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Abstract 

We consider the motion planning problem for a point constrained to move along a path 
with radius of curvature at least one. The point moves in a two-dimensional universe with 
polygonal obstacles. We show the decidability of the reachability question: "Given a source 
placement (position and direction pair) and a target placement, is there a curvature-con- 
strained path from source to target avoiding obstacles?" The decision procedure has time and 
space complexity 20(p~ where n is the number of corners and m is the number of bits 
required to specify the position of corners. 

1. Introduction 

Anyone who has ever tried to parallel park an automobile is familiar with the 
problem of planning constrained motion. The difficulty of planning such motions 
is twofold. While an automobile can move forward (or backward) and can turn, 
its turning radius has a lower bound defined by the steering mechanism. Thus the 
motion of the automobile must be collision-free and must conform to the 
automobile's turning radius constraint. 

We study a very simple model of the motion of an automobile. The model is a 
directed point moving in a compact two-dimensional universe U. The directed 
point can move forward (in the sense of its associated direction) and it can 
change its direction at a rate (with respect to path length) bounded by some fixed 
maximum. We model the requirement that the path avoid obstacles by requiring 
that the path stay within U. We assume that U has polygonal boundary; however, 
U need not be simply connected, that is, U may have two-dimensional holes. A 
placement of the point is a pair consisting of a position and a direction. We wish 
to answer the following reachability question: "Given a source placement and a 
target placement of the point is there a motion of the point within U from the 
source placement to the target placement that satisfies the constraint on the rate 
of turning?". The main result of this paper is a decision procedure for this 
reachability question. The time and space complexity of the procedure is ex- 
ponential (20(p~ where n is the number of vertices of the boundary of U, 
m is the number of bits needed to specify the positions of the vertices, and 
poly(n, m) is a polynomial in n and m. 
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The bound on rate of turning is one kind of constraint on the possible motions 
of an object. Other types of constraints are bounds on velocity or acceleration. 
One reason for studying constraints on motion is to extend the class of solvable 
motion planning problems beyond what has been studied by classical motion 
planning. 

Classical motion planning, as studied by Schwartz and Sharir [14] and others, 
addresses the problem of finding a collision-free path for an object. The object 
moves through a universe filled with obstacles. Both the object and the obstacles 
are assumed to be known ahead of time. A point in configuration space specifies a 
placement of the object; configuration space has as many dimensions as there are 
degrees of freedom of motion of the object. Free space is the subset of configura- 
tion space corresponding to placements of the object not intersecting any ob- 
stacle. Schwartz and Sharir [14] give an algorithm that constructs a representation 
of free space from a description of the object and the obstacles. Their algorithm is 
very general, allowing arbitrary rotations, translations, linkages, etc. The running 
time of the algorithm is doubly exponential in the dimension of configuration 
space. Recently Canny [3] obtained an algorithm that constructs a lower-dimen- 
sional " roadmap"  of free space; his algorithm is (singly) exponential in the 
number of dimensions of free space. Much of the literature on motion planning 
can be viewed as efficient algorithms for special cases of the motion planning 
problem. 

Construction of free space is essentially all that is required to solve motion 
planning problems if there are no constraints on the motion of the object. This is 
because there is a collision-free path of the object from one placement to another 
exactly if the corresponding points in free space are (topologically) path-con- 
nected. Testing path-connectness of two points is usually easy given the represen- 
tation of free space (in fact actually constructing the path is also relatively easy). 

Construction of free space is not sufficient to solve motion planning with 
constraints, however. For example, free space for the directed point is very 
simple. It is just the Cartesian product of U with the space of all directions. 
There is a one-one  correspondence between the path-connected components of 
free space and the path-connected components of U. Unfortunately, path con- 
nectedness in free space does not imply reachability because of the curvature 
constraint on motions. In fact two configurations in free space can be arbitrarily 
close but neither is reachable from the other. 

Two recent papers have considered kinematic constraints on motion. They 
both construct a time-configuration space, with an extra dimension for time. Reif 
and Sharir [13] consider the problem of planning the motion of an object with a 
velocity bound. All paths must be monotonic in the time dimension; a velocity 
constraint corresponds to a bound on the slope of a path. O'Dunlaing [10] studies 
the problem of a point moving on a line constrained by an acceleration bound. 
He gives an algorithm to decide if the point can avoid obstacles moving with 
known trajectories. These two algorithms are obtained by showing that it is 
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Fig. 1. Cycling behavior. 
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sufficient to consider certain "normalized" paths between "features" in t ime-  
configuration space. Notice that paths in t ime-configuration space never return 
to the same feature (because of time monotonicity). This is a substantial dif- 
ference from the planning problem for the directed point. It is quite possible that 
the only path from source to target visits an obstacle more than once (see fig. 1), 
indeed arbitrarily many times. This substantially complicates the decision proce- 
dure. 

We remark that we carefully chose to plan curvature-constrained motion for a 
point. Planning curvature-constrained motion for, say, a convex polygon is a 
substantially harder problem. Indeed it may not even be decidable. It is not 
sufficient to construct free space for the convex polygon and then plan a 
curvature-constrained motion through it. This is discussed in section 7. Other 
comments on the constrained motion planning problem also appear in section 7. 
These include planning shortest paths, planning paths with reversals, and other 
constraints. 

1.1. OVERVIEW OF THE DECISION PROCEDURE 

The decision procedure for curvature-constrained motion is quite complicated. 
We now give an overview of it, which provides an overview of the remainder of 
the paper. The following remarks are a somewhat simplified form of the decision 
procedure as it actually appears. 

The first step in the decision procedure is a normalization theorem. We show 
that if there is a path from source placement to target placement, then there is a 
path that consists of a finite sequence of jumps. A jump is a path consisting of a 
unit circular arc, either left or fight, a straight segment, and another unit circular 
arc. Furthermore, the start of the first jump is the source placement, the end of 
the last j ump is the target placement, and every other endpoint of a jump is at an 
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obstacle, either tangent to a wall or grazing a comer. (A wall is a line segment 
contained in the boundary  of U, a corner is a vertex of the boundary  of U.) An 
important consequence of the normalization theorem is that it suffices to com- 
pute just  the placements reachable from the source placement at walls and 
corners. For  then we can simply test if the target placement can be reached by  a 
jump from some such reachable placement at a wall or corner. 

The placements at a wall or corner can obviously be structured into intervals. 
An interval at a corner is the Cartesian product  of the position of the corner with 
an interval of directions. An interval at a wall is the Cartesian product  of a 
subsegment of the wall with one of the two directions along the wall. Clearly, if 
any placement at a wall is reachable, then any placement further along the wall in 
the same direction is also reachable. Hence there can be at most two intervals of 
reachable placements at a wall, one in each direction. 

The second major step in the decision procedure is to bound  the number  of 
disjoint reachable intervals at corners. This is the heart of the decision procedure 
and indeed is by far the hardest part of the proof. We show that every reachable 
interval at a corner either contains a " roo t "  or a "self-dual" interval. A " roo t "  is 
a placement determined by the geometry of obstacles. Examples of roots are the 
final placement of a straight-line path connecting two corners and the final 
placement of a unit circular arc connecting two corners. The number of roots is 
polynomial in the number of corners. A "self-dual" interval at a corner b is 
determined by  a placement at a wall or corner a. The left endpoint of the 
self-dual interval is the placement at b reached from the placement at a by 
following a f ight-left  hop, that is, a path consisting of a unit right arc followed 
by a unit left arc. Similarly the right endpoint of the self-dual interval is reached 
by a left-r ight hop (see fig. 6b). All arcs are constrained to be of length at most 
�9 r, hence for some placements at a there may not be a corresponding self-dual 
interval at b. The principal theorem is that in a collection of disjoint self-dual 
intervals at b from a, the intervals can be ordered so that their size increases 
geometrically. We can show that the smallest interval must have size at least 
2 -~(m). Hence there can be at most O(m) disjoint self-dual intervals at b from a. 
Since there are only O(n)  possible choices of a for each corner b, there can be at 
most polynomially many disjoint self-dual intervals. Since any reachable interval 
of placements at a corner contains a root or a self-dual interval, there are at most 
polynomially many disjoint reachable intervals. 

The first step in attaining this bound is the proof  that any reachable interval of 
placements at a corner contains a root or a self-dual interval. We define a 
procedure stretch that deforms a jump from a wall or corner a to a corner b. The 
result is a family of paths from a to b that are homotopic  to the jump,  avoid 
obstacles, and satisfy the curvature constraint. Every path has the same starting 
placement at a; different paths have differing final directions at b. The goal of 
stretch is to produce as large an interval of placements at b as possible. We can 
show that when stretch terminates, the interval of placements at b contains either 
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a root or a self-dual interval. Now suppose some placement at b is reachable 
from the source placement. By the normalization theorem there is a path whose 
final portion is a jump from a wall or corner a to b. By applying stretch to this 
last jump, we see that the placement at b is in fact contained in a reachable 
interval containing a root or a self-dual interval. Procedure stretch is conceptually 
quite simple: a continuous deformation of the jump that avoids obstacles and 
satisfies the curvature constraint. Unfortunately, the details of the analysis of 
stretch are quite hard. 

The second step in attaining the bound on the number  of intervals is the proof 
that the size of disjoint self-dual intervals grows geometrically. Crucial to this 
proof is the function relating input direction to output  direction of hops between 
two points at a fixed distance apart. The algebraic equations describing this 
function are quite complex, and it seems intractible to obtain and manipulate an 
explicit formula for it. We give a simple formula for the derivative of this 
function. With this formula we can carry out the required analysis: essentially we 
show that the function is convex, hence can be adequately approximated by a 
two-piece linear interpolant. We remark that the hop function is a special case of 
the equations arising from "four-bar linkages" in kinematics [15]. The derivative 
formula appears to be new. 

Once the bound on the number of intervals is attained, there are two ways to 
obtain the decision procedure for the reachability question. The easiest is to 
encode the reachability question as a formula of R( + ,  • ), the first order theory 
of the reals with addition and multiplication. We can characterize the reachable 
intervals as the fixed point of the "one jump"  mapping from sets of intervals to 
sets of intervals. Notice that because of the possibility of a cycle from a corner 
back to itself (fig. 1), it is necessary to use fixed points. The dominant  term in the 
complexity of the formula is the number of variables. Representing each reacha- 
ble interval requires a constant number of variables; since there are polynomially 
many reachable intervals, polynomially many variables are needed. This gives a 
double-exponential time decision procedure. Notice that some intervals of reacha- 
ble placements may be open at an endpoint; this is because placements arbitrarily 
close to the endpoint are reachable, but the endpoint itself is not. However, it is 
easy to encode intervals with open endpoints in R ( + ,  • ). 

The resource bounds can be reduced by a second more complicated decision 
procedure. This procedure is essentially transitive closure of reachable intervals, 
using stretch to propagate intervals. We label each endpoint of an interval by the 
path that reaches it. The numerical value of the endpoint can be expressed using a 
formula of R( + ,  • ); hence manipulations of labels involve calls to the decision 
procedure for R( + ,  • ). The crucial point is that we need only logarithmically 
many variables of R ( + ,  • ) in the formulas for endpoint labels. For technical 
reasons, the formulas have exponential length. However, deciding such a formula 
of R ( + ,  • ) takes only exponential time. We show that the transitive closure 
terminates after only exponentially many steps (we need to test for cycles 
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explicitly; the fixed point of a cycle can be represented as a formula of R( + ,  • )). 
Hence the improved decision procedure takes (singly) exponential time and 
space. 

The next section, section 2, contains the definitions used throughout this paper. 
Section 3 is concerned with jumps. Section 3.1 contains the normalization 
theorem, proved in two steps: first showing that a curvature-constrained path can 
be modified to only contain straight segments and circular arcs, then further 
modified so that all circular arcs touch obstacles. Section 3.2 considers the 
collection of jumps from one wall or corner to another. These form a finite set of 
equivalence classes under a natural notion of restricted homotopy. In section 3.3 
we characterize the reachable intervals as a fixed point of a mapping defined 
using jumps from sets of intervals to sets of intervals. 

Section 4 describes procedure stretch and the analysis of the intervals resulting 
from stretch. Section 4.1 describes stretch informally; the formal definition and 
proofs about stretch are contained in section 4.2. Section 4.3 contains an easy 
classification of the intervals resulting from stretch into self-dual, saturated (i.e. 
containing roots) and "heterodual". Section 4.4 gives the proof of the main 
theorem about self-dual intervals, that they increase in size geometrically. Section 
4.5 shows that any "heterodual" interval actually contains a self-dual interval, 
hence the size of heterodual intervals need not be analyzed separately. 

Section 5 gives the easy reachability decision procedure. First we bound the 
number of disjoint reachable intervals, using the results proved in section 4. Then 
we construct a formula of R( + ,  • ) expressing the reachability question. Section 
6 gives the improved decision procedure. Section 6.1 describes the labelling 
procedure and shows that a modified form of transitive closure terminates after 
an exponential number of steps. Section 6.2 discusses the implementation details 
of the decision procedure using formulas of R( + ,  x ). Finally, section 7 has more 
comments and some open questions. 

2. Definitions 

2.1. PATHS AND PLACEMENTS 

This section contains many (though not all) of the definitions used in the 
paper. In appendix 2 we give a list of terms and symbols used in the paper, 
together with the section numbers where they are defined. When reading the 
paper it is probably useful to have this list easily accessible. 

The universe U is a closed, bounded subset of R a with polygonal boundary. U 
may have polygonal holes representing obstacles. The boundary of U consists of 
vertices, called corners, and closed segments, called walls. There are two measures 
of the complexity of U: the number n of corners and the size m of the 
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coordinates of corners (that is, the coordinates of any corner can be specified as a 
reduced rational +_p/q with 0 ~<p, q < 2") .  

A direction 0 is a point on S a, the unit circle centered at the origin; we 
interpret 0 as the direction of the ray through 0 with endpoint at the origin. An 
interval I of directions is a connected arc of $1; its length is denoted [ I ] .  If  we 
write I = [01, 02] then I is closed, 01 is the clockwise endpoint of I and 02 is the 
counterclockwise endpoint of I; similar notation is used if I is open or halfopen. 
We allow small reals to be added or subtracted to directions; the addition of a 
positive real corresponds to counterclockwise motion about  S 1 and a negative 
real to clockwise motion. This extends to addition of intervals of reals: if 0 is a 
direction and [x, y] an interval of reals then 0 + [x, y] is the interval [0 + x, 0 + 

Y]. 
A function p: [0, a] ~ R 2 is a smooth path if p ( r ) = ( X p ( r ) ,  yp(r)) and 

l ! Xp, yp: [0, a] ~ R are differentiable and the derivatives Xp, yp are continuous 
and not simultaneously zero. By elementary analysis ([6], p. 156), any smooth 
path has finite length; hence we assume p is parameterized by arc length. Let 
q~p(r) be the direction of the tangent to p(r) .  Path p is curvature-constrained if 

[ ~bp(r2)  - -  qbp ( r l )  [ ~< [ r  2 - -  r 1 ! for all r 1, r 2 E dom(p ) .  A curvature-constrained 
path has curvature bounded above by  1 almost everywhere [4]; it may have 
finitely many points where, say, a straight segment meets a circular arc (the usual 
definition of curvature does not extend to such points). Path p is feasible if it is 
curvature-constrained and p ( x )  ~ U for every x ~ dora(p) .  

A placement is a pair (u, 0) with u ~ R 2 and 0 a direction; it is feasible if 
u ~ U. If path p is curvature-constrained and r ~ d o m ( p )  we can define in the 
obvious way a placement at p(r) .  We let I2(p)  be the initial placement of p and 
~9(p) be the last placement of p; we say p is a path from ~2(p) to O ( p ) .  If there 
is a feasible path from placement ~0 to placement 0, then 0 is reachable from o~. 

A corner contact is a pair (c, s) where c is a corner and s is " lef t"  or "right".  
The full contact interval at (c, s) is the set of pairs (c, 0) where 0 is the direction 
of a line through c so that near c both  walls incident to c are to side s of the line. 
Thus a placement in a contact interval at corner c neither enters nor leaves the 
boundary  of U. A full corner contact interval spans an interval of directions of 
size strictly less than ~r. A wall contact is a pair (w, 0), where w is a wall and 0 
one of the two directions along the wall. The full contact interval at (w, 0) is the 
set of pairs (u, 0) with u ~ w. An interval at a corner contact is a subinterval of 
the full contact interval at the comer  contact (endpoints may be open or closed). 
An interval at a wall contact (w, o~) is ((u,  0): u ~ w'} ,  where w'  is a subseg- 
ment of w containing the endpoint of w in direction 0 (the other endpoint  of w'  
may be open or closed). (If placement (u, 0) at a wall contact interval is 
reachable, then so is every placement along w towards the endpoint  in direction 
0.) 

The reachability question is "Given  U of complexity n and m, a source 
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placement and a target placement, is there a feasible path from the source 
placement to the target placement?" 

2.2. JUMPS, LEAPS, AND HOPS 

An oriented placement a is a triple (u, O, d )  where u ~  U, 0 ~  S z, and 
d ~ ( L ,  R }. Oriented placement o determines an oriented circle C o of radius 
one; Co is the circle that has tangent at u in direction O and orientation given by 
d ( L  is counterclockwise, R is clockwise). The orientation is necessary to select 
one of the two possible circles with tangent at u in direction O. The position of o, 
written uo, is its location in U; zo is the center of Co_If d is L or R then d is R 
or L, respectively; if a is (u, 0, d)  then ~ is (u, O, d). 

A jump is a pair of oriented placements. A jump j = (a,  o ' ) ,  o = (u, O, d),  
a '  = (u ' ,  O', d ' )  determines a path from (u, O) to (u ' ,  O') obtained by following 
an arc along Ca, the segment tangent to C o and Co,, and an arc along Co,. Notice 
that the tangent is unique because we require that it have direction consistent 
with the orientations of C o and Co,. We use " jump"  to refer both to a pair of 
oriented placements and to the path it specifies. (The path does not exist if C o 
overlaps C o, and they have opposite orientations; in general we will assume 
without explicit mention that j is chosen so that the path exists.) We use ~2(j) 
and b)(j) to denote the initial and final placements of j ,  as before. In addition 
�9 ( j )  is the direction of the tangent segment of j. 

A unit arc is an arc of a circle of radius 1. A unit arc is short if it has length 
between 0 and r and long if it has length 0 or length between r and 2r The type 
of an oriented arc is Tt, where T is L or R (the orientation of the arc) and t is s 
or l (for short or long). The type of a jump is a concatenation of the types of the 
two arcs traversed in the jump. We define length 0 arcs as long so that, 
informally, jumps of a particular type are closed (otherwise the limit of a 
sequence of arcs with length approaching 2r would not be long). We use " X "  or 
" x "  if we do not care what the particular component  of the type is; thus a jump 
of type XsXs has short arcs of arbitrary orientation. 

Jumps of a particular type define a relation on initial and final placements: in 
general, for a fixed initial placement many  final placements may  be reachable by 
some jump of that type, and conversely. We now impose restrictions on jumps to 
make this relation functional. A leap is a jump with one of the following 
restrictions: the initial arc has length 0, the final arc has length 0, the initial arc 
has length ~r, the final arc has length or, or the tangent segment has length 0 (i.e. 
the initial arc touches the final arc). The last kind of leap is a hop; necessarily the 
two arcs have opposite orientation. 

A leap type is a similar to a jump type, with 0 or r used in addition to s and 1. 
A leap type is derived from a jump type if it is obtained by possibly setting one s 
or l to 0 or or. Leap types are syntactically distinct from jump types with the 
exception of hop types: L~rRs must be a leap type, but  LsRs could be a jump 
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type or a hop type. Any leap type (except the type of a hop) can be derived from 
two different j ump  types; from a jump type there are four derived leap types if 
the arc orientations are the same (hop types are not possible) and five derived 
leap types otherwise. 

For  a and b contacts and t a leap type, the leap function gt b is the function 
sending a placement at a to the placement at b that is reached from a by  a leap 
of type t. It can be verified that gt b is a function, indeed is o n e - o n e  (g t  b may not 
be defined for all placements at a). In the case that a and b are both corners, gt b 
is covariant if exactly one arc length in t is l (the others can be s, 0 or ~r), 
otherwise gt  b is contravariant. "Covar iant"  (or "monotonical ly  increasing") 
means that if o~ is slightly counterclockwise of 0~', then grab(tO ) is slightly 
counterclockwise of gtab( OJ ). 

If we impose two restrictions on a jump,  then there is at most one possible 
j ump  between two contacts with both restrictions. The (type 0) roots include the 
initial and final placements of every j ump  with two restrictions between two 
contacts. Thus placements at a corner with the following directions are roots: the 
straightline direction towards another corner, the direction along a unit circular 
arc to another corner or wall, the direction along a path consisting of a unit arc of 
length ~r followed by  a straight segment, and so forth. In fig. 4 (right-hand side), 
the source placement and final placement of every depicted jump is a root. We 
also include in type 0 roots the source placement and the endpoints of every 
corner contact interval. This implies that every interval at a wall contains a root. 
Since there are only a constant number  of jump types with two restrictions, there 
are only a constant number of type 0 roots defined between a pair of contacts, so 
only O(n) type 0 roots at a contact, and O(n 2) altogether. In section 3.2 we 
define a larger class of (type 1) roots. 

2.3. ALGEBRA 

THEOREM 2.3.1. [5] 
A formula of R ( + ,  • ) (the first-order theory of the reals) of length l, 

variables, and maximum degree d is decidable in time (dl)2~ 

In sections 5 and 6 we use the decision procedure for R ( + ,  x ) in the decision 
procedure for the reachability question. We sketch here how to represent geomet- 
ric primitives in R( + ,  x ). A placement (u, 0) can be represented using four real 
variables, x, y for position and v, w for direction, with the side constraint that 
0 2 + w 2 = 1. If a is the oriented placement (u, O, d), then the center zo of C o can 
be obtained easily from x, y, o, w. The assertion j = (o, "r) is a jump of type t is 
" there  is a directed line l at distance + 1 from zo and z~ (sign chosen so that the 
direction of l is consistent with the orientation of o and "r) so that arc lengths 
along C O and C, are consistent with t (determined by the order of projections of 
zo, uo, z~, ur on l)." Membership in U can be expressed by  a formula of length 
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O(nm): for example, triangulate U and express membership in some triangle. 
Hence  feasibility of jumps  is expressible with a formula of the same length. The 
construction of other primitives is similar and straightforward. 

For  the improved decision procedure in section 6, we will need a bound  on the 
total number  of possible fixed points of a cycle from a contact  back to itself. This 
bound  will follow from a bound  on the number  of simultaneous zeroes of a 
system of multivariate polynomial equations. The bound on the number  of 
simultaneous zeroes is given by  the degree of the univariate polynomial  obtained 
by  using resultants to eliminate all but  one of the variables. Note  that the degree 
counts both  real and complex zeroes; we are really interested in real zeroes, but  
the bound  on both real and complex zeroes is good enough. The following is a 
standard result, see for example [16]. 

LEMMA 2.3.2 
Given two real polynomials p(x,  y) and q(x, y) of degrees d and e, there is a 

real polynomial r(x), the resultant ofp and q so that r(x) = 0 iff there is y so 
that p(x,  y ) - -q (x ,  y ) =  0. (Note x and y may be real or complex, in fact y 
may be complex even if x is real.) The degree of r is at most de and the 
coefficients of r have size at most (d  + e) 2 log(d + e)s, if p,  q have coefficients 
of size s. 

For  the material in section 6 it is convenient to use only a single real variable 
to represent a placement at a fixed contact. This is possible since we always know 
the contact interval containing the placement. If the contact is a wall, then clearly 
the direction of the placement is a constant and the position requires only a single 
variable. If the contact is a corner, then the position is a constant. Since the 
contact  interval at the comer  has size less than ~r, we can rotate the interval so 
that its directions are, say, the upper semicircle of S '  and represent the direction 
by  a single variable constrained between - 1  and 1. 

LEMMA 2.3.3. 
For  each leap function g~ab there is a real polynomial t pab(X, y) not identically 

zero of constant degree with coefficients of size O(m) so that gtab(X ) =y implies 
p~ab(X, y) = O. 

Proof 
For  each grab there is a formula F(x, y) of R ( + ,  •  so that F(x, y) is 

satisfied exactly when gtab(X ) =y.  It is possible to choose F(x, y) in prenex 
normal form so that its prefix contains only existential quantifiers over a vector 
of variables r and so that its matrix is the conjunction of polynomials Pi(x, y, r) 
= 0 and Q~(x, y, r ) ~  O. Furthermore, each polynomial P, involves only two 
variables and there are at least as many polynomials P, as variables. We can use 
resultants to eliminate the vector of variables r, obtaining pt b. [] 
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Note that the lemma does not claim the converse statement, in particular 
p~b(X, y ) = 0  does not necessarily imply g~ab(X)=y. For the use that we will 
make of ptb, that is, to bound the number  of simultaneous fixed points of cycles, 
it does not matter  that pt~b may have spurious zeroes. 

A final definition will be used in section 4. A real r is of constant algebraic 
complexity if it is the zero of a real polynomial of constant degree with coeffi- 
cients of size cm, c a constant. Easily the direction of any root is of constant 
algebraic complexity. The following is a standard result; an extensive discussion 
appears in the paper by Schwartz and Sharir [14]. 

LEMMA 2.3.4 

If r, r '  are distinct reals of constant algebraic complexity, then 
2O(-m).  

I r - r ' l>~  

3. Reduction to jumps 

3.1. NORMALIZATION 

THEOREM 3.1.1 

If p is a feasible path, then there is a feasible path p' consisting of a j ump  
from ~2(p) to a contact, a finite sequence of jumps between contacts, and a final 
jump to O(p) .  

In particular, the path p '  consists only of straight segments and unit arcs, and 
every arc except possibly the first and last touches some point of the boundary  of 
U. An immediate consequence is that the target placement is reachable exactly if 
it is reachable by a jump from the source placement or from some reachable 
placement at a wall or corner. 

LEMMA 3.1.2 [7] 

If p is a curvature-constrained path of length at most ~r/2, then p does not  
enter theinter ior  of C o or Cs, where o and 8 are the oriented placements through 
12(p). 

LEMMA 3.1.3 

If p is a feasible path, then there is a feasible path p '  with the same initial and 
final placements solely consisting of unit arcs and straight segments. 

Proof 
Recall that p must have finite length (see section 2.1). Path p can intersect 

each corner at most a finite number  of times, since by lemma 3.1.2, the path from 
a comer  back to itself must have length at least 7r/2. If p intersects a wall w for 
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the first time at a placement (u, O) then there must be a last time p intersects w 
at a placement (u ' ,  0) with u '  in direction 0 along w from u; we can replace the 
section of p from (u, 0) to (u ' ,  0) with a segment along wall w. Hence we can 
assume that p intersects each wall only a finite number of times (each time a 
point or segment), since again by lemma 3.1.2, the path from a placement (u, 0) 
on wall w to a placement (u ' ,  0) on w in direction opposite 0 from u must have 
length at least ~r/2. 

Say a touch point is a corner touched by p or a point where p just begins to 
touch a wall or a point where p just finishes touching a wall. We claim that there 
is 8 with 7r/2 > 8 > 0, so that if p(x )  ever gets within distance 6 of the boundary  
of U, then for some x '  near x, p ( x ' )  passes through a touch point. Let 8' be the 
minimum of ~t/2, the distance between any pair of corners, and the distance 
between a touch point on the interior of a wall and any other obstacle (including 
the corners at the end of the wall). Let the set of placements p '  be the placements 
in p not including any placement whose distance along p to a boundary point of 
U is less than 8'. Then the set of positions of placements in p '  is closed and does 
not intersect the boundary of U. Set 8 > 0 to be less than the minimum of 8' and 
the distance from the position of any placement in p '  to the boundary of U. 
Then the position of any placement in p '  is certainly at least 6 from the 
boundary of U, and a placement on p not  in p '  lies on a subpath passing 
through a touch point. 

We split p into a finite number  of subpaths, each of length at most 8/2, so 
that each subpath q satisfies one of the following: q lies entirely along a wall, q 
entirely avoids obstacles, q avoids obstacles except that one endpoint touches a 
corner, or q avoids obstacles except that one endpoint touches an interior point 
of a wall. In the last case we assume also that the projection of q along the wall 
lies entirely within the wall. In each case we can assume all of q is at least 8 from 
any obstacle distinct from the obstacle that q touches. 

We claim that each path q can be replaced by a feasible path q'  consisting of a 
unit arc, a straight segment, and another unit arc (one or two pieces may be 
empty). Let r be the length of q. Say a c-cone through placement a = (u, q~), N,, 
is the set of points of R 2 within distance r of  u, lying on or outside C(u,,,L ) and 
C(u,~,R ), and inside the halfplane with bounding line through u and interior 
normal in direction 4'. Then N~ is a " tr iangular"  region with boundary  a section 
of arc of C(u,q,,L), a section of arc of C(u,~,R), and a circular arc of radius r and 
center u (see fig. 2). Let w = I2(q), 0 =  ~9(q), and 0' the placement with 
direction opposite 0. By lemma 3.1.2, all of q lies inside both N,~ and No,. In 
particular No, n N o, is connected and contains both uo, and u o. Let B~, be the 
portion of the boundary  of No, that also bounds No, n No,, and similarly for Bo,. 
Notice that no part of the arc of radius r bounding No, can appear in B,~. B 0, and 
B~, intersect at two points b and t. For x ~ Bo, let r(x)  be the ray with endpoint 
x tangent to Bo,. We claim there is x 0 ~ Bo, so that r(Xo) is also tangent to Bo,; 
this demonstrates the required path q'. To see this claim let a(x) be the angle 
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Fig. 2. Path q is not shown but lies in No, C~ No,. 
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between r(x) and the tangent to B 0, at the first point of intersection between 
r(x) and Bo,. Then a(b) and a(t) must have opposite sign; since a(x) varies 
continuously as long as r(x) is not  tangent to Bo,, there must be some point at 
which r(x) becomes tangent to Bo,. The constructed path q '  surely has length at 
most 2r. 

We must show q' avoids obstacles (except possibly at 0~ and 0); let o~, 0, 0'  be 
as before. If q avoids obstacles, then q '  must  as well, since q '  has length at most 
8 and both o~ and 0 are distance more than 8 from any obstacle. Suppose o~ 
touches a wall (the case that 0 touches a wall is similar). Then since the 
projection of q stays within the endpoints of the wall, q lies in halfplane H, 
where H has bounding line through the wall and normal locally into U. Hence 
q __c_ N,o n N e, N H. It is easy to check that in this case q ' c  H as well. Path q '  
cannot intersect any other obstacle, since it is not  long enough. The case that q 
touches a comer  is similar. [] 

Proof of theorem 3.1.1 
By the previous lemma, we can assume p consists of a finite sequence of unit 

arcs and straight segments. Say a free arc is an arc on p that does not  touch an 
obstacle and is not the initial or final arc. We give two transformations on paths; 
each reduces the number of free arcs by at least one. The theorem results by 
applying the transformations repeatedly until no free arcs remain. 

Suppose A 1 is a free arc whose length is at least ~r (but less than 2~r). Let A 0 
and A 2 be the arcs preceding and following A 1 along p, and Co, C1, C 2 the 
corresponding circles (see fig. 3). The first t ransformation is to push C a in 
direction parallel to the tangent from Co to Ca. The transformed path  then goes 
from A 0 to the new position of Ca and then to C 2. Notice that as C1 moves, the 
tangent from A 0 to C a simply gets longer, of course the tangent f rom C a to (72 
moves. The arc around C 1 gets shorter; however it is easy to check that it remains 
longer than ~r (or stays at 7r if it was originally). Hence the direction of the 
tangent from C 1 to C 2 changes by less than 7r. The arc around C 2 increases in 
length if C a and C 2 are on the same side of the tangent from Ca to C2 (they have 
the same orientation) and decreases if Cx and C 2 are on opposite sides (they have 
opposite orientation). The transformation terminates when C 1 hits an obstacle 
(which must happen since U is bounded).  Possibly before then the following 
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AI 

Fig. 3. Path deformations. 

events could happen. First, the arc length around C 2 could go to zero. We 
continue with the arc A 2 of C 2 following A 2 on P if it exists; if not we must be at 
69(p) and we create a unit circle of orientation opposite C 2 through O ( p )  and 
continue. Second, the arc length around C 2 could increase to 29; we continue the 
transformation with C 2 omitting the extra cycle around C 2. Finally, the tangent 
could touch a corner; we create a circle with the same orientation as C a through 
the placement at the corner, and continue with it instead of C 2. This introduces a 
new arc, but it is not free. The first two possibilities can happen at most once and 
the third at most once per corner since the direction of the tangent from Ca to C 2 
changes by at most ~r. 

Now suppose A 1 is a free arc whose length is less than ~r. Let Co, C a and C 2 be 
as before. Extend the tangents between C o and C a and between C a and C 2 until 
they meet; the transformation in this case is to push the center of C a along the 
ray bisecting the angle formed by the extended tangents. Notice that arc length 
along C 1 decreases as C a is pushed. The transformation terminates if arc length 
along C 1 becomes zero or the arc along C a touches an obstacle. The remaining 
details are similar to the previous case. [] 

3.2. CONFIGURATION SPACE FOR JUMPS 

For this section, a and b are fixed contacts and t o is a fixed jump type. We 
define a "configuration space" C for jumps of type t o from a to b. Note that 
since the contacts are fixed, the initial and final placements of a jump can each be 
specified by a single parameter (direction in the case of corner contacts and 
position in the case of wall contacts). Hence C is two-dimensional. C is naturally 
partit ioned by curves defined using obstacles; each region of the partition 
corresponds to feasible homotopic jumps. The purpose of the configuration space 
construction is to define .-to t ~  and X( j ,  l), where I is an interval at contact a. ,-,ab~.~t t 

--ta~ ) is a collection of representative jumps, one chosen from each region that 
has a jump with source placement in I. For j ~ .-to t t x  --ab~'J, X( j ,  I)  is all feasible 
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Fig. 4. J u m p s  of  type  RsRs  f r o m  a to b. D i rec t ion  at a is w; a t  b it is 0. 
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jumps homotopic to j with source placement in I. The principal result is that 
~ , ( I )  has size O(n:). 

Define c(j)  = (I2(j) ,  O ( j ) )  and C = ( c ( j ) :  j is a jump from a to b of type 
t o }. (In this section only we use " C "  for configuration space; in all other sections 
" C "  is used in "Co" meaning the circle through oriented placement o.) Clearly C 
is contained in the Cartesian product of the contact interval at a with the contact 
interval in b. We say a point in C is feasible if it is the image under  c of a 
feasible jump; it can be checked that the feasible points in C form a closed set. 

Figure 4 depicts configuration space (on the left) and some corresponding 
jumps (on the right). The jumps are of type RsRs from a corner contact at a to a 
corner contact at b (the actual obstacles are not  shown). The horizontal axis is 
the source direction o~ = I2(j);  the vertical axis is the target direction 0 = O ( j ) .  
The zero direction, i.e. the middle tickmark, for w is vertically upwards from a; 
the zero direction for 0 is vertically downwards from b. 

Let a vertical segment through w be ((w, 0): 0 ~ I }, where I is a subinterval of 
the contact interval at b, and similarly for "horizontal  segment". It is easy to 
check that the boundary of C is contained in the union of c u r v e s  grab for t a leap 
type derived from t o together with vertical segments through the endpoints of the 
contact interval at a and horizontal segments through the endpoints of the 
contact interval at b. We split the boundary  of C into boundary curves; each is a 
maximal piece of a c u r v e  gtab or a horizontal or vertical segment. The boundary  of 
C actually forms a cycle, so C is path-connected. 

As depicted in fig. 4, the boundary  of C consists of the leap functions of type 
RORs (from the jump RORO to jump RORTr), type RsRvr, R~rRs, and RsR0. 
Figure 4 is schematic in two ways. First, the boundary  curves are not  actually 
linear functions, so the boundary curves are not straight. Second, notice that the 
RORO and R~rR~r jumps have initial directions that differ by ~r, as do the final 
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directions. However, the size of the contact intervals at a and b must be strictly 
less than ~r. Hence the boundary of C must also include vertical and horizontal 
segments defined using the endpoints of the contact intervals at a and at b. 
These are not depicted in the figure. 

We now define a collection of curves partitioning C. Informally, f,d is the 
curve in C defined by jumps that touch obstacle d on the source arc (i = 1), 
tangent segment (i = 2), or final arc (i = 3). For  d a corner contact, let fld = { C( j ) :  
j is a jump of type t from a to b with source arc touching d }; then fad is a 
vertical segment through a root. One endpoint of fad (corresponding to a jump 
with source arc as long as possible) must lie on a boundary curve; the other 
endpoint of fad either lies on a boundary curve as well, or corresponds to a jump 
consisting of an arc to d followed by a leap to b. In the second case the other 
endpoint lies on fEd" The definition of fld with d a wall contact is similar, with 
source arc of j tangent to d. The definition of f3d for d a wall or corner contact 
is similar to that of fad, using the final arc of j ;  then fad is a horizontal segment 
through a root. For d a corner contact define fzd with tangent segment touching 
d; fEd is a monotonic curve with endpoints on the boundary or fad or fad" If d is 
a wall then no definition of f2d is needed since necessarily either an endpoint of d 
touches the tangent segment of a jump or an arc of a jump touches d. In fig. 4, 
fap corresponds to all jumps with source arc passing through point p and f3q 
corresponds to all jumps with final arc passing through q. A curve fzp in general 
is a "diagonal"  curve through configuration space. 

Let cg be all boundary curves and all curves f,d" 

LEMMA 3.2.1 
The intersection of two distinct curves in c~ is a point or a horizontal or 

vertical segment. 

Proof 
Every curve in cg is horizontal, vertical, or monotonic. The lemma is immediate 

except in the case of two monotonic curves. There can be at most one leap with 
two types, hence g'ab r g~'b is at most a point. There can be at most one leap of a 
particular type with tangent constrained to go through a particular point, so 
gtab n f2d is at most a point. Finally, there is at most one jump of a particular type 
with tangent constrained to go through two different points, so fEd n fEd' is at 
most a point. [] 

A vertex is the point of intersection of two distinct curves in ~ ,  if it is unique. 
Notice that the endpoint of every vertical or horizontal segment also intersects 
some other curve; hence the endpoint of a segment that is the intersection of two 
vertical or horizontal segments is a vertex. Since there are only O(n) curves in ~ ,  
there are at most O(n 2) vertices. 
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LEMMA 3.2.2 
Let (~, 0) be a vertex. Then 0 is a root or the composit ion of one or two leap 

functions applied to a root; w is a root or the composit ion of one or two inverse 
leap functions applied to a root. In all cases roots are type 0 roots. 

Proof 
First suppose that vertex (r 0) = c ( j )  is the unique point of intersection of 

two curves in c~. If one curve is a vertical segment v, then it must be through a 
root, so w is a root. If c ( j )  ~ v n t gab, then O = grab(O) ). If c ( j )  ~ v n f2 a, then j 
consists of a leap to d followed by  a leap to b. (Note that a special case is if 
o = faa, then d is a corner at the intersection point  of the source arc and tangent 
segment of j.) If  c ( j ) ~  o N h  for a horizontal segment h, then h must be 
through a root, so 0 is a root. The analysis of intersections involving a horizontal 
segment is similar, it requires the use of inverse leap functions. If c ( j )  ~ g~b n f2a, 
then j is a leap with tangent segment touching d~ the placement along j at d 
must be a root as is one of r and 0; the other is obtained by  a leap function or 
inverse leap function. If c ( j )  Ef2 a nfza, ,  then j is a j ump with tangent touching 
d and d ' ;  both placements along j at d and d '  must be roots, ~0 is obtained by 
an inverse leap function and 0 by a leap function. Both coordinates of the unique 
point  of intersection of two curves garb and garb are roots. [] 

We now decree that the coordinates of all vertices are (type 1) roots. This gives 
O(n 2) roots at contact  a for each contact b, hence a total of O(n 3) roots at a 
and O(n 4) over all contacts. 

The removal of the curves cg splits C into open path-connected regions; the 
removal of vertices from the curves cg partitions them into open one-dimensional 
curves. We let ~ be the set whose elements are feasible vertices and the closure 
of curves or regions containing a feasible point. By planarity, ~ has at most  
O(n z) elements. The bound  O(n z) is tight to within a constant factor (see fig. 5). 

LEMMA 3.2.3 
If R E ~ ,  then every point in R is feasible. 

Fig. 5. Example showing ~' has O(n 2) elements. 
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Proof 
We claim that if p: [0, 1] --* C is a path from c(j) to c(j'), j is feasible, and p 

never leaves a curve f,d (that is, if p intersects such a curve it must stay on it), 
then j '  is feasible. Clearly h = c-1 o p is a homotopy  from j to j '  so that every 
intermediate path is a jump with source placement in I. Suppose j is feasible and 
j '  is not. Then for some point x jump h(x) is feasible and h(x') for all x '  > x 
near x is not. Then for x ' >  x near x, h(x') must intersect the interior of an 
obstacle near a wall or corner d and h(x) must touch d. Hence p(x) lies on f,a 
and p ( x ' )  for x '  > x does not. 

For  the lemma, R must be the closure of R ' ,  where R '  is some open region or 
curve containing a feasible point. By the definition of ~ ,  no path connecting two 
points in R '  can leave a curve f,a, hence every point in R '  is feasible. Every point 
in R is feasible since the set of feasible points is closed in C. [] 

Let I be an interval contained in the contact interval at a ( I  can have open or 
closed endpoints) and set C(I) = {(0~, 0) ~ C: ~0 ~ I} .  Define ~ ( I )  restricted to 
C(I) in the same fashion as ~ (the definition must use relative closure in C(I)). 
~ ( I )  still has O(n 2) elements, since the vertical segments through the endpoints 
of I can intersect each curve in ~g at most once. 

Construct a representative set of jumps  .-to l f~ by  choosing a jump from the ~.. .ab\a ] 

interior of every two-dimensional region in ~ ( I ) ,  then a jump from the interior 
of any one-dimensional region not on the boundary  of a two-dimensional region, 
and then any vertices not on the boundary  of a one- or two-dimensional region. 
Then every jump j ~ Z~},(I) has c(j) in a unique region of ~ ( I ) ,  and every 
R ~ ~ ( I )  has a representative jump (possibly lying in a region of which R forms 
part  of the boundary).  For  j ~ N~0b(I) we define X(j, I) = { j': c(j ')  ~ R where 
c(j) e R ~N(I)} .  

LEMMA 3.2.4 

An endpoint of @(X(j, I)) is a root or the composit ion of one or two leap 
functions applied to an endpoint of I. An endpoint of s X( j, I)) is an endpoint  
of I or a root. If ~2(X(j, I)) .g I, then @(X(j, I)) contains a root. If a is a wall, 
then @(X(j, I)) contains a root. 

Proof 
The proof  of the first two statements is similar to lemma 3.2.2. For  the third 

statement, if j is the jump with ~2(j) attaining the endpoint of ~2( X ( j ,  I ) )  that is 
not an endpoint of I, then a similar case analysis shows that O(j) is a root. 
Finally, if a is a wall, since motion along the wall is always possible, we can find 
a j ump  j '  so that c(j ')  is a vertex of the same region R of ~ ( I )  containing j .  
D 
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3.3. PROPAGATION USING JUMPS 

For I an interval at a, b a corner contact, and j ~ - - t  ,.%b(I) we define 
J(j ,  1) = 6)(X(j, 1)). Thus J(j ,  1) is the interval of placements at b reachable 
from some placement in 1 by jumps homotopic to j and of the same type as j .  If 
b is a wall contact (w, 0), we define J(j ,  I) to be the set of placements at w 
reachable by some jump in X( j ,  I )  possibly followed by a straight segment along 
wall w. Then J(j ,  I) is an interval at b. We now extend mapping J to a 
mapping j propagating sets of intervals into sets of intervals. To do this we 
must discuss sets of intervals. 

A set J of intervals is well-formed if each 1 ~ J is a subset of some contact 
interval and if I, 1 '  ~ J are intervals at the same contact then I u 1 '  is not  an 
interval. We write Jr-- J ' ,  if for each I ~ J there is I '  ~ J '  with I _ I ' .  The 
merge of J and J ' ,  written o c t 3 J ' ,  is the smallest (under r--) well-formed set 
J "  so that Jr-- J "  and J '  r-- J " .  More explicitly J "  is obtained from J and 
J '  by merging together adjacent or overlapping intervals. Clearly [ J U J '  I ~< 
I J [ + I J '  l- We use script ( .~ ,  J ,  J ,  ~ ,  J ' )  for sets of intervals (or functions 
with range a set of intervals); henceforth we assume without explicit mention that 
all sets of intervals are well-formed. 

For  I an interval at contact a, define J t  b (1) = tdj ~ z~'b J(  J, 1). Thus J t  b (1)  is 
all placements at b reachable from a placement in 1 by jumps of type t. Again 
for 1 an interval at contact a, d e f i n e , i f ( / ) =  {I}  t3 l__lb, t Jamb(I); thus J ( 1 )  is 1 
together with all placements at all contacts reachable by some jump from some 
placement in I. Finally extend ar to sets of intervals: , i f ( J ) =  1 3 1 ~ , f f ( I  ). 

Let J0 be the set containing the interval containing exactly the source 
placement. Let ~ be the set of all placements at contacts reachable by some 
feasible path f r o m  the source placement. By theorem 3.1.1, we have ~ =  
like_ 0 J ( k ) ( J 0 ) .  Since J is a monotonic map, ~ is also the least fixed point of ar 
containing J0- 

For each k, aC<k)(J0) is a finite set of closed intervals, since J0 is closed and 
09" maps a finite set of closed intervals into a finite set of closed intervals. Hence 

is the countable union of dosed  intervals; this implies ~ is the countable 
union of disjoint intervals with open or closed endpoints. In section 5 we show 
that the number of intervals in :~ is in fact finite; however, intervals in ~ may  
well have open endpoints. 

4. Procedure stretch 

4.1. INTRODUCTION 

We now consider a procedure stretch for generating reachable placements. The 
arguments to stretch are a source placement and a jump from the source 
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placement to a corner. The result of stretch is an interval of placements at the 
comer  reachable by feasible paths from the source placement. 

The motivation for stretch is to propagate as large an interval of reachable 
placements as possible. The problem with simply propagating reachable place- 
ments using jumps is that there is no apparent way to bound the number and size 
of reachable intervals. With stretch and the tools developed in its analysis, good 
bounds on the number of disjoint reachable intervals can be obtained. 

Suppose j ~ (a, ~-) is a jump to corner c. The goal of stretch is to deform jump 
j into a family of paths with interval of final directions as large as possible. Each 
feasible path is homotopic to j. Procedure stretch can be described informally as 
follows. Jump j traverses an arc of Co, a straight segment tangent to C o and C~, 
and an arc of C,. Imagine rotating C~ around corner c, say clockwise. Then the 
jump consisting of C o and the rotating C, still traverses an arc of Co, a (moving) 
straight segment, and a (moving) arc of C,. Several events can happen during this 
rotation. One event is that the final arc on C, hits an obstacle. Then the rotation 
stops, because it is not possible to deform the jump further. Alternatively, the 

(a) saturated 

(b) self-dual 

(c) heterodual 
Fig. 6. Path families resulting from stretch. 
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straight segment of the jump could hit an obstacle. Continued rotation would 
result in an infeasible path. Instead, the path bends around the obstacle. Specifi- 
cally, the final portion of the path becomes a jump with source placement at the 
obstructing obstacle; this jump is then deformed as before. (Notice bending is not 
possible if the final arc on C~ hits an obstacle.) A third event is that the length of 
the straight segment between source arc and final arc goes to zero. Then rotation 
again stops, as further deformation is impossible. Other events are possible, for 
example, if the source or final arc length decreases to zero then the orientation of 
the corresponding circle is reversed. The whole procedure is discussed more fully 
in the next section. Once rotation stops in one direction, the procedure is 
repeated with rotation in the opposite direction. The output of stretch is the 
interval resulting from rotation in both directions. 

The importance of stretch is that the resulting family of paths can be put  into 
one of three categories. This categorization is used in section 5 to bound the 
number of disjoint reachable intervals. The first category is if one direction of 
deformation (or both) stops because of contact with an obstacle (see fig. 6a). Such 
path families are called "saturated"; clearly the resulting interval contains a root. 

The second category is if deformation stops because each extreme path consists 
entirely of two oppositely oriented arcs (see fig. 6b). One extreme path must be a 
unit L-arc tangent to a unit R-arc; the other is a unit R-arc tangent to a unit 
L-arc. It is posgible to prove that all arcs have length less than 9. Such path 
families are called "self-dual" and the resulting interval a "self-dual" interval. 
Notice that a self-dual interval depends upon source direction; in particular there 
may be many disjoint self-dual intervals involving the same pair of corners. 

The third category is if deformation stops because both extreme paths end with 
two oppositely oriented arcs, but at least one path also contains other arcs or 
segments. This happens if one of the paths had to bend around an obstacle (see 
fig. 6c). Such path families are called "heterodual".  

The next section, section 4.2, describes procedure stretch in more detail and 
proves various properties of it, in particular termination. The details of the proofs 
are far from obvious. Section 4.3 discusses the categorization of path families. 
The actual theorem is that either the path family resulting from jump j can be 
categorized as described, or there is a jump j '  with the same source placement 
whose path family can be categorized, and the interval of placements resulting 
from deforming jump j overlaps the interval of placements resulting from 
deforming jump j ' .  Section 4.5 reduces the analysis of heterodual path families to 
self-dual path families: the main theorem is that any interval resulting from a 
heterodual path family contains a self-dual interval, defined from one of the 
corners intersected during the deformation. Self-dual intervals are discussed in 
section 4.4. If a path family from one comer  to another is self-dual, then the 
source direction of the path family must lie in an interval of directions centered at 
the straight-line direction from the first corner to the second. The main theorem 
of the section is that the size of the self-dual interval grows quickly (in particular 
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linearly) as the source direction moves away from an endpoint of the interval 
towards the center point of the interval. Together with a lower bound on the size 
of self-dual intervals, this theorem will be used to bound the number  of possible 
disjoint self-dual intervals. 

One final remark is that procedure stretch is somewhat ad hoc: the interval 
from stretch need not be the largest interval of placements obtained by feasible 
paths homotopic to the original jump. This happens because the extreme paths 
can contain straight segments. Such segments exist because stretch terminates as 
soon as the final arc becomes tangent to the preceding arc. A possible modifica- 
tion of stretch is to continue to deform paths in such cases. However, such a 
modification of stretch is not necessary for later sections and would further 
complicate its definition and analysis, which are already quite complicated 
enough. In retrospect, it seems it might be possible to analyze the class of all 
(curvature constrained) paths that are homotopic to a given jump and that have 
the same source direction as the jump. A more abstract proof that, say, extreme 
paths are either saturated or contain only unit circular arcs might be easier than 
the analysis of stretch. We do not know, however, how to carry out this approach. 

4.2. PROCEDURE STRETCH 

We now define procedure stretch(j, d). The first parameter  j is a feasible 
jump (o0, %) and the second parameter d is a direction of rotation L or R. Both 
o 0 and % must be feasible placements at corners. 

Procedure stretch maintains a list A = ((01, la),--. ,(Ok, lk)), k >t 2, where P, is 
an oriented placement and 1, is a natural number. List A specifies a path P 
consisting of the sequence of jumps through the successive oriented placements, 
with an additional 1, cycles around the circle Co, at P,. (We will eventually show 
that l, = 0 or 1 and 1, = 0 if i 4: 1, k.) List A is initialized to ((o 0, 0), (%, 0)), i.e. 
specifying a path identical to jump j. 

Wet let (o, lo), (p, lp), and ('r, Iv) always denote the first, penultimate, and 
ultimate members of list A. A~ is the arc of C~ traversed in the jump from p to r 
and Ao and A o are the arcs of C o and Co traversed in the jumps from a and p, 
respectively, to their successors. T is the tangent segment of the jump from p to 
"r; q~ is the direction of T. 

We first define stretch(j, L). One step of stretch(j, L) is to minimally rotate 
in direction L so that one of the events below happens. "Rotat ing"  ~" = 

(u~, 0, d)  means changing 0; thus C~ rotates about u,. As ~- rotates, A, and T 
move (and change length) and the length of Ap changes. The rest of the path is 
fixed. When one of the events below happens, list A is updated as described. This 
process continues until one of stopping conditions (A)-(C) happens. The events 
are depicted in fig. 7. 
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Fig. 7. Events in stretch. Jump j is the initial jump; it is deformed until it reaches j', at which point 
the indicated event happens. Dashed lines indicate motion of z,, the center of C~. SFLIP: After 
(SFLIP), the first arc of the jump traverses the dotted circle. SWlND: Initially jump j traverses 
almost all of Co. Jump j '  traverses none of Co. TFLIP: At (TFLIP), the orientation of C~ is flipped, 
i.e. from the lower dotted circle to the upper dotted circle. TWlND: Jump j traverses almost all of 
C~; jump j '  traverses none of Cr BEND: The tangent segment of j has hit an obstacle, so (BEND) 
adds a new penultimate oriented placement p to A. At j ' ,  (REV) occurs and at j " ,  (UNBEND) 

occurs, removing p. 

(TWIND) 

( T F L I P )  

There is a jump discontinuity of [A,  [ from 2~r to 0. Increase l~ 
by  1. 
[A~ I decreases to 0. If 1~ > 0 decrement l~; otherwise replace ~- 
with q. 
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(REV) 

(SWlND) 

(SFLIP) 

(BEND) 

( U N B E N D )  

I A~ I attains the value ~r. Do  nothing;  this event just  exists for the 
analysis. 
There is a j u m p  discontinuity of [Apl f rom 2rr to 0. Increase lp 
by 1. 
I Ao I decreases to 0. If lo > 0 decrement  l~, otherwise replace o by 

Suppose tangent segment T intersects a corner c, with the obstacle 
at c lying on side e of T. (If the segment intersects several corners 
simultaneously, or the segment overlaps a wall, c is chosen to be 
the corner furthest along the path.) Set p = (c, ~, e) and insert 
(p, 0) as the new penul t imate  element on the list, where ~ is the 
direction of T. (The effect is that  the pa th  will now traverse an 
e-directed circle starting at corner c.) 
l ap  I decreases to 0 and p 4= o. If lp > 0 decrement  it; if lp = 0, 
delete (p, 0) f rom L. 

The  following are the s topping conditions. 
(A) The direction of ~" reaches the endpoin t  of the contact  interval. 
(B) A T intersects a wall or corner other than u~. 
(C) The length of T decreases to 0 (so that  j u m p  (p, ,r) becomes a hop) and 

Comments :  
(1) The deformat ion of stretch is continuous,  hence all paths  resulting f rom 

stretch are homotopic  to the original jump.  
(2) The definit ion of stretch(j, R) is similar. 
(3) The contact  interval at c has size strictly less than ~r, hence rr is an upper  

bound  on the total change of direction stretching both  L and R. 
(4) Corollary 4.2.3 shows that  I Apl cannot  increase to 2rr if p was created by 

(BEND). Hence l, = 0 always for such p. 
Figure 8 depicts two possible families of paths resulting f rom stretch. The pa th  

family on the left would arise f rom invoking stretch(j, L) and stretch(j, R) on 
any j u m p  j in the family. The pa th  family on the right arises f rom applying 
stretch(j, L) to the depicted j u m p  with longest tangent  segment. 

A direction 8 is accessible if only finitely many  events happen  before ~- is 
rotated to direction 8 (either for stretch(j, L) or stretch(j, R)). An interval of 
directions is accessible if bo th  its endpoints  are accessible. Eventually we prove 
that  only finitely many  events happen  during stretch before one of s topping 
condit ions (A)-(C) happens.  However, for now we need the assumption of 
accessibility to ensure that  the list A is well defined. 

If 8 is accessible and an event happens  at 8, we define A(8) to be the list A 
after updates  have been performed.  Suppose no event happens  at 8 and 8 is 
accessible; let 8' be the last event to happen  before 8. Then A (8) is A (8 ' )  except 
that  the direction of the last oriented placement  is 8 rather than 8'.  In either case 
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Normal, in fact self-duN. 

Winding. 
Fig. 8. Path families arising from stretch. 

P( O), ~( 0), o( O), p( O), A,( O), Ao( O), Ao( O), q,(0) and T( O) are defined in the 
obvious way from A (0). 

For the analysis of stretch, we often consider events that happen in an 
(accessible) interval of directions I. It is convenient to only have to consider 
rotation of "r in a single direction, specifically L. It is easy to check that stretch is 
reversible, i.e. stretch(j, L) undoes the effect of stretch(j, R). Hence we may 
analyze an interval I = [0', 0] by analyzing the effect of stretch(j, L) starting on 
A(O'). If in fact direction O' arose from stretch(j, R), then the events that 
happened from O" to 0 0 can be deduced from the events that happen from 0 0 to 
/9'. 

We define the state of A from the type of its last jump: if (0, *) is XxRl, then 
A is in state (R1), and similarly for XxRs, XxLs, and XxLl. The state does not 
depend upon the orientation of 0 or the length of A o (see fig. 9). It is easy to 

ILl Rs Ls LI 

A~>O A~<O A~<O Ad?>O 
A0>A/A~ A0<2x/A~ A0<A/A~ A0>AIA~ 

Fig. 9. C, is rotating in direction L about u,. 
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check that the state of A(O) can change only according to the following diagram 
(using the assumption that "r rotates only left). 

R1 (REV))Rs (TFLIP))Ls (REV))L1 (TWIND)-)Ls 

Let lay be - l A y [  i f ' r  is oriented R and [A,[  if ~- is oriented L. For an 
(implicit) interval [0, 0 ']  we define A0 = 0'  - 0, Aq~ = q~(0') -- q,(0), and AlAy = 
IA,(O') - / A y ( 0 ) .  Then q~ + lay = 0 and Aq~ + AlAy = A0. In states (R1) and (L1) 
q, is an increasing function of 0 (i.e. the direction of the tangent moves to the 
left), hence Aq~ > 0 and A0 > alAy. In states (Rs) and (Ls) q, is a decreasing 
function of 0, hence Aq, < 0 and za0 < AlAy. This information is summarized in 
fig. 9. 

Stopping conditions (A) and (B) can happen in any state. Suppose stopping 
condition (C) happens. Then p and ~" must have opposite orientations and the 
length of Ap must be increasing. If p is oriented L, then ~- must be oriented R, q~ 
must  be increasing, and "r is in state (R1). If p is oriented R, then "r must be 
oriented L, q, must be decreasing, and "r is in state (Ls). Hence stopping 
condition (C) can arise only in states (Ls) and (R1), with l ay  [ less than ~r and 
greater than ~r, respectively. 

List A is obstreperous if O and ~- have the same orientation and u y lies inside 
Cp. (The name is chosen because this possibility adds many cases to the argu- 
ments that follow.) Necessarily l ay  l >  ~" if A is obstreperous, so A can be 
obstreperous only in states (R1) and (L1). If A is obstreperous in state (L1) it 
remains so until a stopping condition occurs (necessarily (A) or (B)); if A is 
obstreperous in state (R1) possibly also (SFLIP) can occur. Suppose A is not 
obstreperous. Then I A~ I is increasing if "r is oriented L and decreasing if "r is 
oriented R; hence lAy is an increasing function of 0 and AIAy > O. 

LEMMA 4.2.1 
Consider the sequence of events in the accessible interval [0, 0']. If (REV) 

causes a transition from state (Ls) to state (L1), then (TWIND) does not  
subsequently happen. 

Proof 
In state (L1), A0 > AIAy. If both (REV) and (TWIND) happen, then AlAy >t ~r. 

But this is impossible, since A0 is at most the size of the contact interval range at 
c, i.e. less than rr. [] 

Lemma 4.2.1 implies that A can go through at most the sequence of states 
(R1),(Rs),(Ls),(L1) or (L1),(Ls). 

An  interval is monotonic if neither (TWIND) nor  (REV) happens during the 
interval. During a monotonic interval, list A is always in exactly one of states 
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(R1), (Rs), (Ls), (L1), or is in state (Rs) followed by (Ls). Clearly q~ is monotonic  
in the interval. 

LEMMA 4.2.2 
Suppose I = [0o, 0j] is an accessible monotonic interval and A (00) describes a 

jump. Then [Aq~l <~r if A is never obstreperous and I Aq '1 < 2~r if A is 
obstreperous. 

Proof 
First suppose list A remains in a single state. We have 0 < A0 < ~r and 

- r  <~ AIA, <~ ~r since A does not change state. If A is never obstreperous then 
AIA, > 0; using A~ + AIA, = A0 yields -~r  < Aq~ < ~r. If A is obstreperous then 
-~r  < Aq~ < 2~r. The case that A is in state (Rs) followed by (Ls) is considerably 
harder, and the proof is deferred to appendix 1. [] 

COROLLARY 4.2.3 
Suppose 1 = [00, Of] is an accessible monotonic interval and A (00) describes a 

jump. Then (SWIND) does not follow (SFLIP) or (SWIND), hence 1o = 0 or 1 
always. If p is created by (BEND) then lAp I < 2~r. 

Let r(p, a) be the ray tangent to Co in direction a and for J c S 1 set 
r(p,  J )  = (r (p ,  or): a ~ J ) } .  It is clear that ' if  [[a0, all [ ~ ~', a '  ~ [a0, al] and p' 
is an oriented placement lying on r(o, a')  with the same orientation as O, then 
r(o',  [a', aa] ) _c r(o,  [%, all) (if O is oriented L)  or r(o', [a 0, a']) c_ r(o,  [a 0, al]) 
(if p is oriented R). 

LEMMA 4.2.4 
Suppose I = [00, Of] is an accessible monotonic  interval and A (00) describes a 

jump. Then event (BEND) happens at most once per corner during I. 

Proof 
We prove the lemma first for states (Rs), (Ls), and (R1). Note that A is never 

obstreperous in states (Rs) and (Ls), and is not  obstreperous after the first 
instance of (BEND) in state (R1) since a created oriented placement in A must 
have orientation L. 

Suppose event (BEND) occurs at 0, creating placement p,, i = 1, 2 . . . . .  (As in 
the proof of lemma 4.2.2 above, we consider (SFLIP) an instance of (BEND).) Set 
J / =  [if(0,), if(01) + ~r] if the tangent is moving left and J, = [ ~ ( 0 1 )  - qT", ~ ) ( O , ) ]  if 
the tangent is moving right. By lemma 4.2.2 ~, changes by at most ~r, hence we 
have J ,+l - -J , .  Also all the Pi have the same orientation, so r(p,+ 1, J,+l) c_ 
r(p,, J,). Since uo, ~ r(o,, q,(0,)) and ~(0,+1) > q,(0,) we must have uo, q~ 
r(pi+ 1, J,+ 1)- Hence all comers  causing (BEND) must be distinct. 

The remaining case is that A is in state (L1). We show that [ uo,.lu , I < [uo, u, I 
as long as [uou , [ > 2; as soon as [ uou ~ [ ~ 2 we show the direction from u,  to 
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Upt+l is to the left of the direction from u, to up,. First suppose [ up u, [ > 2. Let k 
be the point of tangency between T(O,) and C~(0, ) and k '  the point of tangency 
between T(0,+I) and C,(o,+~ ). Then up,+~ lies inside the quadrilateral Q = u,k'kup. 
Now l u ,k ' l ,  l u,kl  < 2 and 2 < l u,up(o,)l. Hence up, is the point furthest from 
u, inside the quadrilateral Q, and l u,uo,+l I < l u,up, I. 

Let p, be the first created oriented placement with [upu~ [ ~< 2. The tangent 
from Cp, to C.~(O) for 0 >/0, lies entirely within the circle of radius 2 about u~, 
hence also [ Up,+U~ I ~< 2, and in fact for all j >/i, I up u~ [ ~< 2. Choose 0 t so that 
Up, lies on the semicircular arc of C~(o, ) from the point diametrically opposite u~ 
to u~. Certainly 0 cannot move left past 0 t, because I A~ [ >/7r implies stopping 
condition (B) must happen at 0 t or before. 

Suppose (BEND) creates Pj+l, J >/i. The direction from u~ to uo,+~ must be to 
the left of the direction from u~ to up, since u~ must lie to the left of the line 
tangent to P(O,+I ) at every point between up and up . However, the direction 

J �9 J + l  

from u~ to up,+, can be at most as far left as the direction from u~ to the point 
diametrically opposite u~ in C~(os ). Hence u,, u,+ 1 . . . . .  must all be at distinct 
corners. [] 

COROLLARY 4.2.5 
If I = [00, 0/] is a monotonic interval and A(Oo) describes a jump, then I is 

accessible. 

Proof 
By lemmas 4.2.1 through 4.2.4, for each event there is a fixed bound on how 

many  times it can happen in an accessible monotonic interval. If infinitely many 
events happen in I, then in some accessible prefix of I, some bound on a 
particular event must be violated. [] 

Suppose A(O) is not obstreperous. Let "r (0)= (u , ,  0, d). If I A~(O) I 4= 0, ~r, 
define 0* 4: 0, ~-* = (u~, 0",  d)  so that C~. is tangent to the ray r(p(O), q)(O)). 
Notice that if a is the length of the arc of C,. on jump (p(O),-r*), then 
a +  IA, l=2~r .  If IA, I = 0 ,  ~r set 0 " = 0 .  

The next lemma shows that if (BEND) happens at 0, then (UNBEND)  
happens at 0 *. There is a difficulty that 0 * is not defined if A (0) is obstreperous 
(~-* can be chosen so that C~. is tangent to the line containing r(p(O), q,(0)) but 
not to r(p(O), q)(0)) itself). However, (BEND) can happen with A obstreperous 
only in state (L1). It is easy to see that subsequently A must remain obstreperous 
in state (L1) and event (TWIND) cannot happen. Hence an arbitrary definition 
of 0* in the obstreperous case is adequate for the following lemma, since the 
hypothesis that (TWIND) occurs is false. 

LEMMA 4.2.6 
Suppose I = [00, Of] is a monotonic interval, events (SWlND), (SFLIP), and 

(BEND) occur at 01, 02,. . . ,  0/, in 1, and event (TWlND) or (REV) happens at 0/. 
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Then for 0 occurring after 0 I and before 00": 
(i)  If (BEND) occurred at 0, = 0* creating p,, then ( U N B E N D )  occurs at 0 

deleting p,. 
(2) If (SWIND) or (SFLIP) occurred at 0, = '0", then (SFLIP) occurs at 0. The  

orientat ion of o changes at 0 exactly if it did at 0,. 
(3) No  other events happen.  

Proof 
It suffices to show that if (1), (2), and (3) are true for 0 '  < 0, then (1), (2) and 

(3) are true at 0 as well. So suppose (1), (2), and (3) are true for 0 '  < 0. Choose  i 
so that  0, ~< 0* < 0,+ 1 and let p, = p(O*). A trivial induct ion using (1), (2), and 
(3) now shows that before events happen  at 0, if any, p, must  also be the 
penul t imate  placement  of A (0). 

We first show (1) and (2). Suppose 0 -- 0,*, then one of (SWIND),  (SFLIP) or 
(BEND) occurred at 0,. Hence [A0(0'  ) [ increases f rom 0 as 0 '  increases f rom 0,, 
so [ Ap(0 ' )  [ decreases to 0 as 0 '  increases towards 0 = 0,*. If (BEND) happened  
at 0i, then p, 4: o(0,) and (UNBEND)  happens  at 0. If (SWIND) happened  at 0,, 
then p, = o(0,), lo was incremented at 0,, and the orientat ion of o was not  
f l ipped at 0,. Hence (SFLIP) happens  at 0, I a is decremented,  and o is not  
flipped. Similarly if (SFLIP) happened  at 0,, then p, = o(0;) and the or ientat ion 
of o was flipped. At 0 (SFLIP) happens  again and again flips the or ientat ion of 
O. 

Next  we show (3). Event (TWIND)  cannot  happen  at 0 for then the event at 0j 
would be (REV) changing state f rom (Ls) to (L1), contradict ing lemma 4.2.1. 
Event (TFLIP)  cannot  happen,  for then the event at 0j would be (REV) changing 
state f rom (R1) and (Rs), A(Oo) would be in state (R1), [A,(00*)[ > 0 ,  so 
0 > 00" , contradict ing 0 < 00". Similarly (REV) cannot  happen  at 0. If  0 4= 0,*, 
then ]Ao(O ) [ 4: 0, so (SWIND),  (SFLIP),  and ( U N B E N D )  do not  happen  at 0. 

Showing (BEND) does not  happen  is a little harder. We assume [A~(0) [ > ~r 
and [ A , ( 0 * )  [ < rr; the other case is similar but  easier. This assumpt ion implies ~- 
is oriented L, [A,  [ is increasing, the tangent  is moving right in [00, 0i] and  
moving left after 0/. For  simplicity we assume no event happens  at 0" ,  hence 
there is a small interval H--- [O h, 0" ]  in which p has constant  value Oh. Clearly 
p(O) = Ph" Let k be the endpoint  of T(O) not  on Cp. For  a ~ H define s(a) to be 
the segment extending T(a)  to have endpoin t  on line u~k. We claim s(a) does 
not  intersect the interior of any obstacle. Now clearly T(a) forms an initial 
segment of s(a) and does not  intersect the interior of any obstacle, since it is par t  
of a feasible path. Let a(a) = s(a) - T(a). We claim every point  of a ( a )  lies on 
A , ( a ' )  for some a '  ~ H. This follows f rom the observations that every point  of 
a ( a )  is closer to u~ than the length of the chord subtending A , (a ) ,  and that  
[A~(a*)  [ ~< [ A~(a ' )  [ ~< [A~(a) ] for a '  ~ H. Hence no point  of a ( a )  lies in the 

interior of any obstacle. 
Consider  region s (H)  = {s(a) :  a ~ H} .  Now T(O) = s(O*) forms part  of the 
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boundary of s(H).  If some obstacle intersects the interior of T(0) on the left side 
of T(O), then it must also intersect the interior of s(H). But this is impossible, 
since no point in the interior of s(H) can intersect the interior of any obstacle. 
Hence (BEND) does not happen at 0. [] 

THEOREM 4.2.7 
Procedure stretch terminates after at most O(n) steps. 

Proof 
The sequence of states of A is either a subsequence of (R1),(Rs),(Ls),(L1), or 

(Ls),(L1),(Ls). We analyze the case that A actually goes through all states of the 
first sequence. The other cases are similar. 

Suppose A is initially in state (R1) with direction 00. By corollary 4.2.5, the 
interval until (REV) happens is accessible, and by lemmas 4.2.1-4.2.4 at most 
O(n) events happen. By lemma 4.2.6, at most O(n) events happen until 00". At 
00", again by lemma 4.2.6, A describes a jump. Hence the argument can be 
repeated for the remaining sequence of states. [] 

4.3. CATEGORIZING PATH FAMILIES 

If j is a jump, we let Sj be the interval of final placements and Pj (more 
explicit than simply P) be the family of paths resulting from stretch(j, L) and 
stretch(j, R). Thus Pj is defined on Sj and for 0 ~ Sj, Pj(O) is a path with final 
placement 0. Notice Pj contains enough information to reconstruct the sequence 
of events occurring during stretch. 

If either stretch(j, L) or stretch(j, R) terminated because of stopping condi- 
tions (A) or (B), we say Pj is saturated. Clearly if Pj is saturated, one endpoint of 
Sj is a root, and if Pj is not saturated, stopping condition (C) terminates both 
stretch(j, L) and stretch(j, R). (Notice if A is ever obstreperous, then neces- 
sarily Pj is saturated.) If (TWlND) occurs during stretch, then Pj is winding; if 
not, then Pj is normal (see fig. 8). Suppose Pj is normal and not saturated; if 
(BEND) does not occur during stretch then Pj is self-dual and if (BEND) does 
occur then Pj is heterodual. The main theorem of this section is the following. 

THEOREM 4.3.1 
Suppose j is a feasible jump. Then there is a feasible jump j '  with the same 

source placement as j so that Sj overlaps Sj, and P / i s  either saturated, self-dual, 
or heterodual. 

Proof 
If Pj is saturated or normal the theorem is trivial, since we can set j '  = j .  The 

other possibility is that Pj is winding and not saturated. (An example of such a 
path family Pj can be obtained from fig. 8. Add to it the jump obtained by 
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rotating C , -  the one with more than 37r/2 of arc - clockwise until it hits Co.) By 
lemma 4.2.1, the sequence of states of A rotating left from O r to 0 t must be a 
sequence of (R1),(Rs),(Ls),(L1) or (L1),(Ls). Stopping condition (C) can happen 
in state (R1) or (Ls) rotating left, and in state (L1) or (Rs) rotating right. Hence 
the sequence of states must be (Rs)(Ls) or (L1)(Ls). The former cannot happen 
since Pj is winding. We cannot have j be XxLs, since (TFLIP) must happen. 
Hence j is XxLl. 

Let 0 be the final direction of j. We claim 0* ~ Sj. (Note 0 * is defined, since 
the fact that (TWIND) happens implies A is never obstreperous.) Stopping 
conditions (A) and (B) never happen since Pj is not saturated. We show stopping 
condition (C) does not happen in [0, 0 * ]. First notice that the tangent moves left 
in the state (L1), hence any intermediate oriented placement p has orientation L. 
Hence C o can never become tangent to (L-oriented) C,. Similarly, C, cannot 
become tangent to C o if o(0) is oriented L. If o(0) is oriented R, then C,(o) and 
Co(o~ are on opposite sides of the line through the tangent T(O). Furthermore, C, 
remains in its halfplane until 0",  hence C, cannot become tangent to C o before 
0* 

Let j ' =  (o(0), T(0*)). Clearly j '  specifies the same path as Pl(O*), hence j '  
is feasible. Now j '  is XxLs; this easily implies that P / m u s t  be normal. Finally Sj 
overlaps S /  since both contain 0". [] 

The next easy lemma characterizes self-dual path families. The description of 
heterodual path families is more complicated, and appears in section 4.5. 

LEMMA 4.3.2 

If Pj is self-dual then Pj(0r) is an LsRs hop and Pj(0t) is an RsLs hop, where 
Sj = [Or, 01]. 

Proof 
Since Pj is self-dual, it is normal, not saturated, and never obstreperous. Hence 

stopping condition (C) terminates both stretch(j, L) and stretch(j, R). Thus 
(TFLIP) must occur, since (BEND) does not occur, stopping condition (C) 
happens because of contact between o and ~- in both cases. The shortness of 
source hops follows from lemma 4.2.2; the target hops are short because (REV) 
does not occur. [] 

Eventually we will need to propagate intervals of reachable placements that 
have open endpoints. The next lemma answers the following question. Suppose 
interval I with open endpoint w is reachable at corner a, and j is a feasible j ump  
with ~2(j) = ~0. What placements in Sj are actually reachable from I?  The lemma 
is not used until section 6. 
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L E M M A  4.3.3 

Suppose a and b are corner contacts, I is an interval at a with open endpoint 
~t  S "' ~, j '~--ab(I) ,  and j ~  ( j ,  IU{o~})  with I2( j )=o~.  If O~Sj and Pj(O) is 

not a hop, then placement 0 is reachable from I. 

Proof 
We show that if k = Pj(O) is a jump (but not a hop), then there is some 

placement on the tangent segment of k that is reachable from I. In fact, it will be 
clear that any placement on the tangent segment of k sufficiently close to the 
source arc of k is reachable from I. This proves the lemma, since even if Pj (0) is 
not a jump (because of (BEND)), there must be some jump k = Pj (0 ' )  with 
tangent segment overlapping the initial straight segment of Pj(O) and some 
placement in the overlap is reachable from I. 

We can assume j = (o, "r) is not a hop, otherwise we can perturb j slightly, for 
example as done by stretch. Since neither j nor k is a hop, there is some 
minimum length 6 > 0 of the tangent segment of Pj during stretch from j to k. 
We let F be the region of the plane swept out by the initial portion of length ~ of 
the tangent segment during stretch from j to k. Clearly the interior of F avoids 
obstacles. If (SFLIP) does not occur, F is a region bounded by an arc A of Co, 
two segments of length 8 tangent to A, and an arc B of radius ~ - +  82 . If 
(SFLIP) does occur, F has a more complicated but similar description. We 
henceforth assume (SFLIP) does not occur; the argument in the case it does is 
essentially the same as the case when o has orientation R, given below. 

We assume that the direction of the tangent moves monotonically, specifically 
left, during stretch from j to k. Hence the line segments of length 8 forming part  
of the boundary of F are initial portions of the tangent segments of j and k. We 
label them Tj and T k, respectively. If the tangent segment does not move 
monotonically, it suffices to truncate F so that the initial portions of the tangent 
segments of j and k do form part of its boundary.  

~t  We have j '  ~ --ab(I) and j ~ X(j ,  I U (o~}), so there is a continuous deforma- 
tion of j '  into j. In fact, there must be an interval I '  _ I with open endpoint 
and a family d so that for a ~ I '  u ( w }, d ( a )  is a feasible jump of the same type 
as j ,  the source placement of d(a) is a, d is continuous on I ' U  (0~), and 
d(o~) = j .  We let the source circle of d(o0 be Ca; clearly it has the same 
orientation as o. Let T~ be the ray tangent to C a with endpoint on C a parallel to 
Tk, if o is oriented L, or parallel to Tj, if o is oriented R. 

The proof strategy is as follows. We show that any placement on T k suffi- 
ciently close to A is reachable from some placement in I by a feasible path p. 
Path p starts along one of the jumps in the family d, possibly diverges from the 
jump, enters F, and stays within F until reaching T k. The divergence from the 
jump happens in two ways: either by staying on the circle C~ until entering F, or 
by following the ray T~ to enter F. The argument is split into cases depending 
upon the orientation of o. 
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The easier case is if o has orientation L. Then A is an L-arc, T k is tangent to 
A at its right endpoint and Tj is tangent to A at its left endpoint. Let 1 be the arc 
length along C o from corner a to T k. There are two possibilities; either circles C o 
intersect T k or the rays T o intersect A. Consider the first possibility: this happens 
if 1 < ~r and ~0 is the left endpoint of I or if 1 > ~r and co is the right endpoint of I. 
The desired path p follows C o until intersection with T~, then follows a right-left 
path within F to gain tangency with T~,. By choosing a sufficiently close to co we 
can guarantee that p is feasible: part of p lies on feasible jump d(a),  possibly 
diverges from d(a )  by continuing on C o until T~ (but any such point must lie on 
d ( a ' )  for some a '  sufficiently close to co), and the rest of the path lies in F. Since 
the angle between p and T k at their intersection goes to zero as a approaches co, 
there is room inside F to have a curvature-constrained path become tangent to 
T k. The second possibility, that the rays T o intersect A, happens if l >/~r and 0~ is 
the left endpoint of I or if l ~< ~r and co is the right endpoint of I. The required 
path p is constructed using C o and T o and then a right arc and a left arc inside F 
to gain tangency with T k. The feasibility argument" follows as before. 

Now suppose o has orientation R. Then A is an R-arc, T k is tangent to A at 
its right endpoint and Tj is tangent to A at its left endpoint. Again there are two 
possibilities (determined by conditions on l and I) .  The first is that for a ~ I, C o 
intersects Tj. In this case, there is some L-oriented circle D o tangent to both C o 
and Ca. By choosing a sufficiently close to co we can guarantee that the point 
D o A C o is past the point Tj (~ C a on C a. If the point T k • Ca is past the point 
D o n C o on C,, then the required path p traverses Co, Do, C o and T k. Otherwise 
T k intersects Do; we must instead choose a circle D" tangent to both T k and C o. 
For a sufficiently close to co we can guarantee that the point D" n Co is past the 
point T~ A C o on C o. Then the required path p traverses Co, D' ,  and T k. The 
second possibility is that T o intersects A. Consider an R-oriented unit circle E o 
tangent to T o at the point T o (~ A. This circle diverges from A, but never diverges 
by more than the distance between the center of A and the center of E o, which 
can be made arbitrarily small by letting a approach co. Depending upon the arc 
length of A, and L-oriented circle can be tangent to either E o and T k or E~ and 
A. Hence the required path p can be constructed. For either possibility the 
feasibility argument is as before. [] 

4.4. SELF-DUAL INTERVALS AND HOP FUNCTIONS 

Let h d be the function mapping source angle to target angle of RsLs hops 
between two points at distance d apart, where the straightline direction between 
the two points is taken to be zero. More formally, ha(co ) = 0 if j = (03, t~)= 
((e, ~ + co, R), ( f ,  /~ + 0, L)) is an RsLs hop from e to f ,  the distance between e 
and f is d, and /z is the straightline direction from e to f .  

The single-valuedness of h d follows from the fact that only short hops are 
allowed; similarly h d is one-one.  It is also clear that h d is continuous and 
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monotonically decreasing. Notice h a is not defined for every angle; indeed if 
d >  4 then h d is nowhere defined. We analyze the domain of definition of h a 
below. In a similar fashion we define ha, the function mapping source angle to 
target angle of LsRs hops. 

Set Ha(w ) = []-'/d(W), h a ( w ) ] .  An interval I at f is self-dual (at f from e) if 
there is an angle w so that I = Hd(W ) + Iz, where the distance from e to f is d 
and/~ is the straightline direction from e to f .  Clearly, if j is a jump from e to f 
and Ps is self-dual, then S s is a self-dual interval at f from e; in particular, 
Sj = H d ( ~ 2 ( j ) -  # ) +  It, where /~ is the straightline direction from e to f .  The 
main theorem of this section is the following. (We show below that d o m ( H d ) =  
[ - -  Otd, a d ]  for some Ot d < qr.) 

T H E O R E M  4.4.1 
Suppose 0 < d ~ < 4  and w ~ d o m ( H d ) = [ - - a d ,  ad]; then there is ~ > 0  as 

follows. If w ~< 0, set A = w + a d, then either 0 ~ H,~(w) or ~'a + [--2A, -- A/2] 
Ha(w ) . Similarly if w>/0, set A = a  d - w ,  then either 0 ~ H a ( w  ) or --Td + 
[A/2 ,  2/1  _c Hd(w ). 

Stated informally, either Hd(W ) contains zero, or Hd(w ) lies on the opposite 
side of 0 from w and its size grows linearly with the distance of w from the closer 
endpoint of dom(Hd).  In terms of the jump j = (o, "r) from e to f with Pj 
self-dual, either S s contains/~ or Sj is on the opposite side of ~ from 82(j), and Sj 
grows linearly in size as O ( j )  moves toward/~. 

The remainder of this section is devoted to the proof of theorem 4.4.1. We 
begin with the following simple proposition. 

P R O P O S I T I O N  4.4.2 

(1) If ha(w ) = 0, then hd(O ) = w. 
(2) If ha(w ) = 0, then hd(--W ) = --0. 
(3) If d '  > d then hd,(W ) > ha(w ) if both are defined. 

Proof 
Let j = (o3, t~) defined as before be an RsLs hop from e to f at distance d 

apart. For (1), consider the path backwards. For  (2), reflect the path about the 
line through e and f .  For (3), imagine translating C~ by a distance d '  - d in the 
direction from e to f .  It must then rotate to the left about the translated image of 
f before it is tangent to C,~. [] 

The domain of definition of hd can be inferred as follows. Fix e at the origin 
and f at (d, 0). First suppose d ~< 2. Consider the left unit circular arc through e 
and f whose length is at most ~r, and let a d be the angle between the x-axis and 
the tangent at f (fig. 10). Explicitly we have o/d = arcsin(d/2).  It is easy to see 
that dora(ha)  is exactly [ - a d ,  ad] and that h d decreases monotonically from ~d 
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Fig. 10. Definition of a. 

Fig. 11. Definition of ft. 
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to -o t  d in that interval. For symmetry with the case d > 2 we define fld = ad, 
hence dom(hd)  = [--ad,  fld]" 

Now suppose 4 >~ d > 2. Consider the RsL~r hop j from e to f .  Let the angle 
between the x-axis and I2(j)  be - a  d and the angle between the x-axis and O ( j )  
be fld (fig- 11). Notice necessarily fld >1 ~r/2 >t a d, with both equalities holding 
only if d =  4. It is easy to see that h a is defined exactly on [ - a  d, fld] and that h a 
decreases monotonically from fld to - -a  a over that interval. 

In a similar fashion it follows that the domain of ha is [--fld, ad] and hd 
descends monotonically from a d to - f l a  over this interval. Also, d o m ( H a ) =  
d o m ( _ h d )  N d o m ( h d )  = [--fld, ad] N [--ad,  fld] = [- -ad ,  ad]" The domains of h d 
and h d as  function of d are plotted in fig. 12. It can be checked that a d = fld 
increase from 0 to ~r/2 at d - - 2 .  Then a d decreases, crossing 0 at x/8 and 

~/2 

- r e / 2  

[•d 

1 2 I 

Fig. 12. dom(hd)  = [ -  Ctd, fld] and dom(hd)  = [ - fld, Otd]" 
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Fig. 13. Definition of angles. 
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reaching - ~ r / 2  at d = 4; fld continues to increase to rr/2 + arcsin 1 /3  at d = ~-8, 
then decreases to ~r/2 at d = 4. 

We now define a set of points and angles determined by o~ ~ dom(hd).  As 
before set e at the origin at f at (d, 0). Define oriented placements E = (e, o~, R) 
and F =  ( f ,  hd(O~ ), L) .  Clearly (E,  F )  is a short RL-hop from e to f .  Let z e be 
the center of circle C e and z I the center of C F. Notice l eZe I = I f z f l =  1 and 
I ZeZ/[ ----- 2 since C E and C F are tangent. Let ~e be the angle z/zee , ep/the angle 

z e z / f ,  0 e the angle Zeef, Of the angle z / /e ,  and ~/the angle from line ef  to line z e z/  
(fig. 13). (Figure 13 is drawn so that the midpoint  of segment ef  coincides with 
the midpoint of segment zezl; in general this is not true.) Notice that 0~ = ~r/2 - 
and Of= ~'/2 - hd(O~); 0 e is negative if z e is above the x-axis and Of is negative if 
z/ is below the x-axis. (Both these possibilities can happen only if d > 2.) All of 
Oe, Of, ep~, ,~/, Ze, and zf  depend functionally upon ~. We occasionally write for 
example 0e(O~ ) to make this dependence explicit. 

A few examples may illustrate the definitions of these angles. If o~ = - a d  then 
h d ( W ) = f l d  , and Oe=~r/2 + a  d. If d~<2 then f ld=etd, O f = ~ r / 2 - - a d ,  ~e=0, and 
q~/= 2 arcsin(d/2)  (fig. 14a) and if 4 > d > 2 then fla > ~r/2 > aa, Of = 7r/2 - fla > 

zf 

z 

b 

e /-'7"-x0/ 

Fig. 14. Angles in extreme situations. 
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~r, and ~y = ,r (fig. 14b). If ~o = a d then the figures are reflected about  the poin t  
( d/2, 0). 

We define a final constant  8 a = arcs in(d /4)  for d ~  [0, 4]; 8 a is used in the 
linear interpolations below. If ~ = 8 a then 0e = ~ r / 2 -  8 = arccos(d/4) ,  segment  
ZeZf bisects segment ef, 0! = 0~ = ~r/2 - 8a, and ha(Sa) = 8 a. Figure 14 is drawn 
with ~0 = 8 a. 

LEMMA 4.4.3 
If ~o ~ dom(ha) ,  o~ 4: -aa ,  fla, then ha(r ) = - s in(~(~o)) / s in(~/ (~o)) ,  where 

h a is the derivative of h a . 

Proof 
We compute  h a at the specific point  ~o o. Set AOe(~O ) = Oe(~O ) --8e(~O0) and 

similarly for AO/ and AT. Choose the coordinates so that Ze(W0) is at (0, 0) and 
zz(%) is at (2, 0). (For the following proof, it is helpful to draw a picture with 
Ze(%) and z/(~Oo) on the x-axis as indicated, with e above the x-axis, f below 
the x-axis, and ze(~o ) slightly to the right of ze(~oo), hence zf(~o) slightly to the 
right of zf(%).  Label the angles as in fig. 14; note  for example that there are 
both  0e(0~ ) and 0e(%). ) 

The segment f rom e to Ze(~O ) makes angle ~e(~0o) - AOe(~O ) with the x-axis and 
the x coordinate of e is COS(~,e(%)); hence the x-coordinate of Ze(~0) is 

COS( ~e(0)0)) -- COS(~e(030) -- A0e( s )) .  

Similarly the segment f rom f to z / (~)  makes angle ~/(O~o)- A0/(~o) with the 
x-axis and the x-coordinate of f is 2 -  cos(~ / (%)) ;  hence the x-coordinate  of 
z/(o~) is 

2 - cos(q~/(O~o) ) + cos(q~f(O~o) - A0/(o~)). 

Since z~(w) and z! (o~) are distance 2 apart  and segment ze(o~)zz(w) makes angle 
AT(O~) with the x-axis, 

2 cos(AT(w))  = 2 - cos(~/(~0o) ) + cos(~f (r A0/(o~)) 

--[COS( ~e(090)) -- COS( ~e(090) -- a0e(  03 ))] .  

Differentiate this with respect to r (note terms in % are constant  and A-terms 
are functions of ~0): 

dT dO/ 
- 2  sin(AT (r ~l--do = sin(~/(~Oo)-  AO/(~o))-d- d + sin(~e(O~o) - Aae(~O)) doe do~" 

Evaluate this at ~o = ~ o  (so A-terms disappear): 

dO/ dO e 
0 = sin(~,z(~ ~--d ( % )  + s in(e (Wo))  -d-~d ( ~Oo)- 
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P Since  d 0 e / d r  a n d  d 0 / / d r  w e  h a v e  s i n ( ~ e ( W o ) ) =  
- s in (~f (w0))ha( ,Oo) .  If  r  /3a then s in (q~ / (%)) :g0  and the l emma is 
established.  [] 

The  values of h a at - a  a and/3a  are no t  necessary  for the deve lopment  below.  
However ,  the p roof  of l emma 4.4.3 in fact  shows that  if d < 2 then h'a(-e~a) = 0 
and lim,o -~ t~ h a ( w ) = - oo and  if d > 2 then lim,~ _~ _ ,~, h a ( w ) = - oo and  h a (/3a ) 
= 0 .  If  d = 2  then using a Taylor  series expans ion  it can be  shown that  

! ! 

h 2 ( - a a )  = - 1 / 3  and that  ha(aa) = - 3 .  

LEMMA 4.4.4 

For  any interior poin t  of  d o m ( h a ) ,  

-d(sin q~/cos q~e sin 0 /+  sin q~e COS q~Z sin 0e) 
h ' j =  2 sin3,/,: 

Proof 
Not ice  that  if w :g - a ,  /3 then sin q~e, sin q~/4= 0. By different iat ing the fo rmula  

for h a f rom the previous  lemma,  

( d0, doe) 
sin ~ cos 9/-6-~- ~ - sin ~ / c o s  ~ - -  

11 

h a = sin2epf 

Let  s be  the dis tance be tween  z e and f .  By the law of cosines s 2 =  d 2 +  1 -  
2 d  cos O e and also s 2 = 5 - 4 cos ~f. Therefore  5 - 4 cos q~/= d 2 + 1 - 2 d  cos 0e; 
different iat ing and  using dOe/d~o = - 1  yields 

dffy d sin 0 e 
dw 2 sin q~/" 

By a similar a rgument  using l emma 4.4.3 and d0//do~ = - h a ,  

dq, e d sin 0/ dO/ d sin 0/ sin ~e d sin 0/ 

d~o 2 sin q'e d~o 2 sin q'e sin q,/ 2 sin 4':" 

The  subst i tu t ions  yield the lemma.  [] 

LEMMA 4.4.5 

If  0 < d ~< 2 then h a is convex downwards .  

Proof 
W e  show h a' <~ 0 for w in the range ( - - a d ,  ~d]" Since h d is symmetr ic  a b o u t  the 

line O = w (by propos i t ion  4.4.2), it follows that h d is convex over d o m ( h d ) =  
O a]. 
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If ~0 ~ ( - a d ,  3d] then 0 e ~ [r r / 2  - 3d, ~ / 2  + a d] ___ [0, 7r ], Of ~ [~r/2 - ad, ~r/2 
-- 3d] __ [0, r q~e ~ (0, 23] = (0, 2 arcsin(d/4)] __ (0, ~r/3], and ~ : ~  [23, 2a)  _c 
(0, 

We show (*)  = sin ~r cos ~e sin 0 z + sin ~e COS ~! sin 0 e >/ 0, from which the 
lemma follows, since s i n ~ / >  0. First note that if ~z ~< ~ /2 ,  then every term in (*)  
is nonnegative. 

So suppose ~ />  ~r/2, then cos q~z < 0. Notice 0 e >/~r since triangle zzzef  has 
sides of length 1, 2, and I ze f  l, and triangle eZef has sides of length 1, d ~ 2, and 
I z e f  I. Since ~Z > ~r/2, sin 8 e ~ sin ~:. Similarly 0/>t ~e and sin 0/>i sin ~e, since 
Oz, ~e ~ [0, ~r/2]. Since cos ~ / <  0, we have ( * ) >i sin 0 e sin 0 z (cos ~e + cos ~:). 

Now surely I ef I = d >/2 - (cos ~e + cos ~/), since 2 - (cos ~e + cos ~/) is the 
distance between the projections of e and f on the line through z e and z/. Hence 
cos ~e + COS ~/>/ 2 -- d >/0. Since sin 8 e, sin 8 z >i O, the lemma is established. [] 

If d >  2 then h a is not convex downwards. This can be seen intuitively by 
considering the intersection t between line ZeZ / and line ef, as O e decreases from 
~r/2 + a. It is easy to see that sin q~e/Sin ~ / =  ]ct [ / [  t f  [, hence h d can be inferred 
from the position of t. First suppose d is slightly bigger than 2. Then t is initially 
at f ,  since Ze, z/, and f are collinear. As 0 e decreases t moves to the left, 
eventually reversing direction at a value of 0/< ~r, then moving right to the 
midpoint of ef when 0 e - - ~ r / 2 -  3. As 8 e decreases further t continues to the 
right, then reverses direction and ends up at e. Hence h~ is initially - o r  (using 
the observation following lemma 4.4.3), increases rapidly, decreases, then in- 
creases to 0. If d is sufficiently large, t moves monotonically from f to e, and h d 
is convex upwards. Fortunately, we can use proposition 4.4.2(3) to make analysis 
of ha,  d > 2, unnecessary. 

For d~< 2, let ld: [--ad, ad] ~ [--ad, ad] be the two-piece linear interpolant 
through the points ( - a d ,  ad) , (Sd, 8d) , and' (ad, --ad). Similarly let l d be the 
two-piece linear interpolant through the points ( - -ad ,  ad), ( - -8  d, --8d), and 
( ad, -- ad) (fig. 15). 

COROLLARY 4.4.6 

If d ~< 2, h d >1 I d and ha ~ ld" If d > 2 then h a >1 h 2 >1 l 2 and ha ~< ]'/2 ~ ?2" 

Proof 
Follows from the convexity of h d and proposition 4.4.3. [] 

PROPOSITION 4.4.7 

If d~< 2 then (8 d -  ad) / (  Sd + ad) >1 - -1 /2 .  

Proof 
Notice 38 a = 3 arcsin(d/4)  >~ arcsin(d/2)  = ad, since if d = 2, 3 arcs in(d/4)  = 

3~r/6 = a r c s i n ( d / 2 ) =  ~r/2, and the slope of arcsin is monotonically increasing 
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- g / 2  

-7:/2-- I- "~ -~ 

Fig. 15. The curves in order from bottom to top are hz.a, h2, i2, I> hE, hE a. 

over [0, d/2] = [0, 1]. Hence 28 d - 20td>/ --(~d + Old), and the proposition fol- 
lows. [] 

Thus the linear interpolants I d a n d  ld have slopes at least - 1 / 2  over the 
intervals [-Old, 3d] and [ - 3  d, Old], respectively, and slopes at most - 2  over the 
intervals [3d, Old] and [ - 3  d, Old], respectively. Also notice that if d = 2 ,  then 
a d = r and 3 a = ~r/6, so h 2 interpolates through ( -  ir /2,  7r/2), (~r/6, 7r/6) and 
( ~ / 2 ,  - ~r/2). 

Proof of theorem 4. 4.1 
Without loss of generality assume that to < 0. Set A = to - ( - a d ) .  Clearly 

ha(to ) > 0. If hd(to) ~< 0, then 0 ~ Ha(to ) and the theorem is established. Other- 
wise hd(to ) > 0; since hd(--~d)  = --~d and ~/d is decreasing, to < - 3  d. 

First suppose that d~< 2. Set 7d = Old" Then dear ly  to ~ dom(Hd)  and Hd(to ) G 
l - - a ,  a]. By corollary 4.4.6, hd(to ) >1 ld(to ) and by proposition 4.4.7, l d has slope 
at least - - 1 / 2  in the interval l--old, -- 3d] G [--Otd, 3d]. Hence hd( ~, ) >~ Old-- A / 2 .  
Simi'larly h d( to ) <~ l d( to ) and l d has slope at most - 2  in the interval [ - a d, --'3d ], 
SO hd(to ) <~ Ol d - -  2A. 

Suppose d > 2. We use the interpolants l 2 and i 2 to bound h d and h d. Notice 
dom(12) = dom(12) = [ - ~ r / 2 ,  ~r/2] and  to ~ d o m ( H 2 )  = l--old, Ol] G 
[--~r/2, tr/2], hence to ~ dom(12)N dom(12). W e  set ~{=7r/2; the rest of the 
proof is similar to the case d ~ 2. [] 

We finish with a quantitative version of proposition 4.4.2(3). This lemma is 
used in the next section. Let f i x ) =  2 arcsin((x/4)2),  then f i x )  is ~2(x 2) for 
small x. 
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LEMMA 4.4.8 
If d '  > d and both ha, h a, are defined at co, then ha,(co ) > ha(co ) + f ( d '  - d) .  

Proo f  
Set e at (0, 0), f at (d, 0), f '  at ( d ' ,  0), and let (E ,  F )  and (E,  F ' )  be short 

RL-hops starting at e with source angle co and ending at f and f ' ,  respectively. 
Let Ze, z I, and zf, be the centers of circles CE, C r,  and Cr,,  respectively. It is 
easy to check that the line from z e to zj has positive slope or is vertical. Let y be 
the point  with the x-coordinate increased by  d '  - d from zl; then z J  and y f '  
are parallel.  Then  ~r > (angle ZeZfy ) >~ ~r/2 and we have [ Z e y  I 

>1 ~/4 + ( d '  - d )  2 > 2 + (d"  - d ) 2 / 8 ,  the last inequality using d '  - d <  4. Since 

[geZ f ,  ] = 2, I z f ' y l  > ( d '  - d ) 2 / 8 .  Since I z f , f '  I = l Y f '  I -- 1 and ha,(co ) - 
ha(co ) is angle y f ' z f , ,  ha,(r ) - ha(co) > 2 arcs in(d '  - d )2 /16 .  [] 

4.5. HETERODUAL PATH FAMILIES 

THEOREM 4.5.1 
Suppose j jumps  from a corner a to corner b and Pj is heterodual. Then Sj 

contains an interval self-dual at b from some corner (possibly distinct from a)  
and either Sj contains a root or the size of Sj is at least xb, where x b is a constant 
of size at least 2 -~(m). 

LEMMA 4.5.2 
Suppose interval I at b contains both  an interval self-dual from a corner and a 

placement of constant algebraic complexity. Then either I contains a root  or ! 
has size at least 2 -a(m). 

Proof  
Let I = [0 r, 0l] be an interval at b containing an interval self-dual from corner 

a. Let d be the distance between a and b and /~ be the straightline direction 
from a to b. If 1 contains one of #, ~ - a d, or/~ + ad, then 1 contains a root. 
Otherwise we can assume /~ - a d < 0 r ~< 0 ~< 0z </z, where O is of constant  alge- 
braic complexity. By lemma 2.3.4, O and/~ - a d are separated by  at least 2 -a(m). 
Hence either O r and 0 are separated by at least 2 -a(m), and I has size 2 -~(m), or 
l ~  - ad and 0 r are separated by  2 -~2(m), and the size of 1 is at least 2 -a(m), using 
theorem 4.4.1. [] 

We now discuss the geometry of heterodual path families. For  the rest of this 
section, let j be a jump from corner a to corner b, j = (o, ~'), Pj be heterodual, 
and Sj = [Or, St]. Choose c as the last common point  of Pj(Or) and Pj(Sl) not  
including b; then c is either a if (SFLIP) occurred or a point on C a if not. Let co 
be the direction of the tangent to Pj(Sr) (and Pj(O1) ) at c and 1 the line in 
direction r through c. (Notice that for some 0 ~ $1, Pj(O) is a j ump  ending at b 
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with tangent along l.) It is clear that Pj(0r) past c consists of straight segments 
alternating with L-arcs ending with an R-arc to b. By lemma 4.2.2, the total arc 
length of the L-arcs is less than ~r, so all of Pj(0r) past c except possibly for part  
of the R-arc lies to the left of l. Since the R-arc of Pj(Or) must have length less 
than ~r, Pj(0r) after c ends with an LsRs hop. Let a r be the beginning point of 
this hop; clearly a r is on or to the left of l. Also, either a r is a corner or a r = c; 
the latter happens only if all of Pj(0r) is an LxRs hop. By similar reasoning 
Pj(Ot) consists of straight segments alternating with R-arcs ending with an L-arc. 
The final part  of Pj(Ot) is an RsLs hop beginning at at; a t lies on or to the right 
of l a n d  a t ~ ar .  

We let ~t be the straightline direction from a t to b, d t b e  the distance between 
a t and b, ~t the direction of the tangent to Pj(Ot) at at, and h t =  ha,, and 
similarly for/~r, dr, q~r, and h r. Notice q~t and q~r are separated by less than rr by 
lemma 4.2.2, and clearly q~t ~< to ~< q~r" 

LEMMA 4.5.3 

Directions ~t and/~r are separated by at most rr/2. 

Proof 
Let C be a unit circle through b so that for every 0 ~ Sj the ray from b in 

direction 0 intersects C only at b; such C exists since I Sjl < rr. Let R be the 
region swept out by translating C in direction -o~; then R has as boundary  two 
rays in direction - t o  and a semicircle of C. Clearly Pj(0l) and Pj(0r) __c R. Let 
R '  ___ R be the region bounded by the two rays and the two segments from u~ to 
the two points of tangency between the rays and C. Any point of Pj (0t) outside 
R '  necessarily has tangent to the left of 0~; since ~t~< to, a t ~ R'. Similarly 
a r ~ R:. The angle formed by the two segments incident to u~ has size ~r/2 since 
it subtends a diameter of C. The lemma follows. [] 

LEMMA 4.5.3 

Distance to b is monotonically decreasing along Pj(0r) and Pj(0l) past c. 

Proof  
For  x ~ Pj(0t) past c let q~, be the direction of the tangent to Pj(0t) at x and 

/~x be the direction from x to b. We claim that the angle between ~, and /~x is 
strictly less than rr/2; this implies the lemma. The claim is clearly true at x = c. It 
is also clearly true for any point on the R-arc of Pj(0l), since the R-arc has length 
less than rr. In particular it is true for f ,  the first point of the R-arc. Now for any 
x ~ Pj(Ol) between c and f ,  q~c ~< ~x ~< ~y and /~f~</~x ~</~r hence the angle 
between q~x and ~ ,  is less than ~r/2 as well. [] 

We henceforth assume that d r ~< dt. Notice that this assumption together with 
the previous lemma implies that a r is a corner; for if a r is not a corner, then 
a r = c, a t appears on Pj(0t) past c, so d I < dr, a contradiction. 
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LEMMA 4.5.4 
I f  x >~y, 0 ~< s ~< t ~< 4, x ~ dom(hs ) ,  y ~ dom(h t ) ,  then h t ( y  ) >1 h s ( x  ). 
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P r o o f  
W e  have x ~ d o m ( h s )  = [ - a  s, fls], Y ~- d o m ( h t )  = [ - a ~ ,  fit]- W e  claim either 

x ~ d o m ( h t )  or y ~ d o m ( h s ) .  If  s>~2 then f l s > ~ x > ~ y > ~ - a t > _ . - a  s, the last 
inequal i ty  because  - a  s increases in [2,4], so y ~ dom(hs ) ;  if s < 2 then fit >/fls >t 
x >~ y >~ - a  t, the first inequal i ty  b e c a u s e / 3  t increases up  to t = 2 and  then does 
not  go be low /32, so x ~ dora(h/) .  In the first case h t ( y  ) >~ h s ( y  ) >1 h s ( x  ) b y  
l emma  4.4.2(3) and h s decreasing; in the second case similarly h a y  ) >1 h t ( x )  >1 
hs(x). [] 

P r o o f  o f  theorem 4. 5.1 
W e  show that there is an R s L s  hop  f rom ar to b with source direct ion q,,. and  

that 0 t is actual ly  to the left of  its final direction;  explicit ly we show q~r- It,. ~ 
dom(h, . )  and 0 / >t h,.(~,. - #,.) + I t r  (No te  we do no t  explicit ly show that  the R s L s  
hop  avoids obstacles.)  W e  then show that either Sj conta ins  a root  or  Sj has size 
at least  x b (def ined below). 

W e  first claim that wi thout  loss of  general i ty  we can assume Itt >/It,.- Suppose  
I t /<  I t r  N o w  a,. must  lie to the left of  l. Since Itt < Itr, b also lies to the left of  l; 
fur thermore ,  the line through a,. and  b must  intersect  the R s L s  hop  f rom a t to b 
at some point  i, with i, a t and  b in that  order.  Let  q~, be  the direct ion of  the 
tangent  to the R s L s  hop  at i and  let d, be  the dis tance be tween  i and b. N o t i c e  
that  if i lies on  the R-arc  of  the hop,  then q~, < q~/~< q~r, and  if i lies on  the L-arc,  
then q~i <~ ur - aa, < u~ - a,. <~ ep,., the middle  inequal i ty  fol lowing because  d,. ~< d, 
~< 2. Hence  we can  s imply replace a/ with i and use the hop  start ing at i. 

Since 4~/~< q~ and It/>I. It,., we have q~,. - It,. >f q~/- It/. W e  claim q~,. - It,. 
dom(h, . ) :  if dr ~< 2 then q~,. - It,. ~ dora(h,.)  = dom(h~)  and  if d r > 2 then ~,. - Itr 
>1 OPt - Itl >1 - a/>~ - a,. and ~,. - It~ ~< a~ ~< fir. Since d/>/d, ,  and  ( ~ r  - -  Itr ~ t ~ /  - -  It/, 
b y  l emma 4.5.4, ht(q~ / - It/) >/h,.(q,,. - I t r ) "  Hence  0 / =  It) + h/(q~ t - It/) >/It,. + 
hAq,,.- ItA. 

It remains  to show Sj has size rb or  that  S, conta ins  a root.  First  suppose  that  
a/ and  a,. are separa ted  by  at least x c (the min imum dis tance  be tween  corners);  
necessari ly this is the case if a/ and ar are corners.  W e  show that  Sj, conta ins  a 
root  or  that  the inequal i ty  O/>I Itr + hr('#,. - It,.) is strict b y  an a m o u n t  d e p e n d e n t  
u p o n  xc. If  in fact  It/>/it~ then either Itt >It,.  + r  J 8  or  d />~d  r + x j 2 .  The  
inequal i ty  is strict in the first case b y  the a m o u n t  K J 8  and  in the second b y  
12(~2), using l emma  4.4.8. If  I t /<  It,. then i lies on  the L-arc  or  the R-arc  of  the 
R L  hop  ending Pj(O/).  If  i lies on  the R-arc  then Sj conta ins  the root  Itr + a,.. 
Suppose  i lies on the L-arc.  Let  l '  be  the line parallel  to l th rough a/ and let i '  
be  the po in t  of  intersect ion of  l '  with the line through a,. and  b. Then  either a r 
and  i '  or  a/ and i are separa ted  b y  at least r J 2 .  In  the second  case i and  i '  
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must be separated by $2(x2); hence in either case i and a r are separated by  at 
least $2(x2), so the inequality is strict by at least ~2(x4), using lemma 4.4.8 again. 

N o w  suppose that a t and a r are closer than x c. We show that Sj contains a 
placement of constant algebraic degree; the bound on the size of Sj then follows 
from lemma 4.5.2. Since a l and a r are closer than Xc, a t is not a corner and 
a I = c; furthermore, a t lies on the circle C through a (the source corner of jump 
j ) .  Circle C is the source circle of both  jump j and hop Pj(0t). Notice a r lies on l, 
since there can be no corner along Pj(0r) from c to a r. N o w  let l '  be the line 

'" let ~o' from a r to C tangent to C at a point at,  be its direction. Notice a cannot  
lie on the arc of C clockwise from a l to a; since this arc is within x c of a~. N o w  
imagine rotating C about  a so that the direction of the line tangent from C to a r 

(initially this line is l) moves right. If the arc from a to a t is less than rr, this is a 
counterclockwise rotation; if the arc is greater than ~r it is a clockwise rotation. 
The rotation stops at circle C chosen so that the line [ from C to a~ has direction 
o3 as far right as possible; then either C touches a t or the arc along C from a to 
the point  of tangency with [ has length rr. Clearly o3 is of constant algebraic 
complexity. It can be checked that o3 ~ [~0', ~0]. Now if there is no L s R s  hop from 
a r to b with final direction 0l, then 0 r is to the left of ~0r + a~ and Sj. contains the 
root % + a r. Otherwise there is such a hop; it can be checked that its source 
direction must lie to the right of ~o'. Since t3 >/oJ, h r(o3) >/0 l and h r((3) ~ Sj. 
The direction h~(o3) is the required direction of constant algebraic complexity. 

Clearly we can choose x b less than all the indicated bounds  on the size of  Sj 
while still maintaining rb of size 2 -a (" )  [] 

5. A simple reachability algorithm 

We now give a bound on the number  of disjoint reachable intervals. This 
bound  is given in theorem 5.1.3 below. The proof  of the bound uses the 
categorization of intervals developed in section 4 and in particular the analysis of 
self-dual intervals. As an application of the bound,  we give an easy double-ex- 
ponential  time decision procedure for the reachability question. An improved 
decision procedure is given in the next section. 

We begin by  defining a way of propagating reachable intervals from one 
contact  to another. Suppose I is a closed interval of placements at a and 

j ~ .~'tab(I ). Define T ( j ,  I )  (an interval of placements at b) as follows. If either a 
or b is a wall, then T ( j ,  I )  is just  J ( j ,  I ) .  If both  a and b are corners, then 
T ( j , I )  is J(j, I) merged with the following intervals. Choose JR, Jl. ~ X ( j ,  I )  
with source directions as far right and left as possible. Merge Sj, with T ( j ,  I ) ,  

and if Pj~ is not saturated, self-dual, or heterodual then by  theorem 4.3.1, there is 
j~ with the same source direction that is; merge Sj~ with T ( j ,  I )  as well. Repeat  
this procedure with JL" 
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It is clear that  T( j ,  I )  is a closed interval and  J ( j ,  I )  c T ( j ,  I) .  We claim 
T ( j ,  I )  always contains  a root  or an interval  self-dual f rom a corner. The claim is 
trivial if b is a wall and  follows f rom lemma 3.2.4 if  a is a wall. If  a and  b are 
bo th  comers ,  then T ( j ,  I )  contains  P /  for some j '  which is sa tura ted  (hence S /  
contains  a root), or is self-dual, or is he terodual  (hence Sj, contains  a self-dual 
interval  by  theorem 4.5.1). 

In exactly the same way that  J (mapping  a j u m p  and  an interval  into an 
interval) was extended to J (mapping  sets of intervals into sets of  intervals) in 
section 3.3, we extend T to .Y-. Since any  pa th  de te rmined  by  stretch consists of  
at mos t  n jumps ,  it is clear that  or Clear ly  ~ =  LA ~ .Y'(k~(J0). k= 0  

Set x~ to be the m i n i m u m  of K o and  the difference between dis t inct  roots at the 
same contact .  Then  x, is at least 2 ~( -" ) ,  using l emma 2.3.4. 

L E M M A  5.1.1 

Suppose I ~,Y-(k)(J0) , for some k. Then either I conta ins  a root  or I I I  >/x s. 

Proof 
By induct ion  on k. If  k = 0, then I is the interval conta in ing  exactly the source 

placement ,  a root.  If  I ~ y ( k ) ( ~ r  , k >  O, then there is s o m e  I k c _ I  SO tha t  
I k =  T ( j ,  / , - 1 )  for some Ik_ 1 ~.Y-(/ '-I)(JO). If  1 k conta ins  a root,  then the 
l emma is established. If  not, then j mus t  be a j u m p  f rom a corner  a to a c o m e r  
b, and  there are j ' ,  j "  so that  Sj,, Sj,, c_ I k and P/, P/, are he te rodual  or 
self-dual. I f  either are he terodual  then the l emma follows f rom theorem 4.5.1. 
Otherwise bo th  are self-dual and  S / =  Hd( ~2(j' ) -- Ix) + It, S/ ,  = Hd( ~2(j"  ) -- Ix) 
+/~,  where d is the distance between a and  b and  # is the straightl ine di rect ion 
f rom a to b. By l emma 3.2.4, I 2 ( j ' ) ,  12 ( j " )  are the endpoin ts  of Ik_ a, since I k 
does not  conta in  a root. N o w  Hd(to ) forms an interval  whose endpoin ts  are 
mono ton ic  funct ions  of  to; hence Hd(O -- Ix) q- ~ C I ,  for any  0 ~ Ik_ 1. We cla im 
there is some 0 ~ I k_ a so that  0 - / ~  is at least dis tance r ,  f rom both  endpoin ts  of  
d o m ( H d )  = [ -e t  a, ad]. Notice  Ik_ a contains  none  of  ~ -- a d, /~, or/x + ad, else I k 
conta ins  a root. By the induc t ion  hypothesis  I lk_~ I >/x~ or I k_ a conta ins  a root  
r; the claim is immedia te  in the first case and  follows f rom the def ini t ion of x, in 
the second (since the root  r must  be at least x~ f rom bo th  the roots /~  - a d and  
# + ad). By theorem 4.4.1, I Hd(O --/x) I >~ 3x J 2  > x~, hence [ I  k I >~ ~ -  [] 

A self-dual marker at corner b from corner a is one  of  the fol lowing p lacements  
at  corner  b. Suppose corners a and  b are dis tance d apart ,  the s traight l ine 
direct ion f rom a to b is/~, and  H a has n o n e m p t y  domain .  Choose  3'd as given by  
theorem 4.4.1. Then  the markers  are/~ + Yd, /~ -- Yd, /~ + 3'd -- 2'Xs, (i = 0, 1 . . . .  , SO 
long as 3'd-- 2'rs > 0), and  ~ - yd + 2'•s, (i = 0, 1 . . . . .  SO long as --3'd + 2'X, < 0). 
Since x, is 2 a ( - " ) ,  there are on ly  O(m)  self-dual markers  at a f rom b. 

A marker is a root or a self-dual marker  at some corner  f rom some corner.  
Clear ly  there are O(n2( n 2 + m)) markers.  
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LEMMA 5.1.2 

Every interval in ~ contains a marker. 

Proof 
Let I '  ~ .  Then there is some I ~ J ( k ) ( J 0 ) ,  for some k, so that I___ I ' .  If I 

contains a root, then I contains a marker. If I does not contain a root, then I is 
an interval at a corner b containing a self-dual interval from a corner a and I has 
size at least K,. Let /x be the straightline direction from a to b, d the distance 
between a and b, and choose "/d as in theorem 4.4.1. Then ~ + Hd(co ) C_ I, for 
some co. Assume co ~< 0, the case co > 0 is similar. Set A = ad + co, then by theorem 
4.4.1, --~'d + [A/2, 2A] C_Hd(co ). Since I has size at least Ks, we either have I 
containing marker/~ - ~'d, I containing marker/z - ~'d + Xs, or xs < / I / 2 .  We also 
have 2A < 3'd since by assumption I does not contain the root /~. Hence we can 
choose natural number i so that /1/2 < 2'x s < 2A < 3'd, and marke r / ,  - 3'd + 2'~s 
is in I. [] 

THEOREM 5.1.3 

contains at m o s t  O(n(n  2 + m)) intervals at each corner (and two per wall), 
for a total of O(n2(n 2 + m)). 

The theorem follows immediately from the previous 1emma. We remark that 
the same proof shows that each ~Y-(~)(J0) contains a marker. As an application, 
we give the following easy decision procedure for the reachability question. 

THEOREM 5.1.4 

The reachability question is decidable in time 2 2p~ where poly(n, m) is a 
polynomial in n and m. 

Proof 
We show that the reachability question can be expressed as a formula of 

R( + ,  x ) with polynomial length (and hence polynomially many variables). The 
resource bounds on the decision procedure then follow from theorem 2.3.1. We 
have already discussed how placements and jumps can be expressed in R( + ,  x ); 
we now discuss more complex objects. 

An interval of placements at a wall or corner contact can be represented as a 
pair of placements. A syntactic annotat ion indicates whether the endpoints are 
open or closed. Side formulas of size O(m) constrain the pair of placements to lie 
within the contact interval. Formulas of constant size express membership of a 
placement in the interval and containment or equality of two intervals. 

A set J of up to k intervals, either all at one contact or at different contacts, 
can be represented with 4k "variables" ranging over intervals (hence O(k) 
variables of R( + ,  x )). There are k each of the four possible types of interval, 
open, closed, or halfopen; 3k of the intervals will always be empty. The predicate 
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I ~ J  is a disjunction (of size O(k)). Predicates expressing J = J ' ,  j r - - j '  and 
J = o r  U J "  require size proportional to the sum of the sizes of J and J '  (and 
J " ) .  

The relation J = J ~ b ( J )  can be expressed as "V0~ [(31' ~ J  and w ~ I ' )  iff 3j  
a feasible jump of type t from a to b with O ( j ) ~ I  and w = I2(j)]". This 
formula is at most size O(n3m). The relation J = J a b ( J ) ,  requires sixteen copies 
of this formula, one for each type t, and the merge operator. The relation 
J '  = J ( J )  can be expressed as the merge at each contact b of J,b(~r for all I 
at contact a in J .  

is the least fixed point of mapping 09": "~r r - ~  and J ( ~ ) = ~  and V~r 
(J0 r--J and J ( o r  =de implies ~ r - - J ) " .  By theorem 5.1.1, ~ contains at most 
O(n2(n 2 + m)) intervals, hence needs only O(nZ(n 2 q- m)) variables of R ( + ,  • ) 
to represent it. Also, ~ is the intersection of all fixed points of J that have no 
more intervals than ~ does, so it suffices to use O(n2(n 2 + m)) variables for J as 
well. 

Finally the reachability question can be expressed as " 3 j  so that O ( j ) ~  
and 12(j) is the target placement". [] 

The crucial step in theorem 5.1.4 is the fact that only O(n2(n2+ m)) disjoint 
intervals are reachable; this implies that reachability can be expressed using only 
a finite number of variables of R( + ,  • ). Note that though mapping T was used 
in the proof of theorem 5.1.3, it is not necessary for the formula constructed in 
theorem 5.1.4. It will be used again in the next section. The cor',struction in the 
proof makes no attempts to be economical in use of variables or formula length. 
The only way to make substantial improvements in the complexity of the decision 
procedure is to reduce the number of variables to O(log nm). This is the subject 
of the next section. 

6. An improved decision procedure 

6.1. LABELLING AND FIXED POINTS 

This section and the next, section 6.2, together give a decision procedure for 
reachability running in single-exponential time. This section develops a more 
sophisticated way of propagating reachable intervals, extending the mapping T of 
section 5. The main result of this section, theorem 6.1.7, is that the extended 
mapping finds all reachable intervals with only a singly exponential number  of 
applications. Section 6.2 discusses the details of how to actually implement the 
mapping. The extended mapping requires a labelling strategy and a method to 
solve for fixed points of cycles. We begin with a technical point, extending 
mapping T to intervals with open endpoints. 
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Mapping T has been defined only for closed intervals. Now suppose I is an 
interval with one or two open endpoints and let j ~ r t  -ab(I). If a or b is a wall, 
then T(j ,  I )  = J ( j ,  I ) ,  which is well-defined for open intervals I. So suppose a 
and b are corners. The propagation mapping depends upon the endpoints of 
I2( X( j ,  I)), handled separately for left and right endpoints. If the fight endpoint 
of I2(X(j ,  I)) is closed, proceed as before. If ~2(X(j, I)) has open right 
endpoint  wR, then wR must also be the open right endpoint of I. We choose 
JR ~ X( j ,  I u  {0~R} ) with $2(jR)= o~ R. By lemma 4.3.3, all of SiR except possibly 
its endpoints are reachable from I. Hence we merge SjR except possibly its 
endpoints into T( j ,  I ) .  (Notice we can explicitly test whether the endpoints of SiR 
are reachable from I by jumps; if so we can merge them into T(j ,  I).). This is 
repeated as necessary for JR' and for the left endpoint of $2(X(j, I)). 

A leap sequence s=(aa,  ta, a 2 . . . . .  ak) is a finite alternating sequence of 
contacts and leap types, starting and ending at a contact (contacts may be 
repeated). The length of a leap sequence is the number  of leap types, i.e., one 
fewer than the number  of contacts. The concatenation of leap sequences s and s ' ,  
denoted s II s '  is defined only if the ending contact of s is the starting contact of 
s '  and is obtained by juxtaposing s and s '  and deleting the duplicate contact. A 
path follows s from placement o~ if the source placement of the path is o~ and the 
path consists of leaps to successive placements in s where the leaps have 
corresponding types given by s. A leap sequence s defines a function gs from 
placements at its starting contact to placements at its ending contact: if s = (a )  
then gs is the identity function with domain the contact interval at a; if 

o l s = (a ,  t, b ) ] I s '  then gs is gs" gob with domain dom(gtab) A (gtab)-a(dom(gs,)). 
(Recall gtab is the function from placements at a to placements at b obtained by 
following leaps of type t.) Clearly dom(g~) is a closed interval, possibly empty, 
and if o~ ~ dom(gs) then the path obtained by following s from ~ has final 
placement gs(~). (The path is not required to avoid obstacles.) 

Each function grab is either monotonically increasing or monotonically decreas- 
ing. Hence gs is monotonically increasing or monotonically decreasing; further- 
more, g~ is monotonically decreasing exactly if it is the composition of an odd 
number  of monotonically decreasing functions. 

We define interval D(w, s), the interval of placements containing o~ so that all 
paths following s from placements in the interval are homotopic and avoid 
obstacles. If s = ( a )  then D(w, s ) = d o m ( g ~ ) ,  the contact interval at a. If 
s = (a,t,  b) then D(w, s) is the (possibly empty) interval containing ~ so that 
any leap of type t from a to b with source placement in the interval is feasible. If 

t t - 1  t s = ( a ,  t, b) l l s ,  then D(~,  s )=D(o~,  (a, t, b ) )n (gab)  (D(gab(O~), S'). 
Clearly D(o~, s) _c dom(g~). If the path following s from o~ avoids obstacles then 

~ D(~ ,  s) and if not then D(o~, s) = ~ .  
A base label at contact a is a root at a or a placement 0~ at a so that 

w = g~(w) and 0~ ~ D(o~, s), where s is a leap sequence starting and ending at a. 
The length of a base label is zero if it is a root and the length of s if it is a fixed 
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point of g~. A label at contact a is a pair (lo, s) where ~0 is a base label at some 
contact a ' ,  s a leap sequence starting at a '  and ending at a, and ~o ~ D(co, s). 
The length of a label is the length of its base label plus the length of its leap 
sequence. 

LEMMA 6.1.1 
If the endpoints of I have label of length k, then the endpoints of T( j ,  I )  can 

be given labels of length no more than max(k + n, n + 1). 

Proof 
Let 0 be an endpoint of T(j, I). If 0 is an endpoint  of J(j, I) ,  then by 

lemma 3.2.4, either 0 is obtained by one or two leaps from an endpoint of I or 0 
has a label of length zero. If 0 is an endpoint of Sj, for some j =j~,  j~, Jn, or j~, 
then either 12(j) is an endpoint of I or again by lemma 3.2.4, ~2(j) has a label of 
length zero. Since extreme paths resulting from stretch consist of at most n leaps, 
0 has a label of length at most max(k + n, n + 1). [] 

An interval is labelled if its endpoints are labelled. We henceforth assume that 
all intervals are labelled. T( j, I) maps labelled interval I into an interval whose 
endpoints are labelled using the previous lemma. Similarly .Y- maps a set of 
labelled intervals into a set of labelled intervals. 

Suppose s is a leap sequence from a contact back to itself, gs is monotonical ly 
increasing, g~(lo) :~ lo, and lo ~ D(~o, s) = [~%, ~oL]. If w < gs(CO), define fix(lo, s) 
= min(gs(wL), {w':  w'=gs(OJ ) and c0'>~ c0)); if ~o> gs(w), define fix(c0, s ) =  
max(gs(~R), ( w': o~' = g , (~ ' )  and ~ '  ~< ~}). 

LEMMA 6.1.2 
If gs(~o)> ~0 and [lo, g~(lo)] is reachable, then [lo, fix(lo, s)) is reachable. 

Similarly if g~(lo) < lo and [g~(lo), io] is reachable, then (fix(lo, s), co] is reacha- 
ble. 

Proof 
Suppose gs(~0)> lo and lo '~  [lo, fix(io, s)). Then for some k, gs(k+l)(IO)> C0' 

>~ g~k~(lO), i.e. for some o0" ~ [lo, gs(lo)], ~o' = g~(~(co"). Since [co, fix(lo, s)] ___ 
D(~o, s), w' can be reached by following s k times from co". [] 

LEMMA 6.1.3 
Placement fix(~o, s) has a label of length at most the length of s. 
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Proof 
If fix(w, s) is a fixed point of gs, it has a base label of length the same as s. 

Otherwise fix(w, s ) = g s ( W ' )  where w' is an endpoint of D(w, s). For some 
s', a, t, b, s=s ' l l (a ,  t, b)tls", gs,(w') is an endpoint of I2(X(j ,  dom(gtb))).  
By lemma 3.2.4, g'ab(gs,(w')) has a label of length zero. Hence g~(w ' )=  
gs,(gs,(W')) has a label of length at most the length of s" ,  i.e., at most the length 
of s. [] 

We now use fix to define a mapping F from labelled intervals at a contact to 
labelled intervals at the same contact. First suppose I is an interval at corner a. 
Then F(I)  is I possibly merged with other intervals as follows. Let the left 
endpoint of I have label (w, s). If possible, choose s '  and s "  so that s = 
s '  [I s ' ' ,  s "  is a leap sequence from a to a of length at least one, gs" is 
monotonically increasing, and w ' = g ~ , ( w ) ~ I ,  and so that among a l l -such 
choices s '  is chosen as long as possible. Merge [w', fix(w', s " ) )  with F(I). Notice 
if the merge occurs, (s, w) is not an endpoint label of the resulting interval since 
g~(w) is no longer an endpoint. If there is no way to choose s '  and s" ,  do not 
merge anything into I. This procedure is repeated with the right endpoint of I. If 
I is an interval at a wall, the procedure is similar; it only need be performed at 
the endpoint of 1 in direction opposite to motion along the wall. 

We let ~ be the extension of F to be a mapping from sets of labelled intervals 
into sets of labelled intervals. 

LEMMA 6.1.4 
Every interval in ( Y  o .Y-)(k)(J0), any k >~ 0, contains a marker. Hence there 

are at most O(n2(n 2 + m)) intervals in (o~ o ,Y')(k)(J0). 

Proof 
Similar to the proof of lemma 5.1.2 and theorem 5.1.3. [] 

LEMMA 6.1.5 
The label of every interval in (o~ o J - ) (k) ( J0)  has length at m o s t  O(n3(n2+ 

m)). 

Proof 
Suppose (w, s) is the endpoint label of some interval I ~  (o~- o.Y-)(k)(J0), 

some k > O. The direct predecessor of (w, s) is the label (w, s ' )  of the interval 
I ' ~  ( ~  o J ) ( k - 1 ) ( J 0 )  so that T(j, I')c_ I has endpoint label (w, s). Possibly 
no direct predecessor exists; if several exist choose one arbitrarily. The predeces- 
sors of (w, s) are (w, s), the direct predecessor of (w, s), its direct predecessor, 
and so on until no direct predecessor exists. Clearly if (,,~', s ' )  is a predecessor of 
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(to, s), then to' = to and s '  is a prefix of s. If 1 is an endpoint label of interval 
I ~  ( 5  o oq-)~k)(J0) , then the marker of l, m(l) ,  is the marker contained in 1, 
chosen arbitrarily if there is more than one. 

We claim that for every endpoint label l of an interval in ( 5  o f)~k)(~r there 
are at most two predecessors 11 and 12 of I with the same marker. The proof is by 
induction on k; it is trivial for k = 0. Notice that an endpoint  label of 
( 5  o .Y')~k+l)(Jo) is either an endpoint label of  , Y ' ( ( 5  o J ' )~k)(Jo)  ) or it is 
fix(to, s) for some to and s; in the latter case it has no direct predecessors. Hence 
it suffices to show that if l =  (to, s) is an endpoint label of some interval I in 
, Y ' ( ( 5  o ~Y')tk)(J0) ) with m(l l )  = m(12) = m(13) for three distinct predecessors 11, 
12, l 3 of l, then l is not an endpoint label in ( 5  o J')~k+l)(or Now one of 
l 1, 12, l 3, say l 3, must be 1-- (to, s), otherwise the inductive hypothesis would be 
violated. We can assume 11 is shorter than 12, hence we can write l I = ( t o ,  S l )  , l 2 
= ( t o ,  S 1 I IS2) ,  13 = (cO, S 1 IIS2 IIs3)= (to, s). Now either gs:, g~3, or gso  gs: must  
be monotone increasing. Also g~l(to), g~:(g~(to))' g~(to) all lie in I since they all 
have the same marker. Hence it is possible to write s = s '  II s "  with g~,, monotone  
increasing and g~ , ( to )~I .  Thus after applying .~', gs(to) is no longer an 
endpoint, and (to, s) is no longer an endpoint label. 

Since there are only O(n2(n 2 + m)) markers, every endpoint label has at most 
O(n2(n2+ m)) predecessors. Since the direct predecessor of an endpoint  label 
can be at most n shorter than the label, and since every label with path sequence 
longer than n has a direct predecessor, the path sequence portion of every label 
has length at most O(n3(n2+ m)). The length of a base label is also at most  
O(n3(n2+ m)), since a base label is either a root or a fixed point arising from 
some subsequence of the path sequence portion of some label. [] 

LEMMA 6.1.6 
There are at most n ~ distinct labels of length k. 

Proof 
Let 1 = (to, s) be of length k. Either to is a root (of length 0) or to is a fixed 

point of gs', where s '  is some leap sequence of length k'<~ k. We show in the 
next section that there are at most 2 ~ distinct fixed points of gs'. Clearly there 
are at most n ~ distinct choices of s of length k, or of s and s '  together of 
combined length k. Hence there are 2~176 i.e., n ~ distinct labels of length 
k. [] 

THEOREM 6.1.7 
There is k ~ 2 ~176 so that ( 5  o ,Y')(k)(J0) = ( 5  o , ~ ) ( k + l ) ( J 0 ) .  
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Proof 
There are at m o s t  n O(n3(n2+m)) ~-20(n3(n2+m)l~ different possible labels, hence 

only 2 ~176 different possible intervals. Each successive application of 
o~-o J -  must discover a new interval to be reachable, or discover nothing new. 
The former can happen only 2 ~176 many times. [] 

6.2. IMPLEMENTATION DETAILS 

We now discuss the implementation of mappings 5 and ~Y-. We use as 
primitive an elementary test: given two labels at the same contact, determine the 
order of the corresponding placements. We show below how to construct a 
formula of R ( + ,  • ) representing a placement specified by a label. Hence 
performing an elementary test involves deciding a formula of R( + ,  x ). 

Mapping ~Y" can be computed using only elementary tests, in fact using only a 
number  of tests polynomial in m and n. In particular, elementary tests suffice for 
computing J( j, I )  (given labels for I ) ,  for computing the labels and placements 
implied by lemma 3.2.4, and for performing stretch. The jump guaranteed by 
theorem 4.3.1 is an intermediate jump in the computation of stretch, hence can be 
computed. The merge operator t_J is straightforward given elementary tests. 
Mapping o ~- is similar with the exception of the computation of fix, discussed 
below. 

Let l=(~0,  s) be a label. We construct a formula Ft(v ) of R ( + ,  •  that is 
satisfied exactly when gs(~O) is substituted for free variable v. Formula FI(o) has 
number  of bound variables proportional to the logarithm of the length of 1 and 
length exponential in the length of l. 

We begin by constructing a formula Gs(~0, 0) satisfied exactly for pairs 0 and 
lo so,that 0 = g~(~0). Formula G~(lo, 0) has length O(rm), where r is the length of 
s and O(log r) bound variables. The construction uses the "path-doubling" trick. 
For  each function grab there is a formula with two free variables satisfied exactly 
by pairs 0 and ~o so that 0 = gtab(~O ). These formulas can be written in prenex 
normal form with common prenex P; there is a constant c so that each formula is 
of size at most cm. For variables b I . . . .  , b,, 0 ~< i ~< k = logzr, with each bj either 
0 or 1, let s[b I . . . . .  b,] be the subsequence of s of length 2 k- '  and index b l . . .  b,, 
where b l . . .  b, is interpreted as a number  written in binary. We construct a 
formula G~(oa, 0, ba, . . . ,  b,) satisfied exactly when b l , . . . ,  b, are each either 0 or 1 
and gs[bl . . . . .  b,](09) = 0 .  We start with i = k .  Gf(~o, O, b l , . . . ,bk)  can be con- 
structed from the formulas representing the functions g~b by starting with the 
common prenex P and using the variables ba , . . . ,  b~, to select the appropriate 
matrix. This formula can be constructed with length O(mr) and having only the 
bound variables in the prenex P. Then Gi-l(O, lo, bl , . . . ,  b,_l) is 

3vv v/3vb((  = 0 ^ / 3 =  ^ b = 0 )  v = ^ / 3  = o, ^ b = 1) 

/3, bl . . . . .  b , _ l ,  b ) .  
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We set Gs = G?. 
We now construct a formula B,~(x) satisfied exactly by to, where to is a base 

label. For any root to, this is trivial; the formula has size O(m) and constant 
number  of bound variables. For any path sequence s the formula Gs(x, x)  is 
satisfied exactly by the to so that gs(to) = to. Unfortunately there may  be many  
such to, and we need a formula satisfied by a particular such to. 

By lemma 2.3.3, for each function g~b there is a two-variable polynomial P~b 
so that g~b(w)= 0 implies ptab(to , 0) = 0. Furthermore,  there is a constant  c 
bounding the degree of all such polynomials and a constant d so that all 
coefficients have size less than din. If g,(to) = 0, we can write to1 = gl(to0), to2 = 
g2(tol),- . . ,  tot = gr(to~-l), where to o = to, to~ = 0, r is the length of s, and g l , . - . ,  g~ 
are the leap functions whose composition is gs. Hence P1(%, to1) = 0, P2(toa, to2) 
= 0 . . . .  , Pr(to,--1, %) = 0. Using resultants, we can eliminate toa . . . .  , %-1 and get 
the single polynomial P(to0, tot)- The degree of p is c ~ and the size of its 
coefficients is bounded by c2~dm. To get this bound we need to use a doubling 
trick: first eliminate to1 from Pl and P2, to3 from P3 and P4, to5 from P5 and P6, 
and so forth. This squares the degree of the polynomials and cuts the number  of 
variables in half, maintaining a diagonal system. Iterating log2r times gives the 
claimed bound. Let p,(to) =p( to ,  to). Then any to so that gs(to) = to also satisfies 
p~(to) = 0. Since the degree of p~ is at most c ~, there are at most c r fixed points of 
g~. (This completes the proof of lemma 6.1.6.) 

Let q =p /gcd (p ,  p'),  then q has the same roots as p but of multiplicity one. 
Let V(x) be the number  of variations in sign of the Sturm sequence of fi at x. By 
Sturm's Theorem, the number of zeroes of q(x)  in [ -  oo, x] is given by V( - o9) 

- V(x). Hence the sequence of signs of the Sturm sequence of p at a particular 
root to is unique. We use this sequence to uniquely identify a particular to 
satisfying g,(to) -- to: B~(x) is "G~(x, x)  and Aq( ' )(x)  :0", where q(O is the i th 
derivative of q and the operator " :"  is > ,  < ,  or = as appropriate for to. For  s 
with length bounded by O(n3(n2+ m)), this formula has length 2 ~ 
because both the degree of q and the size of coefficients can be this big. 

We can now construct the required formula F t for label l =  (to, s). F t (y )  is 
" 3 x  Bo,(x ) and G~(x, y)". 

The remaining problem is to actually compute F z when needed. This is an issue 
only for the operation fix(to, s). We can use elementary tests to decide if 
fix(to, s) is a fixed point of g~ or is g~ applied to an endpoint of D(to, s). The 
latter case is easily handled since fix(to, s) has a label consisting of a root and a 
subsequence of s. In the former case, we compute ~b corresponding to g, and its 
derivatives. This takes time 2 ~176176 as s is bounded in length by O ( n 3 ( n  2 + 

m)). We then evaluate the signs of the derivatives using the decision procedure 
for R( + ,  • ). This is possible since fix(to, s) is given by the formula expressing 
"fix(to, s) is the least fixed point of gs greater than to" (or "largest  fixed point 
smaller than to"), and we have formulas for gs and to. Hence we can actually 
construct Bo,. (Notice that we cannot simply use the formula for fix(to, s) 
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involving the formula for o~. We need a formula for fix(w, s) whose size is 
independent of how it was computed, since its computation might be quite 
complex.) 

THEOREM 6.2.1 

The reachability question is decidable in time 2 p~ (hence space 2P~ 

Proof 
An elementary test involves formulas of length 2 ~ and only O(log nm) 

bound variables, hence can be decided in time 2 p~ and space 2 p~ The 
composition ~ o ~Y" can be computed in essentially the same time bound. By 
theorem 6.1.7, 2 p~ applications of ~ o 3- suffice. [] 

Notice that it is not evident how to give an accurate estimate of the degree of 
the polynomial in n and m that bounds the running time, since the degree is 
hidden in the asymptotic constant of the time bound for the decision procedure 
for R ( + ,  x ). 

7. Generalizations and open problems 

Suppose we allow backward as well as forward motions. Laumond [9] shows 
that in this case, one placement is reachable from another if the two placements 
are in the same open path connected component of free space. In fact, Laumond 
proves the result for the more difficult case of a 2-dimensional model of a mobile 
cart. The idea of the proof is to approximate the path between the two place- 
ments by a sequence of short back and forth motions. However, there is no 
known bound on the number of times it is necessary to reverse motion from 
forward to backward or backward to forward in order to achieve reachability. 
Any physical mechanism will have some cost for reversing its motion, and so it 
would be interesting to find a motion that minimizes the number of reversals. It is 
easy to show that for the case of the directed point allowed to move backward or 
forward, it is sufficient to consider only normal paths and in fact we can restrict 
reversals in motion to take place only at contacts. Therefore the algorithms in this 
paper can be iterated k + 1 items (where the source placements for an iteration 
are obtained by reversing the directions of the reachable placements computed by 
the previous iteration) to compute the placements reachable by paths with at 
most k reversals. 

Finding the shortest bounded curvature path between two placements in a 
universe containing obstacles remains an open problem. Even in the absence of 
obstacles this is not trivial; Dubins [7] shows how to compute shortest paths when 
only forward motions are allowed and Reeds and Shepp [11] answer the question 
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when both forward and backward motions are permitted. We note that our 
approach is not adequate for shortest paths, since the transformations to obtain 
normal paths do not preserve shortest paths. 

Suppose we wish to extend the model of a forward moving automobile from a 
point to a more complex object. Consider the following model of a bounded- 
radius-of-curvature constraint on the motion of a line segment. The path of the 
segment is specified by the path of some interior point p of the segment; the 
segment is always tangent to the path of p. The path of p has a fixed minimum 
radius of curvature. 

If the segment turns right, then its trailing endpoint swings slightly to the left. 
To see this, note that the endpoint and p both move in circular arcs with the 
same center, but the radius of the arc at the endpoint is larger. If there is an 
obstacle just to the left of the segment then the obstacle, rather than the curvature 
constraint, becomes the limiting factor on how quickly the segment can turn. 

Suppose the obstacle is the x-axis, the segment is moving to the right, and the 
trailing endpoint is on the x-axis. The quickest the segment can turn is to have 
the trailing endpoint just drag along the x-axis. If point p is at (x, y) and the 
distance from p to the endpoint is 1, then the path of p satisfies the equation 
dx/dy=f(1 _y2)/y. This can be solved explicitly as x ( y ) = v  r(1 _y2)_ 
In I(1 + V/1-y2)/yl; this gives the x-coordinate of point p when p is at height 
y, assuming that x = 0 when y = 1. The significance of this equation is that it 
involves both algebraic numbers and logarithms. 

Can we plan motion for the segment? The path of the segment can consist of 
sections where an obstacle limits the radius of curvature and sections where the 
explicit bound limits the radius of curvature. The path of p in the latter type of 
section can be described algebraically, while the former type requires the equa- 
tions just derived. The two types of sections can alternate arbitrarily; hence the 
position of p is described by an expression involving arbitrary nesting of 
algebraic numbers and logarithms. Unfortunately, it is not known how to 
manipulate such numbers. The strongest known result is that it is possible to 
decide whether a number of the form Eailogfl~ is greater than zero, where the a 's  
and fl 's  are algebraic numbers [13]. But in such an expression there is only a 
single level of nesting. Hence it seems unlikely that we can devise an exact motion 
planning algorithm for the segment, with the present state of knowledge. 

Finally, we mention the following problem, suggested by Reif [12]. Consider a 
point moving in a two-dimensional space with fixed polygonal obstacles. The 
point is subject to unit bounds on its acceleration. The question is "Given a 
source placement (position plus velocity) and a target placement, is there a path 
from source to target avoiding all obstacles subject to the bounds on acceleration?" 
We believe this problem to be quite challenging. Note that planning motion with 
bounded radius of curvature is a special case, with acceleration always perpendic- 
ular to the direction of motion. Suppose both the source and target velocity are 
zero. If there is an arbitrary path between the placements then there is a path p 
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consisting of line segments and the point can follow p for example by starting 
with zero velocity at the beginning of any segment of p, speeding up with unit 
acceleration to the midpoint of the segment and then slowing down with unit 
deceleration until stopped at the next endpoint. Therefore for arbitrary source 
and target velocities a sufficient (but not necessary) condition for reachability is 
to be able to bring the point to a halt from the source placement and from the 
target placement (with velocity reversed). However deciding if the point can be 
brought to a halt from a placement stills appears to be a difficult problem. 

Appendix I 

Remainder of the proof of lemma 4.2.2 
Recall that P(O) is the path as defined by stretch with final placement 0, A is 

the list of oriented placements defining P(O), and q~(0) is the direction of the 
tangent of the last jump of P(O). We wish to bound the change in q~ while 0 
varies over monotonic interval I, given that A is in state (Rs) followed by state 
(Ls), i.e., all final arcs of P(O) are short. Notice q~ is decreasing (moving to the 
right). Events (REV) and (TWIND) cannot happen in the interior of I = [00, 0/] 
since I is monotonic. Also (UNBEND) never occurs in I, because initially there 
are no intermediate oriented placements in A, and if any oriented placement is 
created then its arc length along path P is increasing. We ignore event (SWIND). 
The remaining possible events are (SFLIP) from orientation L to R, (TFLIP) 
from orientation R to L, and (BEND) creating placements of orientation R. We 
view (SFLIP) as an instance of (BEND). 

We find a function B(O) that depends upon the final jump of P(O). Function 
B is defined to bound how much q~ can decrease as 0 increases, assuming 
(BEND) does not occur or occurs once, whether or not (TFLIP) occurs. We show 
that in fact B does not decrease if (BEND) occurs, hence the original value B(Oo) 
bounds q, throughout I. We also show that B( Oo) >_- q,( 00) - ~r, proving lemma 
4.2.2. The bound B is defined using an auxiliary function b, defined on XxXs 
jumps to u,. B(O) is just b(j), where j is the final jump of path P(O). 

Let j = (p, ~-) be an XxXs jump to u,. To define b(j),  we find a subpath Vof  
jump j.  V is the set of points along j at which (BEND) can occur. If j is RX, 
then V is just the tangent segment of j. If j is LX, then V is the tangent segment 
of j plus the arc of Cp backwards to the first of up or the point at which an 
LxR~ jump with source placement p diverges from Cp. 

For v ~ V let iS(v) be the R-oriented placement tangent to V at v and "~(v) 
the L-oriented placement through u, chosen so that among RsLs jumps from 
~(v) to u,, the jump (t3(v), ~(v)) has direction of tangent as small as possible. 
The possibilities for (t3(v), "~(v)) depend upon the distance between z~(o) (the 
center of C~(o) ) and u,: if the distance is at least 3 then (~(v), "~(v)) is an RsL~r 
jump (with nonempty tangent segment if the distance is strictly greater than 3), 
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j,,- ~ 

j,,' 

Jump j is LR Jump j is RL 
Fig. 16. Examples of definitions. 

and if the distance is less than 3 then (iS(v), ,~(v)) is an RsLs hop. Let ~ (v )  be 
the direction of the tangent segment of (t3(v), "~(v)). We define b ( j ) =  
minv ~ v~(V). 

Let W be {z~(v): v ~ V}; then W is the path that is distance one to the right 
of V. Manifestly W consists of a straight segment W~ and possibly an L-oriented 
arc W a of radius 2. Let l be the line through u, parallel to ~ ( j ) ;  we assume 
henceforth l is horizontal. Let Di, i = 1, 2, 3, be the L-oriented circles of radius i 
centered at u,. Let D;  be the circle of radius 1 distance two below D 1 (see fig. 
16). Let H be the halfplane with bounding line through u, perpendicular to l 
contain the tangent segment of j .  

L E M M A  A1.1 

(1) W__c H and W has at most one point  of intersection with D 3. 
(2) The final endpoint  of W lies on D 1 (if j is XR) or on D 1 (if j is XL).  
(3) W a is at most a semicircle; furthermore if part  of W, lies outside D 3, then 

W a extends at most as far as the point  where a line is tangent to both  D 3 
and the circle through W a. 

Proof 
Let j = (p, -r). 
(2) Let e be the final endpoint of IV. If j is XR, then e = z~, so e ~ D 1. If j is 

l XL, then e is distance 2 below z,, so e ~ D 1. 

(3) Suppose j is LX; z o lies distance two above the line through IV,, and must  
lie to the left of the final endpoint of W; using (2) it follows that C o cannot  be  
contained in the interior of D 2. By definition of V, the arc of V backwards  
around C o extends at most as far as the point of tangency of a line tangent to 
both  C o and D 2 (since then the arc length around C a would be ~r); this arc length 
is clearly at most ~r. Hence W a is at most a semicircle. Furthermore,  it is easy to 
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see that the tangent to D 3 and the circle of radius 2 about z 0 is distance one from 
the tangent between D 2 and C o. Hence W a extends at most as far as the point 
where a line is tangent to both Wa and D 3. 

(1) follows easily from (3). [] 

We say j is close if W is inside D 3. Let v 0 and v 3 be the initial and final 
endpoints of V (considering V as a directed subpath of j ) .  If j is not close, 
choose v 1 ~ V so that z~(o, ) is the point of intersection of W and D 3. If j is close, 
set v 1 to v o. 

LEMMA A1.2 

b(j)  = min(~(Vl), {9(j)). 

Proof 
If j is XR we show ~(v)  is decreasing in [vq~, U1] , increasing in [O1, U2] , 

decreasing in Iv2, v3], (v 2 is defined below), and ~ ( v 3 ) =  O ( j ) ;  hence b( j )=  
min(q~(Va), O(j)). If j is XL we show ~(v)  is decrea~ng in [v 0, Vl], increasing in 
Iv 1, v3], and q)(v3) ~< O ( j ) ;  hence again b(j)  = min(q)(Vl), O( j ) ) .  

First suppose j is not  close (of any type), and v ~ [v0, vl]. Then z~(v) ~ W is 
on or outside D 3. Let s(v) be the segment from z~(v) tangent to D 3. We claim 
q~(v) is the direction of s(v): jump (t3(v), 4(v)) is an RsLrr jump, so its tangent 
segment is also tangent to D 2, and segment s(v) is parallel to the tangent segment 
of (t3(v), 4(v)). Now as v moves from v 0 to v 1, it is clear that the point of 
tangency of s(v) with D 3 moves clockwise around D 3 (using lemma A1.1(3) in 
case W contains a circular arc). Hence ~(v)  decreases in Iv 0, Va]. 

Now suppose v ~ [v 1, v3]. Then z~(v) ~ W is on or inside D 3. Let s(v) be the 
segment of length 2 from z~(v)^to D1, chosen so that s(v) lies to the left of the line 
from z~(o) to u~. We claim q~(v) is rr /2 to the right of the direction of s(v):  
(t~(v), "~(v)) is an RsLs hop, and the midpoint of s(v) is the point of tangency of 
C~(o) and Cr 

As v moves from v I to v 3, how does ~ change? Let a(v) be the direction of the 
tangent to W at z~(o) and fl(v) the direction of the tangent to D 1 at z~(o) 
(consider D 1 as oriented R). It is easy to check that a(v) and fl(v) never differ 
by more than 7r/2. If a(v) is to the right of fl(v), s(v) rotates counterclockwise; 
if a(v) is to the left of fl(v), s(v) rotates clockwise. 

Suppose j is XR, then W~ is within one of l, either above or below. Assume for 
the moment  that v 1 ~ D 3. Clearly a(vl )  is to the right of fl(oa) and ~ is increasing 
after o 1. Direction a remains to the right of fl until the tangent to W at Z~(v) 
becomes parallel to the tangent to D 1 at z~(~). This may happen when z~(v) is the 
topmost point of D 1 and z~(o) ~ W~, or it may happen with z~(o) ~ W~ and zr 
past the topmost point of D 1. We define v 2 to be this value of v. Past v 2 direction 
a(v) is to the left of fl(v) and ~ is decreasing. If v 1 ~ D 3, then the analys is  is 
similar. Possibly W is so short that a is always to the left of fl and (h is always 
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decreasing; we set 02 ~---U 1 in this case. Notice that at v 3. jump (~(03), ?(03) ) 
consists only of the arc of C~ traversed in j;  in particular +(v3) = O( j ) .  

If j is XL, the analysis is similar. The straight part  of W lies between distance 
1 and distance 3 below l. Angle a remains to the right of fl until v 3 since ze{v) 
cannot reach the topmost point of D~. Hence ~ is increasing in [oa, v3]. At 03, 
jump (~(v3) ,?(v3))  again consists only of the arc of C~ traversed in j .  However 
in this case 4~(0) = ~ ( j )  < O( j ) .  [] 

LEMMA A1.3 
b( j )  >_. ~ ( j )  - ~r. 

Proof 
By the previous lemma, b( j )  = min(~(v~), O( j ) ) .  We have O ( j )  > / ~ ( j )  - ~r, 

since in the worst case j is an XxRs jump, so its final arc is short. We must have 
z~(o, ) ~ H, since z~(o, ) ~ W and W a is at most a semicircle, by lemma Al . l (3) .  If j 
is not close, then z~(ol ) ~ D 3 n H and ~(Va) is the direction of the tangent of D 3 
at z~(o, ), clearly at least ~ ( j )  - ~r. If j is close, then ~(Vl) is r r /2  to the right of 
the direction of s(v),  but the direction of s(v)  is itself at most ~r/2 to the right of 
�9 ( j ) .  In either case we have ~(Vl) > / ~ ( j )  - rr. [] 

For the following we write for example V( j )  or Va(j) to make the dependence 
upon j explicit. 

LEMMA A1.4 
If k is an XxXs jump with the same source placement as j and O(k )  > O ( j ) ,  

then b(k)  >1 b(j) .  

Proof 
We have either j and k are both the same type, or the target placement of j is 

oriented R while the target placement of k is oriented L. Also, we must  have 
qb(k) < ~ ( j ) .  We claim W(j)  and W(k)  have the same initial endpoint  (if j and 
k are RX)  or have common initial arc and then diverge (if j and k are LX). This 
follows from the observation that C~vo(j)) = C~(vo(k)) = Cp if j = (p, "r) is R X  and 
C~o0(j)) and C~(oo(k)) are both tangent to Cp if j is LX. 

It suffices to show ~(va(k))  >1 q~(vx(j)). First suppose j is not close, then k is 
not close either. It is clear that W(k) n D 3 is counterclockwise from W(j )  n D 3 
around/ )3 ;  hence ~(Vl(k))>_-~(vl( j )  ). If j is close, then k is close as well. Since 
W(j)  and W(k) have the same initial endpoints, we have ~ ( v a ( k ) ) =  ~(va(j)  ). 
[] 

Proof of lemma 4.2.2 
We show B(O) does not decrease during stretch; the result then follows from 

lemma A1.3. Let j = (p(0) ,  "r(0)) be the final jump of P(O). Suppose (BEND) 
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occurs at 0' > 0; let k be the final jump of P(O') before processing (BEND) and 
l be the jump newly created by processing (BEND). Clearly l is a final portion of 
k and the source placements of j and k are the same. By lemma A1.4, 
b(k) >_- b( j ) ,  and b(l) >~ b(k) since V(l) is a subpath of V(k). Hence B(O') = 
b(1) >1 b(j)  =B(O). [] 

Appendix 2 

Term Symbol Comment Section 

universe U polygonal, closed, bounded 2.1 
geometric complexity n number of corners of U 2.1 
bit complexity m number of bits to define U 2.1 
direction 0 0 ~ S a 2.1 
interval of directions I = [0a, 02] arc of S 1 2.1 
position u u ~ U 2.1 
placement (u, 0) u a position, 0 a direction 2.1 
path p 2.1 
initial placement I2(p), I2(j) initial placement of path p or jump j 2.1 
final placement O ( p ) ,  O ( j )  final placement of path p or jump j 2.1 
orientation d d = L (counterclockwise) 2.2 

d 
oriented placement o, % p 

@ 
oriented circle C o 

jump 

jump type 

leap 

hop 
leap function 

c-cone 

jump representatives 

configuration space 

Z o 

J 

X x X x  

r 

ptab 
U, 
X ( j ,  I )  

c ( j )  = (D(j) ,  O( j ) )  
C 
L~ 

J ( j ,  I )  

or d = R (clockwise) 

orientation opposite to d 2.2 

o = (uo, 0o, do); (uo, 0o) a place- 2.2 
merit, d o an orientation 

orientation ~r 2.2 
unit circle with orientation d o and 2.2 
tangent direction 0o at Uo 
center of C o 2.2 
j = (o, ~'), o and ~" oriented place- 2.2 
ments; also denotes resulting path 
each X is L or R and each x is s or l 2.2 
indicating orientation and "length", 
respectively, of arcs in the jump 
direction of tangent in jump j 2.2 
jump with arc of length 0 or ~r or 2.2 
tangent with length 0 
leap with tangent length 0 2.2 
maps placement at a to the placement 2.3 
at b resulting from a leap of type t 
polynomial encoding gt b 2.3 
Net _. R 2 3.1 
jumps homotopic to j with source in I 3.2 
collection of jumps of type t o 3.2 
j a jump of type t o 3.2 
c ( j ) ' s  for fixed contacts 3.2 
curves partitioning C 3.2 
collection of boundary curves and 3.2 

ftd'S 
interval of placements at b 3.3 
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Appendix 2 (continued) 

Term Symbol Comment Section 

fb(I)  
J 
j r - - d ; "  

merge u 

reachable placements 

hop function 
hop function 

J ( J )  

A 

o,  p,  "r 

P 
0 
A~, Ao, A, 

T 
q, 
Ua~ Up, U~ 

r(p, a) 
s, 

g 

g(o) 
d 
ha 
ha 
l-la(O) 
Old, ~d 

K b 

Ir c 

K s 

T(j, I )  

3-(j,  I )  
gs 

o(~, s) 
F 

intervals of placements at b 3.3 
sets of intervals of placements 3.3 
each interval of , f  is contained in an 3.3 
interval of J '  
smallest well-formed set J "  so that 3.3 
,~ r- J "  and J '  r- ,,r 
intervals of placements reachable by a 3.3 
jump from a placement in J 

list of oriented placement, natural 
number of pairs 
initial, penultimate and final oriented 4.2 
placements in A 
path corresponding to A 4.2 
final placement on P 4.2 
initial, penultimate and final arcs 4.2 
traversed by P 
tangent segment of jump (p, r)  4.2 
direction of T 4.2 
initial, penultimate and final contact 4.2 
on P 
ray tangent to Cp in direction a 4.2 
interval of final placements deter- 4.3 
mined by stretch(I) 
family of paths determined by 4.3 
stretch(1) 
path in P1 with final placement 0 4.3 
distance between contacts a and b 4.4 
maps initial to final angle of RsLs hop 4.4 
maps initial to final angle of LsRs hop 4.4 
interval [ha(0), h a ( O ) ]  4.4 
endpoints of dom(hd), i.e., 4.4 
dom(hd) = [ -  ad, fld], 
d~ = [ -  fld, ad] 

3.3 
4.2 

angles in fig. 14 4.4 
defined by theorem 4.5.1 4.5 
minimum intercorner distance 4.5 
minimum of K b and root separation 5 
interval of placements containing root 5 
or self-dual interval 
extension of T to sets of intervals 5 
mapping from initial to final place- 6.1 
ment for a leap sequence 
initial placements of homotopic paths 6.1 
maps labeled intervals to labeled 6.1 
intervals at the same contact 
extensions of F to sets of intervals 6.1 
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