new obstacle becomes accessible. The algorithm terminates once OM
becomes accessible. This implies that k(t) <. M. []

COROLLARY 8.2
k(t) is bounded above by the number of edges in any geodesic path from

s t o t .

In conclusion, we have the following:

THEOREM 8.3
The shortest path map of a polygonal obstacle space of size n can be found in

time O(kn log n + kV(n)), where k = k((9) is the ilumination depth of the space
and F(n) is the time required to compute the geodesic Voronoi diagram of a set
of O(n) sites within a simple polygon of size n. The current bound of F (n) =
O(n log2n) yields an overall bound of O(kn log2n).

9. Dynamic shortest path map maintenance

Our algorithm can also be used in a natural way to maintain a shortest path
map, given a sequence of insertions and deletions of obstacles. In the dynamic
problem, one would like to avoid doing a complete recomputation of the shortest
path map if the change induced by the inser t ion/dele t ion is minor.

First, note that if we want to insert one or more obstacles into an SPM, we
may end up altering the diagram in a very significant way. For example, placing
just one obstacle in such a way as to cross an edge of the current shortest path
tree results in modifying the shortest path map involving all of the vertices in the
subtree that was cut off. So the size of the change can be s

J.S.B. Mitchell / Shortest paths among obstacles 103

We can accommodate an insertion by applying our algorithm as follows:
Assume that we have SPM(s, O), and we are given a new set of obstacles, O', to
add to our obstacle space. First, we apply algorithm A to compute zr O').
Then, by a traversal of the boundary of ~'~'~((9, (9'), we determine the set
60 a _c (gu (9' of accessible obstacles with respect to (9 modulo (9'. Now, we simply
apply algorithm C, starting at step (3) with (91 = (9 and (9 2 = ((9 u (9 ') \ (9~. The
running time is bounded by O(kn log2n), where k is now the number of major
iterations that we must do in order to correct for the addition of the new
obstacles. One may expect that k will be small in many cases, but it can be I2(n)
in the worst case.

Just as an insertion can cause a linear-size change in the SPM, so can a
deletion. In order to handle a deletion of a set (9' _c (9 of obstacles, we proceed as
follows. We are given SPM(s, (9). The points that are not accessible with respect
to (99\(9' modulo (9' are those points x that have roots ~?(x) that are vertices of
(9' or descendents of vertices of (9' in the shortest path tree SPT(s, (9), since such
points x have a vertex of (9' on every shortest path from s to x. Thus, we first
traverse the boundaries of all cells rooted at vertices of the deleted obstacles or at
descendants of these vertices in SPT(s, (9). This allows us to construct the
accessible region Y/~((9\(9', (9'). Let (91 be the accessible obstacles (those that
appear on the boundary of ~t~((9\(9', (9')), and let (9 2 -~-(9k(91. We now apply
algorithm C starting at step (3). Again, the running time is bounded by
O(kn log2n), where k is now the number of major iterations required to correct
for the deletion of (9'.

10. Conclusion

There are a variety of algorithms known for computing shortest paths, but at
the present time there is no one algorithm that is fastest in every case. We have
presented here a new technique which is an improvement over previous al-
gorithms in many cases and is nearly optimal (O(n log2n)) in cases in which the
illumination depth k is bounded. Unfortunately, there are situations in which our
algorithm is worse than existing O(n 2) solutions to the shortest path problem.
Several open questions remain:

(1) Can the geodesic Voronoi diagram of a set of source points in a simple
polygon be computed in time O(n log n)? If the current bound of V(n)=
o (n log/n) were to be improved, it would imply a corresponding improvement in
the time bound of our algorithm. Also, it may be possible to take advantage of
the special structure present in our case. In particular, how efficiently can one
find the geodesic Voronoi diagram of a set of sources all of which are on the
polygon boundary?

(2) Can the running time of our algorithm be improved to something like
O(kn + V(n))? Such an improvement would reduce the worst-case running time

104 J.S.B. Mitchell , / Shor t e s t paths among obstacles

of our algorithm to quadratic. It is not likely that such an improvement will be a
trivial extension to our algorithm, since we require O(n log n) time at each
iteration just to do the point location queries in algorithm A.

(3) Can we get an algorithm with running time O (L n log2n), where L is the
minimum number of line segments in any obstacle-free polygonal path from s to
t? (L is called the "link distance" from s to t.) We know that the illumination
depth k is bounded above by the number of links in any shortest path from s to
t, but it is not true in general that k ~< L.

(4) Can we combine the ideas presented here with those of other existing
algorithms to obtain an algorithm that is optimal or nearly optimal in more
cases? In particular, some of the cases that are bad for our algorithm are quite
easy for existing algorithms (e.g., the visibility graph may be sparse, as in fig. 6).
Loosely speaking, it seems that our algorithm works well in many cases in which
the visibility graph is dense and poorly in some cases in which it is sparse.

Acknowledgements

The author would like to thank Erik Wynters for his implementation work
which provided the complex shortest path map pictures, Esther Arkin for useful
discussions on this research, and the participants of the research seminar on
computational geometry at Cornell for many stimulating conversations. The
referees provided many useful suggestions for improvements of the paper. One
referee is responsible for many corrections to the original paper and suggesting
the current version of algorithm A, using the methods of [11]. This research was
partially supported by National Science Foundat ion grants ECSE-8857642 and
IRI-8710858, and by a grant from the Hughes Artificial Intelligence Center,
Hughes Research Laboratories, Malibu, CA.

References

[1] H. Alt and E. Welzl, Visibility graphs and obstacle-avoiding shortest paths, Z. Oper. Res. 32
(1989) 145-164.

[2] B. Aronov, On the geodesic Voronoi diagram of point sites in a simple polygon, Algorithmica 4
(1989) 109-140.

[3] T. Asano, T. Asano, L.J. Guibas, J. Hershberger and H. Imai, Visibility of disjoint polygons,
Algorithmica 1 (1986) 49-63.

[4] J. Canny and J. Reif, New lower bound techniques for robot motion planning problems, Proc.
28th FOCS (Oct. 1987) pp. 49-60.

[5] K. Clarkson, Approximation algorithms for shortest path motion planning, Proc. 19th Annual
ACM Symp. on Theory of Computing, New York City (May 25-27, 1987) pp. 56-65.

[6] K. Clarkson, S. Kapoor and P. Vaidya, Rectilinear shortest paths through polygonal obstacles
in O(n log2n) time, Proc. 3rd Annual ACM Conf. on Computational Geometry, Waterloo,
Ontario (1987) pp. 251-257 (to appear in Algorithmica).

J .S .B. Mitchel l / Shortest pa ths among obstacles 105

[7] Dijkstra, A note on two problems in connection with graphs, Num. Mathematik 1 (1959)
269-271.

[8] H. Edelsbrunner, L.J. Guibas and J. Stolfi, Optimal point location in a monotone subdivision,
SIAM J. Comput. 15 (1986) 317-340.

[9] S.K. Ghosh and D.M. Mount, An output sensitive algorithm for computing visibility graphs,
Proc. 28th Annual IEEE Syrup. on Foundations of Computer Science (1987) pp. 11-19.

[10] L.J. Guibas, J. Hershberger, D. Leven, M. Sharir and R. Tarjan, Linear time algorithms for
visibility and shortest path problems inside triangulated simple polygons, Algorithmica 2
(1987) 209-233.

[11] L.J. Guibas, M. Sharir and S. Sifrony, On the general motion planning problem with two
degrees of freedom, Discr. Comput. Geom. 4 (1989) 491-521.

[12] L.J. Guibas and J. Stolfi, Primitives for the manipulation of general subdivisions and the
computation of Voronoi diagrams, ACM Trans. Graphics 4 (1985) 74-123.

[13] S. Kapoor and S.N. Maheshwari, Efficient algorithms for Euclidean shortest path and visibility
problems with polygonal obstacles, Proc. 4th Annual ACM Syrup. on Computational Geometry,
Urbana-Champaign, IL (June 6-8, 1988) pp. 172-182.

[14] D.T. Lee, Proximity and reachability in the plane, Ph.D. Thesis, Technical Report ACT-12,
Coordinated Science Laboratory, University of Illinois (Nov. 1978).

[15] D.T. Lee and F.P. Preparata, Euclidean shortest paths in the presence of rectilinear boundaries,
Networks 14 (1984) 393-410.

[16] J.S.B. Mitchell, Planning shortest paths, PhD Thesis, Department of Operations Research,
Stanford University (August, 1986).

[17] J.S.B. Mitchell, Shortest rectilinear paths among obstacles, Technical Report No. 739, School
of Operations Research and Industrial Engineering, Cornell University (April, 1987) (revised
version to appear in Algorithmica).

[18] J.S.B. Mitchell, A new algorithm for shortest paths among obstacles in the plane, Technical
Report No. 832, School of Operations Research and Industrial Engineering, Cornell University
(October, 1988).

[19] J.S.B. Mitchell, An algorithmic approach to some problems in terrain navigation, Art. Intell. 37
(1988) 171-201.

[20] J.S.B. Mitchell, D.M. Mount and C.H. Papadimitriou, The discrete geodesic problem, SIAM J.
Comput. 16 (4) (1987) 647-668.

[21] N.J. Nilson, Principles of Artificial Intelligence (Tioga Publ. Co., Palo Alto, CA, 1980).
[22] M.H. Overmars and E. Welzl, New methods for computing visibility graphs, Proc. 4th Annual

ACM Syrup. on Computational Geometry, Urbana-Champaign, IL (June 6-8, 1988) pp. 164-171.
[23] J.H. Reif and J.A. Storer, Shortest paths in Euclidean space with polyhedral obstacles,

Technical Report CS-85-121, Computer Science Department, Brandeis University (April,
1985).

[24] H. Rohnert, Time and space efficient algorithms for shortest paths between convex polygons,
IPL 27 (1988) 175-179.

[25] M. Sharir and A. Schorr, On shortest paths in polyhedral spaces, SIAM J. Comput. 15 (1)
(1986) 193-215.

[26] E. Welzl, Constructing the visibility graph for n line segments in O(n 2) time, Inf. Processing
Lett. 20 (1985) 167-171.

[27] C.K. Yap, Algorithmic motion planning, in: Advances in Robotics: Vol. 1, eds. J.T. Schwartz
and C.K. Yap (Lawrence Erlbaum Assoc., 1987) pp. 95-143.

[28] G.E. Wangdahl, S.M. Pollock and J.B. Woodward, Minimum-trajectory pipe routing, J. Ship
Res. 18 (1974) 46-49.

