
Annals of Mathematics and Artificial Intelligence 8(1993)449-474 449

Disjunct ive LP + integrity constraints =
stable model semantics

Jos6 Alberto Fem~indez*, Jorge Lobo*, Jack Minker*'*

and

V.S. Subrahmanian*'*

*Department of Computer Science, University of Maryland, College Park,
MD 20742, USA

tlnstitute for Advanced Computer Studies, University of Maryland, College Park,
MD 20742, USA

*Department of Electrical Engineering and Computer Science,
University of Illinois at Chicago, IL 60680, USA

Abstract

We show that stable models of logic programs may be viewed as minimal models
of programs that satisfy certain additional constraints. To do so, we transform the
normal programs into disjunctive logic programs and sets of integrity constraints. We
show that the stable models of the normal program coincide with the minimal models
of the disjunctive program that satisfy the integrity constraints. As a consequence, the
stable model semant ics can be characterized using the extended generalized closed
world assumption for disjunctive logic programs. Using this result, we develop a bottom-
up algorithm for function-free logic programs to find all stable models of a normal
program by computing the perfect models of a disjunctive stratified logic program and
checking them for consistency with the integrity constraints. The integrity constraints
provide a rationale as to why some normal logic programs have no stable models.

I. Introduction

We consider the problem of finding the stable models of normal logic programs
using iterative techniques. To do this, we transform the normal programs into
disjunctive logic programs and sets of integrity constraints. We show that the stable
models of the normal program coincide with the minimal models of the disjunctive
program that are consistent with the integrity constraints. This result implies that
it is possible to define a fixpoint characterization of the stable models of a program
independently of the Gelfond-Lifschitz transform. An important consequence of
this is the fact that the stable model semantics can be characterized using the

450 J.A. Fernandez et al., Stable model semantics

extended generalized closed world assumption for disjunctive logic programs. This
characterization sheds new light on the issue of what it means for a normal program
to be inconsistent with respect to the stable model semantics.

In many cases, a normal program consists of two or more parts. Some parts
are stratifiable and others are not. We improve the result by transforming only the
non-stratifiable part of the normal logic program as described above. The resulting
program is a stratified disjunctive logic program where we compute its perfect
models. This improves over the case where the entire normal logic program is
transformed since, in many cases, it reduces the number of models that must be
checked for stability.

Using this result and the fixpoint and bottom-up algorithm of Fem~-adez and
Mimker [6] for disjunctive stratified databases, we develop a bottom-up algorithm
for function-free logic programs that finds all the stable models of a normal program
by computing the minimal models of a stratified disjunctive logic program and
checking for their consistency with respect to the integrity constraints. Moreover,
the integrity constraint check can provide the rationale as to why some normal logic
programs have no stable models.

This work is structured as follows. Section 2 defines disjunctive normal logic
programs and integrity constraints. It also presents a characterization of constraint
satisfaction in a disjunctive logic program in terms of the extended generalized
closed world assumption (EGCWA) [20]. Section 3 presents the evidential
transformation and describes how it relates to the stable model semantics of normal
logic programs. Section 4 reviews the results of Fernandez and Minker in computing
the perfect models of disjunctive stratified databases. Finally, in section 5 we use
the bottom-up algorithm of Fem~ndez and Minker [6] to compute the perfect models
of stratified disjunctive deductive databases, and in this way generate the stable
models of normal deductive databases. We extend the algorithm to incorporate
integrity constraint checking.

2. Background

A normal disjunctive logic program P is a finite set of clauses of the form

AI v �9 �9 v Ak ~-- B1 Bn, not D 1 not Din,

where k > O, n, m _> 0 and the Ai, Bj and Dlare atoms. The operator not represents
nonmonotonic negation as failure.

If k = 1 for all clauses in P, the program is called a normal logic program, 1)
When m = 0 for all clauses in P, the program is said to be negation-free and is called
simply a disjunctive logic program.

l) We will use the term non-disjunctive logic program when we emphasize that a program is not
disjunctive.

J.A. Ferndndez et al., Stable model semantics 451

A ground atom or positive clause C is a logical consequence of a negation-
free disjunctive program P iff C is true in all minimal Herbrand models of P. Since
minimal models are not unique in the disjunctive case, the meaning of a disjunctive
program P is characterized by its set of minimal Herbrand models He. Definite
programs have a unique minimal model, usually denoted by Mp. The minimal models
of definite or disjunctive logic programs can be computed iteratively using the fixpoint
operators Te and T~ for definite and disjunctive programs, respectively [18,4].

For normal programs, the minimal models semantics is not always natural,
since some of these models do not seem to reflect the intended meaning of the
program. An example of this is represented by the program {p <---not q}. The
program has two minimal Herbrand models: {p} and {q}. Only the model {p}
seems to be a natural model of the meaning of the program since p is supported
by not q in {p}, but there is no similar support for q.

Different semantics have been proposed for particular classes of programs to
reflect their intended meaning. For the class of stratified programs, one semantics
is the perfect models semantics. A positive clause C is considered a logical consequence
of P iff C is true in all perfect models of a disjunctive logic program P. The perfect
models semantics produces a unique perfect model in the case of non-disjunctive
stratified programs [13], and it is equivalent to the prioritized circumscription of
the predicates on each strata of the program [10, 13]. A disjunctive logic program
P is stratified iff there exists a partition of the predicate symbols defined by the
program {$1 S,} such that if a clause defines a predicate in Si, then the atoms
on the right-hand side have predicate symbols belonging to u ~ - ~ S j if the atom
occurs negatively, or belonging to u~=IS j if it occurs positively.

The partition or stratification of the predicate symbols induces a stratification
{/'1 P,} of the clauses of the program defining each predicate. This structure of
the program can be used to iteratively compute its perfect models. The perfect models
semantics coincides with the minimal models semantics when computed for negation-
free programs. The notation ~ p will refer to the perfect models when P is stratified.

For larger classes of programs, different semantics have been proposed. We
are interested in the study of how to compute effectively the stable model
semantics [8]. In particular, we are interested in how to compute the stable models
iteratively, as in the case of negation-free or stratified programs.

The stable models semantics characterizes the meaning of a normal program
by a set of minimal models called stable models, which are defined using the
Gelfond-Lifschitz transformation. This transformation in general is defined as follows.

DEFINITION 2.1 [8]

Let P be a disjunctive normal logic program and let I be an interpretation:

p t = {(A1 v - - - vA k ~ B 1 Bn) : (A 1 v . - - v A k ~-- B 1 B n, not D 1 not Din)

is a ground instance of a clause in P and {Dl Din} n I = 0 }.

452 J.A. Fern6ndez et al., Stable model semantics

pt is the Gelfond-Lifschi tz transformation of P with respect to I, where the A i, Bj
and Dt are atomic formulae.

The result of the Gelfond-Lifschitz transformation is a negation-free disjunctive
(definite) program. Stable models for non-disjunctive logic programs may now be
defined as follows.

DEFINITION 2.2 [8]

Let P be a definite normal program. M is a stable model of P iff M is the
unique minimal model of pM.

For disjunctive programs, which usually have more than one minimal model,
stable models are formally defined as follows.

DEFINITION 2.3 [14]

Let P be a disjunctive normal program. M is a stable model of P iff M is a
minimal model of pM.

Hence, under the stable models semantics, a ground atom or positive clause
C is a logical consequence of a disjunctive (definite) normal logic program P iff
C is true in all the stable models of P.

For non-ground function-free programs, the use of these definitions to check
if an interpretation I is stable is expensive. 2) A new program p i must be constructed
and its least fixpoint computed. Moreover, non-stratified definite normal programs
can have more than one stable model or no stable models at all. If we are interested
in finding all the stable models of P, it is important to reduce the search space (i.e.
interpretation to be tested) and the verification process (i.e. stability verification)
as much as possible.

2.1. KNOWLEDGE BASES AND INTEGRITY CONSTRAINTS

Our approach to stable models consists in finding a set of models that cover
them; from this set we test each model for stability. At the same time, we reduce
the verification of stability in the model to a test for integrity constraint satisfaction.

Integrity constraints (IC) describe the correct states that a knowledge base
(KB) can take. A KB is considered to be correct (or possible) if it satisfies the
integrity constraints. There are several approaches to describe integrity constraint
satisfaction [9, 16, 17]; we consider only the first two approaches below.

2) Without the function-free restrictions, the task becomes undecidable.

J.A. Fern6ndez et al., Stable model semantics 453

DEFINITION 2.4 (CONSISTENCY) [9]

KB satisfies IC iff KB u IC is consistent.

DEFINITION 2.5 (ENTAILMENT) [16]

KB satisfies IC iff KB ~ IC.

If we restrict our knowledge base to be a definite logic program P and assume
that its meaning is given by its minimal Herbrand model (i.e. the meaning of P is
represented by the theory P u CWA(P)) , the two concepts of consistency and entailment
coincide. This can be trivially proved since P u C W A (P) is a complete theory.

LEMMA 2.6

P U C W A (P) U IC is consistent iff P u C W A (P) I = IC.

However, the situation changes when the knowledge base is indefinite. Let
P be a disjunctive logic program. A similar characterization of its minimal Herbrand
models can be described by the extended generalized closed world assumption.

DE~NITION 2.712~

E G C W A (P) = { ~ A I v . �9 �9 v ~ A n : A I ~ H B p , n > 0

~ A 1 v �9 �9 �9 v ~ A n is true

in every minimal Herbrand model of P}.

Yahya and Henschen [20] show that this set is maximally consistent in the
following sense:

No new disjunctions of negated atoms can be added to E G C W A (P)

without being able to prove, from P u E G C W A (P) , new positive disjuncts
that were not provable from P.

This observation leads to the following lemma.

LEMMA 2.8 [20]

M is a minimal Herbrand model of P iff M is a model of P u E G C W A (P) .

Since a disjunctive logic program P may have more than one minimal model,
P u E G C W A (P) u IC is consistent iff some minimal Herbrand model of P is a
model of IC. On the other hand, P u E G C W A (P) ~ IC iff every minimal Herbrand
model of P is a model of IC.

454 J.A. Ferndndez et al., Stable model semantics

EXAMPLE 1

Let P = {a(1), a(2) v b(2), b(1) v b(2)}. Let the integrity constraint be the
formula (VX) (~ a (X) v --~b(X)).

Atp = { {a(1), a(2), b(1)}, {a(1), b(2)} }.

Only the model {a(1), b(2)} satisfies the constraint; hence, the program does not
entail the constraint but is consistent with it.

Intuitively, under the consistency interpretation, integrity constraints can be
used as filters for models that are not interesting (meaningful) i n the KB.

2.2. INTEGRITY CONSTRAINTS FOR DISJUNCTIVE LOGIC PROGRAMS

We represent integrity constraints by clauses of the form

A 1 v . . , v A k r 1 Bn,

where k + n > 0 and the A i and By are atoms. The use of " ~ " instead of "<---" is only
syntactical to allow us to differentiate between clauses of a program and integrity
constraints. Integrity constraints add semantic information about the kind of models
that are meaningful with respect to the intended meaning of the program.

DEFINITION 2.9

Let P be a disjunctive logic program and let Ate be the set of its minimal
models. Let IC be a set of integrity constraints; then

At tec = { M ~ At p . M ~ I C } .

Attt, c is the set of minimal models of P that satisfy IC.

The use of Kowalski 's [9] definition of integrity constraints for disjunctive
logic programs means that the model semantics of disjunctive programs with integrity
constraints is characterized by the set of model At~c.

LEMMA 2.10

M is a model of P u E G C W A (P) t..) IC iff M E At~c.

Proo f

M ~ P u E G C W A (P) u IC iff M ~ P w E G C W A (P) and M ~ IC iff M E Atp
by lemma 2.8, and M ~ IC iff M E At~c. []

J.A. Fern6ndez et al., Stable model semantics 455

In the following section, we wiU show how integrity constraints can be used
to select the stable models of a normal logic program.

3. Stable models and the evidential transformation

Our first approach to computing the stable models of a normal program P
transforms the problem into the computation of the minimal models of a negation-
free disjunctive program P~ and the selection of those minimal models that satisfy
a set of integrity constraints ICe. To verify the stability of the models of P that
correspond to the minimal models of P~, it is not necessary to apply the Gel fond-
Lifschitz transformation.

This new program P~ uses a new set of predicate symbols called evidence
(they are the reason for the name "evidential transformation"). For each predicate
symbol p, we introduce a new predicate symbol %p whose intended meaning is
"there is evidence of p". Although these new predicate symbols have an autoepistemic
flavor, their use in the transformed program is completely classical. Given an atom
A ---p(x), we will denote the atom %p(x) by %A.

From its intended meaning, it is clear that %A ~--A must be true for every
atom of the program. The role of the "evidence" is to separate the positive use of
an atom q in the body of a clause, which has a classical meaning, from the use of
its negation (i.e. not q) where the negation as failure toprove introduces a nonmonotonic
usage of the same atom.

This role separation allows us to express our clauses in the following classical
way:

A ~ ' B 1 Bn,~%D 1 " - ' l ~ D k ,

where A is true if the B i are true and "there is no evidence of the Dl" atoms. The
use of classical negation in this rule eliminates any nonmonotonic property of the
program. To recover it, we must take full account of what it means for %A to
provide evidence of A.

In an interpretation I, we say that an atom %A is consistent with its intended
meaning, iff

% A E I ~ A E I .

In other words, if "there is evidence of A" in the interpretation, then A must
be present in the interpretation. An interpretation where this is not the case is
inappropriate since one should not claim to have evidence of A (claim to have "a
proof of A") without A being tree.

3.1. EVIDENTIAL TRANSFORMATION

Using the ideas presented above, the evidential transformation can be defined
formally as follows.

456 J.A. Ferndndez et al., Stable model semantics

DEFINITION 3.1

Let P be a normal logic program. The evidential transformation of P defines
a disjunctive logic program P~ and a set of integrity constraints ICe such that

1. For each clause A ~ B l Bn, not D1 not Dk in P, the clause
A v %D1 v �9 �9 �9 v ~Dt, (--- BI Bn belongs to P~.

2. For each predicate symbol p of P, the clause %p(x) ~ p(x) belongs to P~.

3. For each predicate symbol p of P, ICe contains an integrity constraint of the
form p(x) ~ %p(x).

Nothing else belongs to either P~ or ICe.

Note that definition 3.1 starts with a normal logic program that does not
contain integrity constraints. The evidential transformation alters the normal logic
program to a disjunctive logic program and introduces a set o f integrity constraints.
The disjunctive clauses are equivalent to A (--- Bl Bn, ~%D1 ~%Dk, since
we are using classical negation instead of negation as failure. In step 2, we add
clauses that define the evidence predicates: "there is evidence of an atom A" if the
atom A is true. The integrity constraints ICe, introduced in step 3, restrict the
models to those representing the intended meaning of the program: if "there is
evidence of an atom A", then it should be the case that A is true.

Interpretations in HBt,~ have a richer structure than interpretations in liB?. In
the first, there are two different classes of objects: evidences and objective atoms.
This simple structure is rich enough to characterize syntatically those models of P~
that satisfy ICe.

LEMMA 3.2

Let N be a model of P~. Then: N satisfies ICp iff N = M u %M for some
M c HBp, where %M = {%A: A E M}.

Proof

Let M and M ' be subsets o f HB? such that N = M u %M'. Since N is a model
o f P ~, then N ~ ~A ~-- A for all A EHBe and therefore M c M'. N is a model oflCt,
iff N ~ A ~ ~A for all A ~ HBp and therefore M D M'. Hence, N = M u ~ M for
some M ~ HB?. []

The importance of this lemma, as will be seen after the next theorem, is that
it allows us to reduce the stability test of a model to a sequential check of its
elements. The relation between the stable models of P and the minimal models of
P~ is clear from the following theorem.

J.A. Ferndndez et al., Stable model semantics 457

THEOREM 3.3

Let P be a normal program. An interpretation M is a stable model of P iff

(M ~ %M) ~ ~ Ice
O ~ p ~ .

Proof

Given a program P, we should look at the transformed programs pU and P~.
For a ground instance of a clause C = (A ~-- B~ Bn, not D~ not D~) ~ P ,
we denote the transformed versions of the clause as follows:

C M = (A ~-- B1 Bn),

C~ = (A v %D 1 v . �9 �9 v %Dk ~--- B 1 Bn).

First we prove that M u %M is a model of P~ and of ICe. Then we prove
that it is minimal. Using lemma 3.2, we only need to prove that it is a model
for the transformed clauses of P.
Let C = (A ~-- B1 B n, not D1 not Dk) be a ground instance of a clause
in P.
Assume ~]j D i ~ M . Since M ~ C M, then A EM or 3i Bi q~M. Hence
(M u % M) ~ C~.
Assume 3j Dj E M, then C M ~ pM. But %Dj ~ % M , hence (M u %M) ~ C~.
Therefore (M u %M) ~ P~ and (M ~0 %M) ~ ICe.

Minimality: Assume 3N c M u %M such that N ~ P~ and let N = M' u %M". We
prove that in this case M ' is a model of pU, contradicting the assumption that
M is the minimal model of pM.
Since M' u % M " ~ %A ~-- A, VA ~ HBp, then M" c M " ~ M and M' c M.
Let C = (A ~ B1 Bn, not Di not Dk) be a ground instance of a clause
in P. Then M' u % M " ~ C~.
Assume Bj Dj ~ M, then A ~ M' or 3i B i ~ M' . Hence, M" ~ C u.
Assume 3 j D i ~ M , then C M ~ pU.
Hence, M' ~ pU since VC u ~ p M M ' ~ C u. (~)

AA iCp Therefore, M u %M E ~,~t, ~ .

As before, we prove that M is a model of pU and then that it is minimal.
Let C = (A ~-- BI B n, not DI not Dk) be a ground instance of a clause
in P.
Assume ~j D i ~ M. Since M u %M ~ C~, A E M or 3i Bi ~ M. Hence, M ~ C u.
Assume 3 j D: ~ M , then C u ~ pU.
Therefore, VC n EpM M ~ C u, hence M ~ pM.

458 J.A. Ferndndez et al., Stable model semantics

Minimality: Assume 3M' c M such that M' ~ pM. We prove that in this case M' u ~ M
is a model of P~, contradicting the assumption that M u ~ M is a minimal
model of P~.
Let C = (A ~- B1 B~, not D1 not Dk) be a ground instance of a clause
in P.
Assume 3j Dj ~ M, then C M ~ p~t but %D; ~ %M. Hence, M' u %M ~ C~.
Assume 7tj Dj ~ M, C u E PU and M" ~ C ~. Hence, A E M ' or 3i Bi ~ M',
therefore M" ~ C~.
(M" u %M) ~ %A ~ A, VA E HBp, since M' c M.
Hence, (M" u %M) ~ P~. (~)

Therefore, M is a stable model of P. []

Using this new characterization, the process of computing the stable models
of a function-free program P reduces to first iteratively computing the minimal
models of the disjunctive logic program P~, and then selecting those minimal
models that are consistent with the integrity constraints ICe.

EXAMPLE 2

Let P = {a ~ not b; b e- not a; c ~- a; c ~ b}. The evidential transformation
produces the following program and set of integrity constraints:

P~g = {a v % b; b v % a; c e - a; c <--- b; ~ a ~-- a; ~ b ~-- b; % c <-- c},

ICe = {a ~ %a;b ~ %b;c ~ %c}.

The minimal m o d e l s of the new program are Atp~ -- { {a, c, ~ a , %c},
{b, c, %b, %c}, {%a, %b}} and therefore Ate, cJ' = { {a, c, %a, %c}, {b,c,%b,%c}}.

The two stable models of P are {a, c} and {b, c}.

From theorem 3.3 and lemma 2.10, we can characterize the stable model
semantics in terms of the EGCWA. This definition gives us more intuition as to
what it means for a model to be stable.

COROLLARY 3.4

Mis a stable model o f P iff(M u %M) is a model o f (P ~ u EGCWA(P ~) u ICe).

The importance of this characterization lies in the fact that it sheds light on
what happens when programs do not have stable models.

COROLLARY 3.5

P does not have a stable model iff (P~ u EGCWA(P ~) does not satisfy the
integrity constraints ICp (i.e. (P~ u EGCWA(P ~) u ICe) is inconsistent).

J.A. Fern(mdez et al., Stable model semantics 459

In other words, in every minimal model of P~g there exists evidence considered
true in that model and whose corresponding objective atom is false - the model
claims to have evidence without the fact being true in the model.

EXAMPLE 3

Let P = {p <---notp}. The evidential transformation produces the program
P~ -- {p v %p; %p ~--- p} and the integrity constraints ICp = {p ~ %p}.

,f,I I C p = { p } } and = { 1.

Hence, P is inconsistent under the stable model semantics.

3.2, REDUCING THE SEARCH SPACE

The evidential transformation as defined above addresses two issues related
to the problem of computing stable models. These are: to develop an iterative
procedure that generates the set of models to be checked for stability and to devise
a stability test for these models. In what follows, we concentrate our work on how
to reduce the search space of models produced by the evidential transformation. It
is well known [11] that stable models of logic programs are minimal models of the
program as well (but the converse may not be true). Hence, an approach to computing
stable models of a program is to first compute its minimal models and then check
them for stability. However, a program may have numerous minimal models, only
some of which are stable. We present below a new transformation that produces a
stratified disjunctive program instead of a negation-free program. The utility of
these stratified disjunctive programs in this paper is solely to use their structure to
reduce the number of minimal models to be checked for stability. The obvious
advantage of such a strategy is that the stability check can be performed less
frequently if various minimal models are ruled out.

For stratified programs, we know that the perfect model semantics and the
stable model semantics coincide (a model is perfect iff it is stable) [15]. The
evidential transformation, on the other hand, may generate a disjunctive program
with many more minimal models than those that are stable (possibly an exponential
number of extra models). Hence, we intend to reduce the number of models to be
checked by computing the perfect models of a stratified program instead of the
minimal models of a negation-free program.

To illustrate our approach, let us analyze the structure of the predicate dependency
graph of a normal logic program. A program is stratifiable if there is no recursion
through negation, which means that there are no cycles in the predicate dependency
graph of the program that involve dependencies. We will refer to these cycles as
negative cycles. The cycles of the dependency graph can be determined by the
strongly connected components of the graph. If one of them involves a negative

460 J.A. Fermindez et al., Stable model semantics

dependency, the program is not stratifiable. If we had a normal logic program that
was stratified, then there would be no need for the evidential transformation. In this
case, it suffices to find the perfect models of the program. The dependency graph
for a stratifiable normal program has no negative cycles. If we now had a normal
logic program that had a dependency graph with only one strongly connected component
and such that it contains a negative cycle, then the evidential transformation has to
be applied to every predicate. Now, we may have a predicate dependency graph
such that some strongly connected components involve negative dependencies and
others do not. In this case, we would like to apply the evidential transformation only
where needed.

A stratification partitions the predicate symbols of a program using the following
two rules:

1. If p and q belong to the same strongly connected component, then they
belong to the same partition.

2. If predicate p depends negatively on predicate q and they do not belong to
the same strongly connected component, then q belongs to a lower partition
than p.

It is trivial to show that when the program is stratified, any partition that
obeys these two rules produces a stratification of the program, since no strongly
connected component involves negative dependencies. For non-stratifiable normal
programs where some components involve negative dependencies, these rules generate
what we call a semi-stratification of the program. Our objective is to find the stable
models by the perfect models approach for those partitions (semi-stratum) that do
not involve negative dependencies, and by the evidential transformation for those
that do.

DEFINITION 3.6

Let P be a normal logic program. A semi-stratification {$I Sr} of P is
a partition of the set of predicate symbols defined in P such that i f p ~ Si, then any
predicate q, on which p depends, belongs to a partition Sj where j < i, and if p
depends negatively on q, then j < i unless q depends on p.

As for stratification, this partition induces a semi-stratification of the clauses
of the program {PI P, }. It is also trivial to prove that any normal logic program
has a semi-stratification. We only need to notice that any negative cycle in the graph
of the program resides in a particular strongly connected component, and therefore
all the predicate symbols involved in the cycle belong to the same semi-stratum.
The stratified evidential transformation takes a semi-stratified logic program and
produces a disjunctive stratified logic program and sets of integrity constraints for
each strata. Formally, we define the transformation as follows.

J.A. Fern6ndez et al., Stable model semantics 461

DEFINITION 3.7

Let P be a normal logic program with semi-stratification {P1 Pr}. The
stratified evidential transformation o f P defines a stratified disjunctive logic
program P~ with stratification {PI ~ P~} and a set of integrity constraints
ICe = ICt, i u . �9 �9 u ICpr such that:

1. For each clauseA <--- B l Bn, not D1 D k, notE1 not Em of Pi, the
clause A v %Dl v . �9 �9 v ~Dk <-- B1 Bn, not E1 not Em belongs to p/Z,
where the predicate symbols of the DI, 1 < l < k, are defined in stratum i and the
predicate symbols of the Ej, 1 < j < m, are defined in the strata strictly below i.

2. For each predicate symbol p defined in Pi, the clause %p(x) ~-- p (x) belongs
to e/Z.

3. For each predicate symbol defined in Pi, 1Cpi contains an integrity constraint
of the form p (x) ~ %p(x) .

Nothing else belongs either to P/~ or ICPi.

In this new transformation, we substitute by evidences only those occurrences
of negated literals that cannot be dealt with by the use of stratification techniques.
We only modify normal semi-strata so that the recursions through negation are
changed into an evidence. In this way, we obtain a stratified disjunctive logic
program P~. Moreover, {PI'* P~} constitutes a stratification of P~.

THEOREM 3.8

Let P be a normal logic program. M is a stable model of P iff (M u %M) is
a stable model of P~.

Proof

Let C be a ground instance of a clause in P (C = A <---Bl Bn, not
D1 not D k, not E l Era). We should look at the transformed programs pU
and (p~)U. Therefore, we denote the transformed versions of the clause C as follows:

�9 C M = (A <--- B 1 Bn),

" c M = (A v ~ D I V" " ' v ~ D k ~ " B I Bn),

(=~) Let N = M u %M. First we prove that N is a model of (p~)N. Then we prove
that it is minimal.
Let C = (A <-- B1 Bn, not DI not Dk, not E1 Em) be a ground
instance of a clause in P.
Assume ~j D j ~ M and ~l Et E M. Since M ~ C u, then A E M or 3i B i ~ M.
Hence, N ~ C~.
Assume 3l El ~ M, then C u q~ pU and C~ f~ (p~)N.

Assume ~l E l E M and 3 j Dj E M, then C u f~ pM but ~ D j E %M, hence N ~ C~.

462 J.A. Fernandez et al., Stable model semantics

Consequently, VC~ ~ (p~)~v N ~ C N
N ~ ~A ~--- A, VA ~ HBt,.
Therefore, (M u %M ~ P~.

Minimality: Assume 3N' c N such that N' ~ (pZ)N and let N' = M' w %M". We
prove that in this case M' is a model of pM, contradicting the assumption that
M is a minimal model of p~t.
Since M' u %M" ~ %A <--- A, VA E HBp, then M' c_ M" c M and M' c M.
Let C = (A ~-- B1 Bn, not DI not Dk, not E1 not Era) be a ground
instance of a clause in P and N" ~ C~.
Assume ~j Dj E M and ~]l Et E M, then A E M" or 3i B i ~ M'. Hence, M" ~ C M.
Assume 3j Dj E M or 3 l El E M, then C M ~ pM.
Hence, M" ~ pM since VC M E pU M" ~ C M. (~)

Therefore (M u %M) is a stable model of P~.

(~) As before, we prove that M is a model of pM and then that it is minimal.
Let C = (A ~ B1 Bn, not D 1 not Dk, not E 1 not Em) be a ground
instance of a clause in P,
Assume] l El E M, then N ~ C~.

Assume ~]j Dj E M, then A E M or 3 i Bi f~ M. Hence, M ~ C M.
Assume qj Dj~ M, then C M ~ pM.

Assume 31 El ~ M, then C~ ~ (p~)lv and C M f~ pM.
Therefore, V C M E pM M ~ C M, hence, M ~ pM.

Minimality" Assume 3M" c M such that M' ~ pM. We prove that in this case M' u %
is a model of (p~)N, contradicting the assumption that M u % M is a minimal
model of (p~)N.
Let C = (A ~-- B1 Bn, not Dl not Dk, notE1 notE, n) be a ground
instance of a clause in P.
Assume ~]j Dj E M and ~l Et E M. Since C M ~ pM and M" ~ C M, then A E M'
or 3i Bi ~M' , therefore M' ~ C ~r
Assume 3j Dj E M or q l Et E M, then C M ~ P~.

C N p~ N Assume 3 l E t E M , then ~ () .
Assume ~l Et E M, and then 3j %Dj ~ %M. Hence (M" u %M) ~ C~.

Hence, M' u %M ~ C N

(M" u %M) ~ %A ~ A, VA ~ HB?, since M' c M.
Hence (M' u ~M) ~ (p~)~v. (:=>~)

Therefore, M is a stable model of P. []

Since P~ is a stratified program, we know that stable and perfect models
coincide. Moreover, from lemma 3.2 we know that models of the form (M u %M)
are the only models that satisfy the constraints defined by ICe.

J.A. Fernandez et al., Stable model semantics 463

COROLLARY 3.9

Let P be a normal logic program. M is a stable model of P iff

I1 ICe (M w %M) E ~.~1, ~ ,

where Ate~ denotes the set of perfect models of the stratified program P~.

Hence, it is possible to compute the stable models of a normal program P by
computing, using an iterative fixpoint operator, the perfect models of P~ and then
eliminating those models that violate the integrity constraints in ICe.

4. Fixpoint characterization of perfect models

In this section, we review the main results of Fernandez and Minker [6] on
devising a fixpoint operator to compute the perfect models of stratified disjunctive
logic programs. Since disjunctive programs can have more than one minimal model,
their fixpoint operator maps sets of minimal interpretations to sets of minimal
interpretations.

DEFINITION 4.1 [6]

A set of interpretations ~ is called a set of minimal interpretations iff V I E
~ J E ~ , J c l .

Using sets of minimal interpretations, Fem,Sndez and Minker define the partial
order, _=.

DEFINITION 4.2[6]

Let ~ and ~ be sets of minimal interpretations,) E ~ iff VI ~ ~, 3 J ~) , J c_ I.

This partial order leads to a very natural model semantics; if we move upward,
we monotonically increase the set of positive clauses that are modeled by the sets
of minimal interpretations.

THEOREM 4.3 [6]

Let ~ and ~ be sets of minimal interpretations. Then

_ ~ r VC such that C is a positive clause,) ~ C ~ ~ ~ C,

where ~ P C iff V I E ~ , I ~ C.
Fernandez and Minker define an operator Tp M whose least fixpoint coincides

with the minimal models of P, when P is a disjunctive log ic program (negation
free). Using this operator as a starting point, they define an iterative operator
Tfl whose result is the set of perfect models for a stratified disjunctive (/'1 ;/',)
program P.

464 J,A. Fern6ndez et al., Stable model semantics

DEFINITION 4.4 [6]

Let P be a normal disjunctive logic program and let `9 be a set of minimal
interpretations.

Tp M (`9) = min (Ulna modelsl(statep(l))),
where

starer(l) = {(Al v - . . v Ak) : (A I v . . . v Ak ~--Bl Bn, not DI not Dm)
is a ground instance of a clause in P and Vi, Bi E1 and 7tl, Dl E l} ,

modelst(S) = {M c_ H B v l M is a model of (S u I)},

min(`9)= {IE`9 IB/ ' E`9, I ' c / } ,

where A i, Bj and Dt are atoms.

Tfl(`9) takes the set St of heads of all clauses in which the bodies are true
in I for each I E `9 and computes the models of St ~2I. Then from the union of all
these models, it selects the minimal models. The operator T M is monotonic when
P is negation free. The ordinal powers of Tfl are defined as fo l lows .

DEFINITION 4.5 [6]

Let P be a normal disjunctive logic program.

r y $ 0(`9) = `9,

T f f 1' a(,9) = Tp M (Tp M 1" (a - 1) (,9))

T M "~ or(`9) = lub(T M "~ fl(`9) : f l < or]

The o p e r a t o r Te u "] ' a ({0}) is deno t ed

if a is a successor ordinal,

if a is a limit ordinal.

by T M l " a and i f T f l 1"a(`9)=
T ~ 1" (a + 1)(`9), then a is called afixpoint ordinal for Tfi(`9).

For disjunctive logic programs (negation free), the fixpoint operator characterizes
the set of minimal models of the program.

THEOREM 4.6 [6]

Let P be a disjunctive logic program and let Ate be the set of minimal models
of P; then

Atp =Tp M l " a

for a a fixpoint ordinal.

The following example from [6] illustrates how the minimal models are
computed using theorem 4.6.

J.A. FernSndez et al., Stable model semantics 465

EXAMPLE 4

Let P = {a v b; a (-:- b; c (--- b}, then

1: rpM([o]) = {{a}, {b}}

2: T g (i { a } , t b } }) min({{a}, { a , b , c } }) = i { a } }

3: rpn({{a} }) = {{a}}

the minimal models of a v b,

notice that { {a}, {b} } _c { { a } },

{ { a } } is a fixpoint.

For stratified disjunctive logic programs, Fernfmdez and Minker define an
iterative version of the T f l operator that is able to use the structure of the program
in the same way as the iter operator of Apt, Blair and Walker for stratified definite
logic programs [1].

DEFINITION 4.7 [6]

Let P be a stratified disjunctive logic program and let {PI' P,} be a
stratification of P. Then

T(g) = Tp M $ a for a a fixpoint ordinal,

M M
"-- T] ~ + l T(~ P~,P,+I) T a(T(~ pD) for oe a fixpoint ordinal and n > 0.

For each stratum Pi+ 1of the program, the operator T~,, p, e. " computes for
i n - . ~ , 1 , * " , i* i + l l

each model M ~ T(~,...,~). the minimal models of (u~+_~Pj) M . _ From the union of
all the resulting minimal models, the operator selects the minimal ones. When
applied to all the strata of the program, the resulting models are exactly the perfect
models of P, as stated in the following theorem by Fern~indez and Minker.

THEOREM 4.8 [6]

Let P be a stratified disjunctive logic program and let {/1 Pr} be a
stratification of P. Then

Atp M
= T(p 1 P,),

where J~p is the set of perfect models of P.

The fixpoint operator of Fernfindez and Minker provides u s with a tool to
compute iteratively the stable models of normal programs. Since the result of
applying the stratified evidential transformation to a normal program P is a stratified
disjunctive logic program P~, then the stable models of P can be computed using
the iterative fixpoint and selecting those models that are consistent with the integrity
constraint ICe.

466 J,A. Ferndndez et al., Stable model semantics

COROLLARY 4.9

Let P be a normal logic program and let {P1 , P,} be a semi-stratification
of P. Then M is a stable model of P iff

(M u % M) E NeT~p~,.. . ,t ,z) ' N ~ I C P ,

where {P1 ~, . . , P~} conform a stratification of P~.

5. Computing the stable models of normal deductive databases

A normal deductive database (NDDB), DB, is a function-free logic program
whose clauses are range restricted and safe. By range restricted we mean that any
variable that occurs in the head of the clause also occurs in its body. By safe we
mean that any variable occurring in a negative literal in a clause body also occurs
in a positive literal in the body of the clause. NDDBs defined in this way have a
finite Herbrand base. Similarly, a disjunctive stratified database (DSDB for short)
is a function-free stratified disjunctive logic program whose clauses are range restricted
and safe.

To compute the stable models of an NDDB, we can apply the stratified
evidential transformation defined in the previous section and in this way create a
new disjunctive stratified database (DSDB) 3), DB ~, and a set of integrity constraints,
ICoB. In the rest of this section, we present algorithms t o compute the perfect
models o f disjunctive deductive databases and its restriction by a set of integrity
constraints. These algorithms, when applied to the transformed program, will aUow
the computation of the stable models of an NDDB.

FernAndez and Minker have presented algorithms for computing, i n a
bottom-up fashion, the model semantics of disjunctive databases - hierarchic [5],
recursive [4], and stratified [6]. Their approach is based on the use of a new data
structure called a model tree to represent the minimal models being computed.
Here, we present how these algorithms can be extended to compute the stable
models of normal deductive databases.

5.1. COMPUTING MINIMAL MODELS OF A DSDB

In this section, we review the results of Fem~mdez and Minker on computing
the perfect models o fa DSDB. Roughly, a model tree for a set of minimal interpretations
.9 is a tree structure representing all the interpretations in .9 such that each node
of the tree is labeled by an atom that occurs in .9, and each branch of the tree (the

3) Notice that the safeness condition imposed over the NDDB guarantees that the resulting DSDB will
be range restricted and safe.

JA. Ferndndez et al., Stable model semantics 467

atoms in the path from the root to a leaf node) represents a different interpretation
of ~. The special symbol e labels the root o f the tree and it represents no atom.

EXAMPLE 5

A model tree for the minimal models o f example 1 would b e as follows:

c

1
a(1)

/ \
a(2) b(2)

I
b(1)

Fern,'indez and Minker [5, 6] developed a simple and general algorithm for
the evaluation of clauses in these tree structures. The computation of the minimal
models of a DSDB with recursive definitions can be accomplished by applying
algorithm 1 to each rule in the database, and repeating this process until no modifications
are performed on the tree. The fact that the Herbrand base for databases is finite
guarantees the termination of the iterative process.

ALGORITHM 1 [6]

Let A1 v . �9 �9 v Ak ~ B l , . . . , Bn, not D 1, . . . , not Dm be a DSDB clause with
k > 1 and n, m _> 0 and ~'a be a model tree for a set of minimal interpretations #.

1,

2.

3.

Let ~ a = (Urea I) (i.e. the set of atoms occurring in ~a).

Compute J = { 010 is ground and Vi, Bi 0 E ~ } .4)

For each 0 H J
For each branch b of 3"a

If Vi, BiO occurs in b and Zlj, AjO occurs in b and Zll, DtO occurs in b,
then

Add to ~a new leaf nodes AIO, AkO as children of the leaf
node of b.

4. Eliminate any non-minimal branch.

Algorithm 1 uses an auxiliary data structure ~ to keep track of those atoms
already in the model tree. If we consider ~ as the dictionary of data stored in 3"a,
then the computation of the set J is equivalent to the computation, i n a definite

468 J.A. Fernandez et al., Stable model semantics

database, of the complex join operation 4) represented by <--- B1 Bn. J covers
the substitutions that can trigger the inclusion of an atom AjO in a model. Hence,
the number of elements in the set J is an upper limit to the set of substitutions that
need to be checked in order to determine what atoms must be added to the interpretations.
J reduces the number of grounded rules to be inspected by the algorithm in step 3.

For disjunctive stratified databases, we compute the perfect models of the
DSDB by iterating algorithm 1 as before, on each stratum of the databases as in
algorithm 2.

ALGORITHM 2 [6]

Let {DB 1 DB,} be a stratification for a DSDB, DB.

.

2.

.

Let T (-- e.

F o r i = l to r d o
Let DBi = {C1 Cm}
Repeat

For j = 1 to m do T ~-- T ~ (T) using algorithm 1.
Until no modification is performed on T.

Return T.

Fem~indez and Minker show that algorithm 2 is correct [6]; the resulting tree
represents the set of perfect models of the database.

5.2. APPLYING INTEGRITY CONSTRAINTS

In this section, we present algorithms for the application of integrity constraints
and show how they can be used to extend algorithm 2 for the computation of the
stable models of normal deductive databases.

A minimal model M of a DSDB violates an integrity constraint of the form
Al v �9 �9 �9 VAk ~ B1 Bn i f fM is not a model of the constraint. That is, Vi Bi E M
and ;~j Aj ~ M. Algorithm 3 filters those models that violate an integrity constraint
by removing the corresponding branch in the model tree.

ALGORITHM 3

Let ~'~ be a model tree for a set of minimal interpretations ~ and A 1 v . �9 �9 v Ak
Bl Bn be an integrity constraint with k + n > 0.

1. Let Da = (U t ~ I) (i.e. the set of atoms occurring in ~-a).

2. Compute J = {010 is a ground and Vi, B iOED~}.

4)The substitution in J only involves variables that occur in the Bi 's . If no variables occur in the Bi ' s ,
then J contains only the identity substitution.

J.A. Ferndmdez et at., Stable model semantics 469

. For each 0 ~ J
For each branch b of ~'a

If Vi, BiO occurs in b and 7q j, AjO occurs in b then
Remove branch b from the tree.

The stable models of a normal deductive database DB can be computed by
conducting the following steps.

1. Use the stratified evidential transformation to create the DSDB DB z and the
set o f integrity constraints ICoB from the original database DB.

2. Use algorithm 2 to compute a model tree B-DB~ representing the set of perfect
models of DB z.

3. Apply algorithm 3 to ~'DB~ with every integrity constraint in ICoB to eliminate
any model violating an integrity constraint.

The resulting tree represents the set of stable models of the original deductive
database DB. If the tree is empty (all branches have been removed), then DB has
no stable model and is inconsistent with respect to the stable model semantics.

Some improvements can be made to this strategy. Notice that any violation
of an integrity constraint (i.e. p (x) ~ %p(x)) can be checked after all the rules
defining the predicates p(x) and %p(x) have been evaluated (after the stratum
containing these predicates has been processed). Since by construction of PZ these
predicates belong to the same stratum, we can alternate the computation of the
perfect models of each stratum with the verification of the constraints. In this way,
we eliminate unstable models as soon as possible. Moreover, if during the verification
of a stratum all models are eliminated, we can stop the computation since the
program is inconsistent with respect to the stable model semantics.

Algorithm 4 uses this alternating approach for the computation of the consistent
perfect models of DB z with respect to ICe.

ALGORITHM 4

Assume {DB 1, DB,} is a stratification for a DSDB, DB and
1CDB t ICDB" are sets of integrity constraints for each stratum of DB.

1. Let T4--e.

2. F o r i = l to r d o
Let DB i = {C 1 Cm} and let ICDBi = {St St}
Repeat

For j = 1 to m do T <--- Tc~ (T) using algorithm 1.
Until no modification is performed on T.
For j = 1 to t do T <--- (T)S~ using algorithm 3.
If T is empty then return 7".

3. Return T.

470 J.A, Fermindez et al,, Stable model semantics

EXAMPLE 6

Let DB be an NDDB with the following semi-stratification:

DB1 = {v(a); u(a); q(a);}

DB2 = {r(X) ~ t(X), not s(X); s(X) ~-- u(X), not r(X); t(X) ~-- v(X), not w(X); }

DB3 = {p(X) ~ q(X), not r(X); p(X) ~ q(X), not s(X); }

The stratified evidential transformation produces the disjunctive stratified databases,
integrity constraints and model tree for each semi-stratum that is shown in fig. 1.

The first semi-stratum produces a definite program and therefore a model tree
representing one minimal model. The second semi-stratum produces a disjunctive
stratum with three different minimal models. Out of these models, on ly two are
consistent with the integrity constraints. Finally, in the third stratum, we use each
one of the stable models of the previous stratum to generate the two stable models
of DB ~ which represent the stable models {v(a),u(a), q(a),t(a),r(a),p(a)} and
{v(a), u(a), q(a), t(a), s(a), p(a)} in DB.

For programs without stable models, our approach to stable model semantics
is useful in detecting the cause of inconsistencies. The following example shows
what happens when a program does not have stable models.

EXAMPLE 7

Let DB = {w(X) ~ re(X, Y), notw(Y); m(a, b); m(b, c); m(d, d)}; then

%-transformation 5)

~o(x) v E~o(Y) ~- ~(x , Y).

ra(a,b).

m(b,c).

~(d, d).

c~(x) ~ ~(x).

z~ (x ,Y) ~ ~(x,Y).

~(x) ~ z~(x).

re(x, Y) ~ s Y).

Model tree for ~OB*

m(a,b)
m(b,c)

~(d,a)
&n(a,b)

Em(b,c)
Em(d,d)

~.~(d)
/ N

jw(a) Cw(b)

g w(a'~ f f
/ w(b) s~o(~)

5) Notice that in this figure as well as in fig. 1, the symbol % is represented by the symbol e.

J.A. FernSndez et al., Stable model semantics 471

S e m i - s t r a t u m 1

~(a).

~Ca):
q(a).

S e m i - s t r a t u m 2

, .(x) v cs (x) ,-.- t (x) .

~(x) v z, . (x) ,-- u(x).

t(x) ,-- ,4x), not ~(x):

S e m i - s t r a t u m 3

p(x) ,-- q(X), not ,.(x).

p(X) ,- q(X), not s(X).

~ , (x) ,-- ,~(x).

E~,(x) , - ~,(x).

cq(x) , - q(x).

z ~ (x) ~ ~,(x).

c r (x) , - ,-(x).

z~(x) ,-- ~(x).

z , (x) , - t (x) .

Cp(X) ,-- p(x).

~,(x) r c~,(x).

, , (x) ~ E,~(x).

q(X) .r Sq(X).

~o(x) , : c~ (x) .

, .(x) ~ s,-(x).

~(x) ~ c~(x).

t (x) ~ ct(x).

v (x) ~ Ev(x).

~vta)

.(!) ,
!

$qta) ',
!

L :

. ; to , , oi

grta) s (a~ ~r(a)

L L L --_-.--.-.----.-_---:'

Fig. 1. Computing stable models in a semi-stratified database.

there is no stable model since no minimal model of DB ~g satisfies the integrity
constraints.

In example 7, the violated constraints are: w(c)~ ~w(c), in branches 1
and 3; w(b) ~ %w(b), in brach 3; and w(d) ~ %w(d) in all branches. It is clear that
if we eliminate the violation of the third constraint, the theory would have stable

472 J.A. Ferntindez et al., Stable model semantics

models. By tracking down why %w(d) is true, we can see that it comes from the
fact that m(d, d) is true. Removing that fact m(d, d) from the program restores its
consistency.

The integrity constraints can be used in this way to detect and correct
inconsistencies in a normal logic program under the stable model semantics. How
this can be achieved in the general case is a problem for future research.

6. Related work

In the four years since the development of stable models by Gelfond and
Lifschitz [8], a great deal of work has been done on the declarative aspects of stable
models, and the relationships between stable models and other non-monotonic
logics [11, 12, 15]. In comparison, relatively few techniques have been developed
for the computation and implementation of non-monotonic logic programming.

Cuadrado and Pimentel [3] show how to compute stable models of propositional
logic programs. Their technique iteratively constructs a set of labeled trees for
computing stable models. The node labels are sets of interpretations. Eventually, a
tree is generated whose labels capture the stable models of P, However, to our
knowledge, Cuadrado and Pimentel do not provide a proof that their procedure
computes the set of all stable models of a given program. Our methods are sound
and complete.

Fuentes [7] presents an algorithm for computing a stable model of a program.
This work does not compute all stable models of a program. Thus, even though a
program P may have n stable models where n > 1, his procedure would stop after
one stable model is found. It is not clear how this technique extends to the computation
of all stable models.

The LOPS project [2] is one of the first attempts to seriously study computation
and implementation of non-monotonic logic programming. In ref. [2], a uniform
framework for comparing, both theoretically and experimentally, three alternative
strategies for computing non-monotonic logic programming is presented. The authors
develop a prototype implementation of three techniques for stable model computation
and compare and contrast these alternative strategies based both on theoretical
arguments and on experimental results. The stratified evidential transformation
described in this paper (definition 3.7) makes use of the dependency graphs of
programs to prune the search space. We believe transformations of this kind can
be used to enhance the computational methods described in [2].

Finally, concurrently with this effort, Warren [19] is working on a similar
problem. His work attempts to modify OLD-resolution with tabulation and negation
as failure for computing stable models. His procedure is a run-time computation
procedure: given a query Q, it is possible to determine whether Q is true in some
stable model of the program. Our method, on the contrary, computes all stable
models of a program. Furthermore, our methods are query independent.

J.A. Ferndndez et al., Stable model semantics 473

Given, as input, a logic program P and a set S of Herbrand interpretations,
determining whether S is the set of all stable models of P is known to be NP-hard.
Hence, all complete algorithms addressing this problem would be non-polynomial,
unless P = NP. Hence, one way to compare altemative approaches is via implementation
and experimentation.

7. Conclusions

The major result of this paper is the equivalence between stable models of
normal logic programs and the minimal models of a transformed program that are
consistent with a set of integrity constraints as defined by the transformations. The
transformation to a negation-free disjunctive logic program allowed us to present
a characterization of the stable model semantics for normal logic programs in terms
of the EGCWA and integrity constraints. On the other hand, the transformation to
a stratified disjunctive logic program allowed us to describe a procedure to compute
the stable models of function-free programs. The algorithm is developed using the
concept of model trees introduced by Fem~indez and Minker [5, 6] in the context
of disjunctive stratified databases and extends their previous algorithm to cover the
presence of integrity constraints in the stratified program. All these results extend
naturally to normal disjunctive logic programs.

In our approach, the detection of inconsistency implies the lack of stable
models. This inconsistency is introduced by the integrity constraints that are produced
by the evidential transformation of the original normal logic program, For the class
of normal deductive databases, we can identify the set of constraints that are possible
causes of the inconsistency and through them, it may be possible to isolate the part
of the original program that caused the non-existence of stable models. This information
can be used either to correct the program or to compute answers that do not depend
on the unstable part of the theory. Techniques by which this can be accomplished
are a topic of future research.

Finally, we recognize that, for disjunctive programs, the two notions of integrity
constraint satisfaction (consistency and entailment) differ. We believe that Kowalski's
definition allows a powerful role for integrity constraints. Under the consistency
satisfaction interpretation, constraints augment the expressive power of logic
programming. Although we present algorithms to handle integrity constraints, these
algorithms process information in a bottom-up fashion, which restricts their usage
to a limited class of programs. Another direction of research is the study of top-
down algorithms for processing integrity constraints in a larger class of logic programs.

Acknowledgements

We greatly appreciate the financial support of the Air Force Office of Scientific
Research, provided under Grant No. AFOSR-91-0350, the Army Research Office
under Grant No. DAAL-03-92-G-0225, and the National Science Foundation, provided

474 J.A. Ferndndez et al., Stable model semantics

under Grant Nos. IRI:89-16059 and IRI-91-09755, that made this work possible.
We are grateful to the referees for their useful comments.

References

[1] K.R. Apt, H.A. Blair and A. Walker, Towards a theory of declarative knowledge, in: Foundations
of Deductive Databases and Logic Programming, ed. J. Minker (Morgan Kaufmann, Washington,
D.C., 1988)pp. 89-148.

[2] C. Bell, A. Nerode, R. Ng and V.S. Subrahmanian, Computation and implementation of non-
monotonic deductive databases, Technical Report CS-TR-2801, University of Maryland (1991).
Submitted for journal publication.

[3] J. Cuadrado and S. Pimentel, A truth maintenance system based on stable models, in: Proc. 1989
North American Conf. on Logic Programming (1989) pp. 274-290.

[4] J.A, Fernandez and J. Minker, Bottom-up evaluation of disjunctive deductive databases, Technical
Report, Computer Science Deparlment, University of Maryland (1991), in preparation.

[5] J.A. Fernandez and J. Minker, Bottom-up evaluation of hierarchical disjunctive deductive databases,
in: Proc. 8th lnt. Conf. on Logic Programming, ed. K. Fumkawa (MIT Press, 1991).

[6] J.A. Fernandez and J. Minker, Computing perfect models of disjunctive stratified databases, in: Proc.
ILPS'91 Workshop on Disjunctive Logic Programs, San Diego, CA (October 1991), ed. D. Loveland
et al., pp. 110-117. An extended version has been submitted to Annals of Mathematical Artificial
Intelligence,

[7] L.O. Fuentes, Applying uncertainty formalisms to well-defined problems, Master's Thesis, University
of Texas at E1 Paso (1991).

[8] M. Gelfond and V. Lifschitz, The stable model semantics for logic programming, in: Proc. 5th Int.
Conf. and Syrup. on Logic Programming, Seattle, Washington (August, 1988), ed. R.A. Kowalski
and K.A, Bowen, pp. 1070-1080.

[9] R.A. Kowalski, Logic for data description, in: Logic and Data Bases, ed. H. Gallaire and J. Minker
(Plenum Press, New York, 1978) pp. 77-102.

[10] J. McCarthy, Circumscription - a form of non-monotonic reasoning, Artificial Intelligence 13(1980)
27-39.

[11] W, Marek and V.S. Subrahmanian, The relationship between stable, supported, default and auto-
epistemic semantics for general logic programs, Theor. Comp. Sci. 10(3)(1992)365-386.

[12] W. Marek and M. Truszczynski, Stable semantics for logic programs and default theories, in: Proc.
1989 North American Conf. on Logic Programming, ed. E. Lusk and R. Overbeek (MIT Press, 1989)
pp. 243-256.

[13] T.C. Przymusinski, On the semantics of stratified deductive databases, in: Proc. Workshop on
Foundations of Deductive Databases and Logic Programming, ed, J. Minker, Washington, D.C.
(1986) pp. 433-443.

[14] T.C. Przymusinki, Extended stable semantics for normal and disjunctiv e programs, in: Proc. 7th Int.
Conf. on Logic Programming, Jerusalem, 1990 (M1T Press), Extended Abstracts, pp. 459-477.

[15] T.C. Przymusinski, Stable semantics for disjunctive programs, New Generation Comput. J. 9(1991)
401-424. Extended Abstract appeared in [14].

[16] R. Reiter, Towards a logical reconstruction of relational database theory, in: On Conceptual Modelling,
ed. M.L. Brodie et al. (Springer, New York, 1984) pp. 163-189.

[17] R. Reiter, What should a database know? in: Proc. 7th Int. Conf. on Logic Programming, Jerusalem
(1990), Abstract of Invited Talk, p. 765.

[18] M.H. van Emden and R.A. Kowalski, The semantics of predicate logic as a programming language,
J. ACM 23(1976)733-742.

[19] D.S. Warren, Using OLDT evaluation with meta-interpreters, in: Logic in Databases, Knowledge,
Representation and Reasoning: A Symposium in Honor of Jack Minker's 65th Birthday for Conlributions
to Computer Science and Human Rights, College Park, Maryland (Nov. 1992).

[20] A. Yahya and LJ. Henschen, Deduction in non-Horn databases, J. Aut. Reasoning 1(1985)141-160.

