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Abstract 

We show that stable models of logic programs may be viewed as minimal models 
of programs that satisfy certain additional constraints. To do so, we transform the 
normal programs into disjunctive logic programs and sets of integrity constraints. We 
show that the stable models of the normal program coincide with the minimal models 
of the disjunctive program that satisfy the integrity constraints. As a consequence, the 
stable model semant ics  can be characterized using the extended generalized closed 
world assumption for disjunctive logic programs. Using this result, we develop a bottom- 
up algorithm for function-free logic programs to find all stable models of a normal 
program by computing the perfect models of a disjunctive stratified logic program and 
checking them for consistency with the integrity constraints. The integrity constraints 
provide a rationale as to why some normal logic programs have no stable models. 

I. Introduction 

We consider the problem of finding the stable models of normal logic programs 
using iterative techniques. To do this, we transform the normal programs into 
disjunctive logic programs and sets of integrity constraints. We show that the stable 
models of the normal program coincide with the minimal models of the disjunctive 
program that are consistent with the integrity constraints. This result implies that 
it is possible to define a fixpoint characterization of the stable models of a program 
independently of the Gelfond-Lifschitz transform. An important consequence of 
this is the fact that the stable model semantics can be characterized using the 
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extended generalized closed world assumption for disjunctive logic programs. This 
characterization sheds new light on the issue of what it means for a normal program 
to be inconsistent with respect to the stable model semantics. 

In many cases, a normal program consists of two or more parts. Some parts 
are stratifiable and others are not. We improve the result by transforming only the 
non-stratifiable part of the normal logic program as described above. The resulting 
program is a stratified disjunctive logic program where we compute its perfect 
models. This improves over the case where the entire normal logic program is 
transformed since, in many cases, it reduces the number of  models that must be 
checked for stability. 

Using this result and the fixpoint and bottom-up algorithm of  Fem~-adez and 
Mimker [6] for disjunctive stratified databases, we develop a bottom-up algorithm 
for function-free logic programs that finds all the stable models of  a normal program 
by computing the minimal models of  a stratified disjunctive logic program and 
checking for their consistency with respect to the integrity constraints. Moreover, 
the integrity constraint check can provide the rationale as to why some normal logic 
programs have no stable models. 

This work is structured as follows. Section 2 defines disjunctive normal logic 
programs and integrity constraints. It also presents a characterization of  constraint 
satisfaction in a disjunctive logic program in terms of the extended generalized 
closed world assumption (EGCWA) [20]. Section 3 presents the evidential 
transformation and describes how it relates to the stable model semantics of  normal 
logic programs. Section 4 reviews the results of  Fernandez and Minker in computing 
the perfect models of  disjunctive stratified databases. Finally, in section 5 we use 
the bottom-up algorithm of  Fem~ndez and Minker [6] to compute the perfect models 
of  stratified disjunctive deductive databases, and in this way generate the stable 
models of  normal deductive databases. We extend the algorithm to incorporate 
integrity constraint checking. 

2. Background 

A normal disjunctive logic program P is a finite set of clauses of  the form 

AI v �9 �9 v Ak ~-- B1 . . . . .  Bn, not D 1 . . . . .  not Din, 

where k > O, n, m _> 0 and the Ai, Bj and Dlare  atoms. The  operator not represents 
nonmonotonic negation as failure. 

If k = 1 for all clauses in P, the program is called a normal logic program, 1) 
When m = 0 for all clauses in P, the program is said to be negation-free and is called 
simply a disjunctive logic program. 

l) We will use the term non-disjunctive logic program when we emphasize that a program is not 
disjunctive. 



J.A. Ferndndez et al., Stable model semantics 451 

A ground atom or positive clause C is a logical consequence of a negation- 
free disjunctive program P iff C is true in all minimal Herbrand models of P. Since 
minimal models are not unique in the disjunctive case, the meaning of a disjunctive 
program P is characterized by its set of minimal Herbrand models He. Definite 
programs have a unique minimal model, usually denoted by Mp. The minimal models 
of definite or disjunctive logic programs can be computed iteratively using the fixpoint 
operators Te and T~ for definite and disjunctive programs, respectively [18,4]. 

For normal programs, the minimal models semantics is not always natural, 
since some of these models do not seem to reflect the intended meaning of the 
program. An example of this is represented by the program {p <---not q}. The 
program has two minimal Herbrand models: {p} and {q}. Only the model {p} 
seems to be a natural model of the meaning of the program since p is supported 
by not q in {p}, but there is no similar support for q. 

Different semantics have been proposed for particular classes of programs to 
reflect their intended meaning. For the class of stratified programs, one semantics 
is the perfect models semantics. A positive clause C is considered a logical consequence 
of  P iff C is true in all perfect  models of a disjunctive logic program P. The perfect 
models semantics produces a unique perfect model in the case of non-disjunctive 
stratified programs [13], and it is equivalent to the prioritized circumscription of 
the predicates on each strata of the program [10, 13]. A disjunctive logic program 
P is stratified iff there exists a partition of the predicate symbols defined by the 
program {$1 . . . . .  S,} such that if a clause defines a predicate in Si, then the atoms 
on the right-hand side have predicate symbols belonging to u ~ - ~ S j  if the atom 
occurs negatively, or belonging to u~=IS  j if it occurs positively. 

The partition or stratification of the predicate symbols induces a stratification 
{/'1 . . . . .  P,} of the clauses of the program defining each predicate. This structure of 
the program can be used to iteratively compute its perfect models. The perfect models 
semantics coincides with the minimal models semantics when computed for negation- 
free programs. The notation ~ p  will refer to the perfect models when P is stratified. 

For larger classes of programs, different semantics have been proposed. We 
are interested in the study of how to compute effectively the stable model  
semantics [8]. In particular, we are interested in how to compute the stable models 
iteratively, as in the case of negation-free or stratified programs. 

The stable models semantics characterizes the meaning of a normal program 
by a set of minimal models called stable models, which are defined using the 
Gelfond-Lifschitz transformation. This transformation in general is defined as follows. 

DEFINITION 2.1 [8] 

Let P be a disjunctive normal logic program and let I be an interpretation: 

p t =  {(A1 v - - -  vA k ~ B 1 . . . . .  Bn) : (A 1 v . - -  v A k ~-- B 1 . . . . .  B n, not D 1 . . . . .  not Din) 

is a ground instance of a clause in P and {Dl . . . . .  Din} n I = 0 }. 
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pt is the Gelfond-Lifschi tz  transformation of  P with respect to I, where the A i, Bj 
and Dt are atomic formulae. 

The result of  the Gelfond-Lifschitz transformation is a negation-free disjunctive 
(definite) program. Stable models for non-disjunctive logic programs may now be 
defined as follows. 

DEFINITION 2.2 [8] 

Let P be a definite normal program. M is a stable model of  P iff M is the 
unique minimal model of  pM. 

For disjunctive programs, which usually have more than one minimal model, 
stable models are formally defined as follows. 

DEFINITION 2.3 [14] 

Let P be a disjunctive normal program. M is a stable model of  P iff  M is a 
minimal model of  pM. 

Hence, under the stable models semantics, a ground atom or positive clause 
C is a logical consequence of  a disjunctive (definite) normal logic program P iff 
C is true in all the stable models of  P. 

For non-ground function-free programs, the use of  these definitions to check 
if an interpretation I is stable is expensive. 2) A new program p i  must be constructed 
and its least fixpoint computed. Moreover, non-stratified definite normal programs 
can have more than one stable model or no stable models at all. If  we are interested 
in finding all the stable models of  P, it is important to reduce the search space (i.e. 
interpretation to be tested) and the verification process (i.e. stability verification) 
as much as possible. 

2.1. KNOWLEDGE BASES AND INTEGRITY CONSTRAINTS 

Our approach to stable models consists in finding a set of  models that cover 
them; from this set we test each model for stability. At the same time, we reduce 
the verification of  stability in the model to a test for integrity constraint satisfaction. 

Integrity constraints (IC) describe the correct states that a knowledge base 
(KB) can take. A KB is considered to be correct (or possible) if  it satisfies the 
integrity constraints. There are several approaches to describe integrity constraint 
satisfaction [9, 16, 17]; we consider only the first two approaches below. 

2) Without the function-free restrictions, the task becomes undecidable. 
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DEFINITION 2.4 (CONSISTENCY) [9] 

KB satisfies IC iff KB u IC is consistent. 

DEFINITION 2.5 (ENTAILMENT) [16] 

KB satisfies IC  iff KB ~ IC. 

If we restrict our knowledge base to be a definite logic program P and assume 
that its meaning is given by its minimal Herbrand model (i.e. the meaning of P is 
represented by the theory P u CWA(P)) ,  the two concepts of consistency and entailment 
coincide. This can be trivially proved since P u C W A ( P )  is a complete theory. 

LEMMA 2.6 

P U C W A ( P )  U IC is consistent iff P u C W A ( P )  I = IC. 

However, the situation changes when the knowledge base is indefinite. Let 
P be a disjunctive logic program. A similar characterization of its minimal Herbrand 
models can be described by the extended generalized closed world assumption. 

DE~NITION 2.712~ 

E G C W A ( P )  = { ~ A I  v . �9 �9 v ~ A n  : A I ~ H B p ,  n > 0 

~ A 1  v �9 �9 �9 v ~ A  n is true 

in every minimal Herbrand model of P}. 

Yahya and Henschen [20] show that this set is maximally consistent in the 
following sense: 

No new disjunctions of negated atoms can be added to E G C W A ( P )  

without being able to prove, from P u E G C W A ( P ) ,  new positive disjuncts 
that were not provable from P. 

This observation leads to the following lemma. 

LEMMA 2.8 [20] 

M is a minimal Herbrand model of P iff M is a model of P u E G C W A ( P ) .  

Since a disjunctive logic program P may have more than one minimal model, 
P u E G C W A ( P )  u IC is consistent iff some minimal Herbrand model of P is a 
model of IC. On the other hand, P u E G C W A ( P )  ~ IC iff every minimal Herbrand 
model of P is a model of IC. 
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EXAMPLE 1 

Let P = {a(1), a(2) v b(2), b(1) v b(2)}.  Let the integrity constraint be the 
formula (VX) ( ~ a ( X )  v --~b(X)). 

Atp = { {a(1), a(2), b(1)}, {a(1), b(2)} }. 

Only the model  {a(1), b(2)} satisfies the constraint; hence, the program does not 
entail the constraint but is consistent with it. 

Intuitively, under the consistency interpretation, integrity constraints can be 
used as filters for models that are not interesting (meaningful) i n  the KB. 

2.2. INTEGRITY CONSTRAINTS FOR DISJUNCTIVE LOGIC PROGRAMS 

We represent integrity constraints by clauses of  the form 

A 1 v . . , v A  k r  1 . . . . .  Bn, 

where k + n > 0 and the A i and By are atoms. The use of  " ~ "  instead of  "<---" is only 
syntactical to allow us to differentiate between clauses of  a program and integrity 
constraints. Integrity constraints add semantic information about the kind of  models  
that are meaningful  with respect to the intended meaning of  the program. 

DEFINITION 2.9 

Let P be a disjunctive logic program and let Ate be the set of  its minimal  
models.  Let IC be a set of  integrity constraints; then 

At tec = { M ~ At p . M ~ I C } . 

Attt, c is the set of  minimal  models of  P that satisfy IC. 

The use of  Kowalski 's  [9] definition of  integrity constraints for disjunctive 
logic programs means that the model semantics of disjunctive programs with integrity 
constraints is characterized by the set of  model  At~c. 

LEMMA 2.10 

M is a model  of P u E G C W A ( P )  t..) IC iff M E At~c. 

Proo f  

M ~ P u E G C W A ( P )  u IC iff M ~ P w E G C W A ( P )  and M ~ IC iff M E Atp 
by lemma 2.8, and M ~ IC iff M E At~c. [] 
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In the following section, we wiU show how integrity constraints can be used 
to select the stable models of a normal logic program. 

3. Stable models and the evidential transformation 

Our first approach to computing the stable models of a normal program P 
transforms the problem into the computation of the minimal models of a negation- 
free disjunctive program P~ and the selection of  those minimal models that satisfy 
a set of  integrity constraints ICe. To verify the stability of  the models of P that 
correspond to the minimal models of  P~, it is not necessary to apply the Gel fond-  
Lifschitz transformation. 

This new program P~ uses a new set of predicate symbols called evidence 
(they are the reason for the name "evidential transformation"). For each predicate 
symbol p, we introduce a new predicate symbol %p whose intended meaning is 
"there is evidence of p". Although these new predicate symbols have an autoepistemic 
flavor, their use in the transformed program is completely classical. Given an atom 
A ---p(x), we will denote the atom %p(x) by %A. 

From its intended meaning, it is clear that %A ~--A must be true for  every 
atom of  the program. The role of the "evidence" is to separate the positive use of  
an atom q in the body of a clause, which has a classical meaning, from the use of 
its negation (i.e. not q) where the negation as failure toprove introduces a nonmonotonic 
usage of the same atom. 

This role separation allows us to express our clauses in the following classical 
way: 

A ~ ' B  1 . . . . .  Bn,~%D 1 . . . . .  " - ' l ~ D k ,  

where A is true if the B i are true and "there is no evidence of  the Dl" atoms. The 
use of classical negation in this rule eliminates any nonmonotonic property of the 
program. To recover it, we must take full account of  what it means for %A to 
provide evidence of A. 

In an interpretation I, we say that an atom %A is consistent with its intended 
meaning, iff 

% A E I ~ A E I .  

In other words, if "there is evidence of A" in the interpretation, then A must  
be present in the interpretation. An interpretation where this is not the case is 
inappropriate since one should not claim to have evidence of A (claim to have "a 
proof of A") without A being tree. 

3.1. EVIDENTIAL TRANSFORMATION 

Using the ideas presented above, the evidential transformation can be defined 
formally as follows. 
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DEFINITION 3.1 

Let P be a normal logic program. The evidential transformation of  P defines 
a disjunctive logic program P~ and a set of  integrity constraints ICe such that 

1. For  each clause A ~ B l . . . . .  Bn, not D1 . . . . .  not Dk in P, the clause 
A v %D1 v �9 �9 �9 v ~Dt, (--- BI . . . . .  Bn belongs to P~. 

2. For each predicate symbol p of  P, the clause %p(x) ~ p(x) belongs to P~. 

3. For each predicate symbol p of  P, ICe contains an integrity constraint of  the 
form p(x) ~ %p(x). 

Nothing else belongs to either P~ or ICe. 

Note that definition 3.1 starts with a normal logic program that does not 
contain integrity constraints. The evidential transformation alters the normal logic 
program to a disjunctive logic program and introduces a set o f  integrity constraints. 
The disjunctive clauses are equivalent to A (--- Bl . . . . .  Bn, ~%D1 . . . . .  ~%Dk, since 
we are using classical negation instead of  negation as failure. In step 2, we add 
clauses that define the evidence predicates: "there is evidence of  an atom A" if the 
atom A is true. The integrity constraints ICe, introduced in step 3, restrict the 
models to those representing the intended meaning of  the program: if "there is 
evidence of  an atom A", then it should be the case that A is true. 

Interpretations in HBt,~ have a richer structure than interpretations in liB?. In 
the first, there are two different classes of  objects: evidences and objective atoms. 
This simple structure is rich enough to characterize syntatically those models of  P~ 
that satisfy ICe. 

LEMMA 3.2 

Let N be a model of  P~. Then: N satisfies ICp iff  N = M u %M for some 
M c HBp, where %M = {%A: A E M}. 

Proof 

Let M and M '  be subsets o f  HB? such that N = M u %M'. Since N is a model 
o f P  ~, then N ~ ~A ~-- A for all A EHBe and therefore M c M'.  N is a model oflCt, 
iff  N ~ A ~ ~A for all A ~ HBp and therefore M D M'.  Hence, N = M u ~ M  for 
some M ~ HB?. [] 

The importance of  this lemma, as will be seen after the next theorem, is that 
it allows us to reduce the stability test of  a model to a sequential check of  its 
elements. The relation between the stable models of  P and the minimal models of  
P~ is clear from the following theorem. 
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THEOREM 3.3 

Let P be a normal program. An interpretation M is a stable model of P iff 

(M ~ %M) ~ ~ Ice 
O ~  p ~  . 

Proof  

Given a program P, we should look at the transformed programs pU and P~. 
For a ground instance of a clause C = (A ~-- B~ . . . . .  Bn, not D~ . . . . .  not D~) ~ P ,  
we denote the transformed versions of the clause as follows: 

C M = (A ~-- B1 . . . . .  Bn), 

C~ = (A v %D 1 v . �9 �9 v %Dk ~--- B 1 . . . . .  Bn). 

First we prove that M u %M is a model of P~ and of ICe. Then we prove 
that it is minimal. Using lemma 3.2, we only need to prove that it is a model 
for the transformed clauses of P. 
Let C = (A ~-- B1 . . . . .  B n, not D1 . . . . .  not Dk) be a ground instance of a clause 
in P. 
Assume ~]j D i ~ M .  Since M ~ C M, then A EM or 3i Bi q~M. Hence 
(M u % M )  ~ C~. 
Assume 3j  Dj E M, then C M ~ pM. But %Dj ~ % M ,  hence (M u %M) ~ C~. 
Therefore (M u %M) ~ P~ and (M ~0 %M) ~ ICe. 

Minimality: Assume 3N c M u %M such that N ~ P~ and let N = M'  u %M". We 
prove that in this case M '  is a model of pU, contradicting the assumption that 
M is the minimal model of pM. 
Since M'  u % M "  ~ %A ~-- A, VA ~ HBp, then M" c M "  ~ M and M'  c M. 
Let C = (A ~ B1 . . . . .  Bn, not Di . . . . .  not Dk) be a ground instance of a clause 
in P. Then M' u % M "  ~ C~. 
Assume Bj Dj ~ M,  then A ~ M'  or 3i B i ~ M' .  Hence, M" ~ C u. 
Assume 3 j  D i ~ M ,  then C M ~ pU. 
Hence, M'  ~ pU since VC u ~ p M M '  ~ C u. ( ~ )  

AA iCp Therefore, M u %M E ~,~t, ~ . 

As before, we prove that M is a model of pU and then that it is minimal. 
Let C = (A ~-- BI . . . . .  B n, not DI . . . . .  not Dk) be a ground instance of a clause 
in P. 
Assume ~j D i ~ M.  Since M u %M ~ C~, A E M or 3i Bi ~ M. Hence, M ~ C u. 
Assume 3 j  D: ~ M ,  then C u ~ pU. 
Therefore, VC n EpM M ~ C u, hence M ~ pM. 
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Minimality: Assume 3M'  c M such that M'  ~ pM. We prove that in this case M'  u ~ M  
is a model of  P~, contradicting the assumption that M u ~ M  is a minimal 
model of  P~. 
Let C = (A ~- B1 . . . . .  B~, not D1 . . . . .  not Dk) be a ground instance of a clause 
in P. 
Assume 3j  Dj ~ M, then C M ~ p~t but %D; ~ %M. Hence, M'  u %M ~ C~. 
Assume 7tj Dj ~ M, C u E PU and M" ~ C ~. Hence, A E M '  or 3i Bi ~ M',  
therefore M" ~ C~. 
(M" u %M) ~ %A ~ A, VA E HBp, since M'  c M. 
Hence, (M" u %M) ~ P~. ( ~ )  

Therefore, M is a stable model of  P. [] 

Using this new characterization, the process of computing the stable models 
of  a function-free program P reduces to first iteratively computing the minimal 
models of  the disjunctive logic program P~, and then selecting those minimal 
models that are consistent with the integrity constraints ICe. 

EXAMPLE 2 

Let P = {a ~ not b; b e-  not a; c ~- a; c ~ b}. The evidential transformation 
produces the following program and set of  integrity constraints: 

P~g = {a v % b; b v % a; c e -  a; c <--- b; ~ a ~-- a; ~ b ~-- b; % c <-- c}, 

ICe = {a ~ %a;b ~ %b;c ~ %c}. 

The minimal  m o d e l s  of  the new program are Atp~ -- { {a, c, ~ a ,  %c}, 
{b, c, %b, %c}, {%a, %b}} and therefore Ate, cJ' = { {a, c, %a, %c}, {b,c,%b,%c}}. 

The two stable models of  P are {a, c} and {b, c}. 

From theorem 3.3 and lemma 2.10, we can characterize the stable model 
semantics in terms of  the EGCWA. This definition gives us more intuition as to 
what it means for a model to be stable. 

COROLLARY 3.4 

Mis  a stable model o f P  iff(M u %M) is a model o f (P  ~ u EGCWA(P ~) u ICe). 

The importance of  this characterization lies in the fact that it sheds light on 
what happens when programs do not have stable models. 

COROLLARY 3.5 

P does not have a stable model iff  (P~ u EGCWA(P ~) does not satisfy the 
integrity constraints ICp (i.e. (P~ u EGCWA(P ~) u ICe) is inconsistent). 
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In other words, in every minimal model of P~g there exists evidence considered 
true in that model and whose corresponding objective atom is false - the model 
claims to have evidence without the fact being true in the model. 

EXAMPLE 3 

Let P = {p <---notp}. The evidential transformation produces the program 
P~ -- {p v %p; %p ~--- p} and the integrity constraints ICp = {p ~ %p}. 

,f,I I C  p = { p }  } and  = { 1. 

Hence, P is inconsistent under the stable model semantics. 

3.2, REDUCING THE SEARCH SPACE 

The evidential transformation as defined above addresses two issues related 
to the problem of computing stable models. These are: to develop an iterative 
procedure that generates the set of models to be checked for stability and to devise 
a stability test for these models. In what follows, we concentrate our work on how 
to reduce the search space of models produced by the evidential transformation. It 
is well known [ 11] that stable models of logic programs are minimal models of the 
program as well (but the converse may not be true). Hence, an approach to computing 
stable models of a program is to first compute its minimal models and then check 
them for stability. However, a program may have numerous minimal models, only 
some of which are stable. We present below a new transformation that produces a 
stratified disjunctive program instead of a negation-free program. The utility of 
these stratified disjunctive programs in this paper is solely to use their structure to 
reduce the number of minimal models to be checked for stability. The obvious 
advantage of such a strategy is that the stability check can be performed less 
frequently if various minimal models are ruled out. 

For stratified programs, we know that the perfect model semantics and the 
stable model semantics coincide (a model is perfect iff it is stable) [15]. The 
evidential transformation, on the other hand, may generate a disjunctive program 
with many more minimal models than those that are stable (possibly an exponential 
number of extra models). Hence, we intend to reduce the number of models to be 
checked by computing the perfect models of a stratified program instead of the 
minimal models of a negation-free program. 

To illustrate our approach, let us analyze the structure of the predicate dependency 
graph of a normal logic program. A program is stratifiable if there is no recursion 
through negation, which means that there are no cycles in the predicate dependency 
graph of the program that involve dependencies. We will refer to these cycles as 
negative cycles. The cycles of the dependency graph can be determined by the 
strongly connected components of the graph. If one of them involves a negative 
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dependency, the program is not stratifiable. If we had a normal logic program that 
was stratified, then there would be no need for the evidential transformation. In this 
case, it suffices to find the perfect models of  the program. The dependency graph 
for a stratifiable normal program has no negative cycles. If we now had a normal 
logic program that had a dependency graph with only one strongly connected component 
and such that it contains a negative cycle, then the evidential transformation has to 
be applied to every predicate. Now, we may have a predicate dependency graph 
such that some strongly connected components involve negative dependencies and 
others do not. In this case, we would like to apply the evidential transformation only 
where needed. 

A stratification partitions the predicate symbols of a program using the following 
two rules: 

1. If p and q belong to the same strongly connected component, then they 
belong to the same partition. 

2. If predicate p depends negatively on predicate q and they do not belong to 
the same strongly connected component, then q belongs to a lower partition 
than p. 

It is trivial to show that when the program is stratified, any partition that 
obeys these two rules produces a stratification of the program, since no strongly 
connected component involves negative dependencies. For non-stratifiable normal 
programs where some components involve negative dependencies, these rules generate 
what we call a semi-stratification of the program. Our objective is to find the stable 
models by the perfect models approach for those partitions (semi-stratum) that do 
not involve negative dependencies, and by the evidential transformation for those 
that do. 

DEFINITION 3.6 

Let P be a normal logic program. A semi-stratification {$I . . . . .  Sr} of P is 
a partition of  the set of predicate symbols defined in P such that i f p  ~ Si, then any 
predicate q, on which p depends, belongs to a partition Sj where j < i, and if p 
depends negatively on q, then j < i unless q depends on p. 

As for stratification, this partition induces a semi-stratification of the clauses 
of the program {PI . . . . .  P, }. It is also trivial to prove that any normal logic program 
has a semi-stratification. We only need to notice that any negative cycle in the graph 
of the program resides in a particular strongly connected component, and therefore 
all the predicate symbols involved in the cycle belong to the same semi-stratum. 
The stratified evidential transformation takes a semi-stratified logic program and 
produces a disjunctive stratified logic program and sets of integrity constraints for 
each strata. Formally, we define the transformation as follows. 
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DEFINITION 3.7 

Let P be a normal logic program with semi-stratification {P1 . . . . .  Pr}. The 
stratified evidential transformation o f  P defines a stratified disjunctive logic 
program P~ with stratification {PI ~ . . . . .  P~} and a set of  integrity constraints 
ICe = ICt, i u . �9 �9 u ICpr such that: 

1. For each clauseA <--- B l . . . . .  Bn, not D1 . . . . .  D k, notE1 . . . . .  not Em of  Pi, the 
clause A v %Dl v . �9 �9 v ~Dk <-- B1 . . . . .  Bn, not E1 . . . . .  not Em belongs to p/Z, 
where the predicate symbols of the DI, 1 < l < k, are defined in stratum i and the 
predicate symbols of the Ej, 1 < j  < m, are defined in the strata strictly below i. 

2. For each predicate symbol p defined in Pi, the clause %p(x)  ~-- p ( x )  belongs 
to e/Z. 

3. For each predicate symbol defined in Pi, 1Cpi contains an integrity constraint 
of  the form p ( x )  ~ %p(x) .  

Nothing else belongs either to P/~ or ICPi. 

In this new transformation, we substitute by evidences only those occurrences 
of  negated literals that cannot be dealt with by the use of stratification techniques. 
We only modify normal semi-strata so that the recursions through negation are 
changed into an evidence. In this way, we obtain a stratified disjunctive logic 
program P~. Moreover, {PI'* . . . . .  P~} constitutes a stratification of  P~. 

THEOREM 3.8 

Let P be a normal logic program. M is a stable model of  P iff (M u %M) is 
a stable model of P~. 

Proof  

Let C be a ground instance of a clause in P (C = A <---Bl . . . . .  Bn, not 
D1 . . . . .  not D k, not E l . . . . .  Era). We should look at the transformed programs pU 
and (p~)U. Therefore, we denote the transformed versions of the clause C as follows: 

�9 C M = (A <--- B 1 . . . . .  Bn), 

" c M = ( A v ~ D I  V" " ' v ~ D k ~ " B I  . . . . .  Bn), 

(=~) Let N = M u %M. First we prove that N is a model of  (p~)N. Then we prove 
that it is minimal. 
Let C = (A <-- B1 . . . . .  Bn, not DI . . . . .  not Dk, not E1 . . . . .  Em) be a ground 
instance of  a clause in P. 
Assume ~j  D j ~  M and ~l  Et E M. Since M ~ C u, then A E M  or 3i  B i ~ M. 
Hence, N ~ C~. 
Assume 3l  El ~ M, then C u q~ pU and C~ f~ (p~)N. 

Assume ~l E l E M and 3 j  Dj E M, then C u f~ pM but ~ D j  E %M, hence N ~ C~. 
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Consequently, VC~ ~ (p~)~v N ~ C N 
N ~ ~A ~--- A, VA ~ HBt,. 
Therefore, (M u %M ~ P~. 

Minimality: Assume 3N' c N such that N' ~ (pZ)N and let N' = M' w %M". We 
prove that in this case M' is a model of pM, contradicting the assumption that 
M is a minimal model of p~t. 
Since M' u %M" ~ %A <--- A, VA E HBp, then M' c_ M"  c M and M' c M. 
Let C = (A ~-- B1 . . . . .  Bn, not DI . . . .  not Dk, not E1 . . . . .  not Era) be a ground 
instance of a clause in P and N" ~ C~. 
Assume ~j Dj E M and ~]l Et E M, then A E M" or 3i B i ~ M'. Hence, M" ~ C M. 
Assume 3j  Dj E M or 3 l El E M, then C M ~ pM. 
Hence, M" ~ pM since VC M E pU M" ~ C M. ( ~ )  

Therefore (M u %M) is a stable model of P~. 

( ~ )  As before, we prove that M is a model of pM and then that it is minimal. 
Let C = (A ~ B1 . . . . .  Bn, not D 1 . . . . .  not Dk, not E 1 . . . . .  not Em) be a ground 
instance of a clause in P, 
Assume ] l El E M, then N ~ C~. 

Assume ~]j Dj E M, then A E M or 3 i Bi f~ M. Hence, M ~ C M. 
Assume qj  Dj~  M, then C M ~ pM. 

Assume 31 El ~ M, then C~ ~ (p~)lv and C M f~ pM. 
Therefore, V C M E pM M ~ C M, hence, M ~ pM. 

Minimality" Assume 3M" c M such that M' ~ pM. We prove that in this case M' u % 
is a model of (p~)N, contradicting the assumption that M u % M is a minimal 
model of (p~)N. 
Let C = (A ~-- B1 . . . . .  Bn, not Dl . . . . .  not Dk, notE1 . . . . .  notE, n) be a ground 
instance of a clause in P. 
Assume ~]j Dj E M and ~l Et E M. Since C M ~ pM and M" ~ C M, then A E M' 
or 3i Bi ~M' ,  therefore M' ~ C ~r 
Assume 3j  Dj E M or q l Et E M, then C M ~ P~. 

C N p~ N Assume 3 l E t E M ,  then ~ (  ) . 
Assume ~l Et E M, and then 3j  %Dj ~ %M. Hence (M" u %M) ~ C~. 

Hence, M' u %M ~ C N 

(M" u %M) ~ %A ~ A, VA ~ HB?, since M' c M. 
Hence (M' u ~M) ~ (p~)~v. (:=>~) 

Therefore, M is a stable model of P. [] 

Since P~ is a stratified program, we know that stable and perfect models 
coincide. Moreover, from lemma 3.2 we know that models of the form (M u %M) 
are the only models that satisfy the constraints defined by ICe. 



J.A. Fernandez et al., Stable model semantics 463 

COROLLARY 3.9 

Let P be a normal logic program. M is a stable model of P iff 

I1 ICe (M w %M) E ~.~1, ~ , 

where Ate~ denotes the set of perfect models of  the stratified program P~. 

Hence, it is possible to compute the stable models of a normal program P by 
computing, using an iterative fixpoint operator, the perfect models of P~ and then 
eliminating those models that violate the integrity constraints in ICe. 

4. Fixpoint characterization of perfect models 

In this section, we review the main results of Fernandez and Minker [6] on 
devising a fixpoint operator to compute the perfect models of stratified disjunctive 
logic programs. Since disjunctive programs can have more than one minimal model, 
their fixpoint operator maps sets of minimal interpretations to sets of minimal 
interpretations. 

DEFINITION 4.1 [6] 

A set of  interpretations ~ is called a set of  minimal interpretations iff V I E  
~ J E ~ , J c l .  

Using sets of minimal interpretations, Fem,Sndez and Minker define the partial 
order, _=. 

DEFINITION 4.2[6] 

Let ~ and ~ be sets of minimal interpretations, ) E ~ iff VI ~ ~, 3 J  ~ ) ,  J c_ I. 

This partial order leads to a very natural model semantics; if we move upward, 
we monotonically increase the set of positive clauses that are modeled by the sets 
of minimal interpretations. 

THEOREM 4.3 [6] 

Let ~ and ~ be sets of minimal interpretations. Then 

_ ~ r VC such that C is a positive clause, ) ~ C ~ ~ ~ C, 

where ~ P C  iff V I E  ~ , I ~  C. 
Fernandez and Minker define an operator Tp M whose least fixpoint coincides 

with the minimal models of P, when P is a disjunctive log ic  program (negation 
free). Using this operator as a starting point, they define an iterative operator 
Tfl whose result is the set of perfect models for  a stratified disjunctive (/'1 .... ;/',) 
program P. 
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DEFINITION 4.4 [6] 

Let P be a normal disjunctive logic program and let `9 be a set of minimal  
interpretations. 

Tp M (`9) = min (Ulna modelsl(statep(l))), 
where 

starer(l) = {(Al v - . .  v Ak) : ( A I v . . .  v Ak ~--Bl . . . . .  Bn, not DI . . . . .  not Dm) 
is a ground instance of a clause in P and Vi, Bi E1 and 7tl, Dl E l} ,  

modelst(S) = {M c_ H B v l M  is a model  of  (S u I)}, 

min(`9)= {IE`9 IB/ '  E`9, I '  c / } ,  

where A i, Bj and Dt are atoms. 

Tfl(`9) takes the set St of heads of  all clauses in which the bodies are true 
in I for each I E `9 and computes the models of  St ~2I. Then from the union of  all 
these models,  it selects the minimal models. The operator T M is monotonic  when 
P is negation free. The ordinal powers of  Tfl are defined as fo l lows .  

DEFINITION 4.5 [6] 

Let P be a normal disjunctive logic program. 

r y  $ 0(`9) = `9, 

T f f  1' a(,9) = Tp M (Tp M 1" ( a  - 1) (,9)) 

T M "~ or(`9) = lub(T M "~ fl(`9) : f l  < or] 

The  o p e r a t o r  Te u " ] ' a ({0})  is deno t ed  

if a is a successor ordinal, 

if a is a limit ordinal. 

by T M l " a  and i f  T f l  1"a(`9)= 
T ~  1" ( a  + 1)(`9), then a is called afixpoint ordinal for Tfi(`9). 

For disjunctive logic programs (negation free), the fixpoint operator characterizes 
the set of  minimal  models  of the program. 

THEOREM 4.6 [6] 

Let P be a disjunctive logic program and let Ate be the set of  minimal  models 
of  P; then 

Atp =Tp  M l " a  

for a a fixpoint ordinal. 

The following example from [6] illustrates how the minimal  models are 
computed using theorem 4.6. 
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EXAMPLE 4 

Let P = {a v b; a (-:- b; c (--- b}, then 

1: rpM([o]) = {{a}, {b}} 

2: T g ( i { a } , t b } } )  min({{a}, { a , b , c } } ) = i { a } }  

3: rpn({{a} }) = {{a}} 

the minimal  models  of  a v b, 

notice that { {a}, {b} } _c { { a }  }, 

{ { a } } is a fixpoint. 

For  stratified disjunctive logic programs, Fernfmdez and Minker  define an 
iterative version of  the T f l  operator that is able to use the structure of  the program 
in the same way as the iter operator of  Apt, Blair and Walker  for stratified definite 
logic programs [1]. 

DEFINITION 4.7 [6] 

Let P be a stratified disjunctive logic program and let {PI' . . . .  P,} be a 
stratification of  P. Then 

T(g) = Tp M $ a for a a fixpoint ordinal, 

M M 
"-- T ] ~ + l  T(~ ..... P~,P,+I) T a(T(~ ..... pD) for oe a fixpoint ordinal and n > 0. 

For  each stratum Pi+ 1of the program, the operator T~,, p, e. " computes  for 
i n  - . ~ ,  1 , * " ,  i* i + l l  

each model  M ~ T(~,...,~). the minimal  models  of  (u~+_~Pj) M . _  From the union  of  
all the resulting minimal  models, the operator selects the minimal  ones. When 
applied to all the strata of  the program, the resulting models are exactly the perfect  
models of  P, as stated in the following theorem by Fern~indez and Minker. 

THEOREM 4.8 [6] 

Let  P be a stratified disjunctive logic program and let {/1 . . . . .  Pr} be a 
stratification of  P. Then 

Atp M 
= T(p 1 ..... P,),  

where J~p is the set of  perfect models of  P. 

The fixpoint operator of  Fernfindez and Minker  provides u s  with a tool to 
compute iteratively the stable models of  normal programs. Since the result of  
applying the stratified evidential transformation to a normal program P is a stratified 
disjunctive logic program P~, then the stable models  of  P can be computed using 
the iterative fixpoint and selecting those models  that are consistent with the integrity 
constraint ICe. 
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COROLLARY 4.9 

Let P be a normal logic program and let {P1 . . . . .  , P,} be a semi-stratification 
of  P. Then M is a stable model of  P iff 

( M u % M )  E NeT~p~,.. . ,t ,z ) ' N ~ I C P  , 

where {P1 ~, . . , P~} conform a stratification of P~. 

5. Computing the stable models of normal deductive databases 

A normal deductive database (NDDB), DB, is a function-free logic program 
whose clauses are range restricted and safe. By range restricted we mean that any 
variable that occurs in the head of  the clause also occurs in its body. By safe we 
mean that any variable occurring in a negative literal in a clause body also occurs 
in a positive literal in the body of the clause. NDDBs defined in this way have a 
finite Herbrand base. Similarly, a disjunctive stratified database (DSDB for short) 
is a function-free stratified disjunctive logic program whose clauses are range restricted 
and safe. 

To compute the stable models of  an NDDB, we can apply the stratified 
evidential transformation defined in the previous section and in this way create a 
new disjunctive stratified database (DSDB) 3), DB ~, and a set of  integrity constraints, 
ICoB. In the rest of  this section, we present algorithms t o  compute the perfect 
models o f  disjunctive deductive databases and its restriction by a set of  integrity 
constraints. These algorithms, when applied to the transformed program, will aUow 
the computation of  the stable models of  an NDDB. 

FernAndez and Minker have presented algorithms for computing, i n a  
bottom-up fashion, the model semantics of disjunctive databases - hierarchic [5], 
recursive [4], and stratified [6]. Their approach is based on the use of  a new data 
structure called a model tree to represent the minimal models being computed. 
Here, we present how these algorithms can be extended to compute the stable 
models of  normal deductive databases. 

5.1. COMPUTING MINIMAL MODELS OF A DSDB 

In this section, we review the results of  Fem~mdez and Minker on computing 
the perfect models o fa  DSDB. Roughly, a model tree for a set of  minimal interpretations 
.9 is a tree structure representing all the interpretations in .9 such that each node 
of  the tree is labeled by an atom that occurs in .9, and each branch of the tree (the 

3) Notice that the safeness condition imposed over the NDDB guarantees that the resulting DSDB will 
be range restricted and safe. 
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atoms in the path from the root to a leaf node) represents a different interpretation 
of ~. The  special symbol e labels the root o f  the tree and it represents no atom. 

EXAMPLE 5 

A model tree for the minimal models o f  example 1 would b e  as follows: 

c 

1 
a(1) 

/ \  
a(2) b(2) 

I 
b(1) 

Fern,'indez and Minker [5, 6] developed a simple and general algorithm for 
the evaluation of clauses in these tree structures. The computation of  the minimal 
models of a DSDB with recursive definitions can be accomplished by applying 
algorithm 1 to each rule in the database, and repeating this process until no modifications 
are performed on the tree. The fact that the Herbrand base for databases is finite 
guarantees the termination of  the iterative process. 

ALGORITHM 1 [6] 

Let A1 v .  �9 �9 v Ak ~ B l , . . . ,  Bn, not D 1, . . . ,  not Dm be a DSDB clause with 
k > 1 and n, m _> 0 and ~'a be a model tree for a set of minimal interpretations #. 

1, 

2. 

3. 

Let ~ a  = (Urea I) (i.e. the set of atoms occurring in ~a). 

Compute J = { 010 is ground and Vi, Bi 0 E ~ }  .4) 

For each 0 H J 
For each branch b of  3"a 

If Vi, BiO occurs in b and Zlj, AjO occurs in b and Zll, DtO occurs in b, 
then 

Add to ~a new leaf nodes AIO, . . . .  AkO as children of  the leaf 
node of b. 

4. Eliminate any non-minimal branch. 

Algorithm 1 uses an auxiliary data structure ~ to keep track of  those atoms 
already in the model tree. If we consider ~ as the dictionary of data stored in 3"a, 
then the computation of the set J is equivalent to the computation, i n  a definite 



468 J.A. Fernandez et al., Stable model semantics 

database, of  the complex join operation 4) represented by <--- B1 . . . . .  Bn. J covers 
the substitutions that can trigger the inclusion of  an atom AjO in a model. Hence, 
the number of  elements in the set J is an upper limit to the set of  substitutions that 
need to be checked in order to determine what atoms must be added to the interpretations. 
J reduces the number of grounded rules to be inspected by the algorithm in step 3. 

For disjunctive stratified databases, we compute the perfect models of  the 
DSDB by iterating algorithm 1 as before, on each stratum of  the databases as in 
algorithm 2. 

ALGORITHM 2 [6] 

Let {DB 1 . . . . .  DB,} be a stratification for a DSDB, DB. 

. 

2. 

. 

Let T (-- e. 

F o r i = l  to r d o  
Let DBi = {C1 . . . . .  Cm} 
Repeat 

For j = 1 to m do T ~-- T ~ ( T )  using algorithm 1. 
Until no modification is performed on T. 

Return T. 

Fem~indez and Minker show that algorithm 2 is correct [6]; the resulting tree 
represents the set of  perfect models of  the database. 

5.2. APPLYING INTEGRITY CONSTRAINTS 

In this section, we present algorithms for the application of  integrity constraints 
and show how they can be used to extend algorithm 2 for the computation of  the 
stable models of  normal deductive databases. 

A minimal model M of  a DSDB violates an integrity constraint of  the form 
Al v �9 �9 �9 VAk ~ B1 . . . . .  Bn i f fM is not a model of the constraint. That is, Vi Bi E M  
and ;~j Aj ~ M. Algorithm 3 filters those models that violate an integrity constraint 
by removing the corresponding branch in the model tree. 

ALGORITHM 3 

Let ~'~ be a model tree for a set of  minimal interpretations ~ and A 1 v .  �9 �9 v Ak 
Bl . . . . .  Bn be an integrity constraint with k + n > 0. 

1. Let Da = ( U t ~  I) (i.e. the set of  atoms occurring in ~-a). 

2. Compute J =  {010 is a ground and Vi, B iOED~}.  

4)The substitution in J only involves variables that occur in the Bi 's .  If no variables occur in the Bi ' s  , 
then J contains only the identity substitution. 
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. For each 0 ~ J 
For each branch b of ~'a 

If Vi, BiO occurs in b and 7q j, AjO occurs in b then 
Remove branch b from the tree. 

The stable models of a normal deductive database DB can be computed by 
conducting the following steps. 

1. Use the stratified evidential transformation to create the DSDB DB z and the 
set o f  integrity constraints ICoB from the original database DB. 

2. Use algorithm 2 to compute a model tree B-DB~ representing the set of perfect 
models of DB z. 

3. Apply algorithm 3 to ~'DB~ with every integrity constraint in ICoB to eliminate 
any model violating an integrity constraint. 

The resulting tree represents the set of stable models of the original deductive 
database DB. If the tree is empty (all branches have been removed), then DB has 
no stable model and is inconsistent with respect to the stable model semantics. 

Some improvements can be made to this strategy. Notice that any violation 
of an integrity constraint (i.e. p ( x ) ~  %p(x)) can be checked after all the rules 
defining the predicates p(x) and %p(x) have been evaluated (after the stratum 
containing these predicates has been processed). Since by construction of PZ these 
predicates belong to the same stratum, we can alternate the computation of the 
perfect models of each stratum with the verification of the constraints. In this way, 
we eliminate unstable models as soon as possible. Moreover, if during the verification 
of a stratum all models are eliminated, we can stop the computation since the 
program is inconsistent with respect to the stable model semantics. 

Algorithm 4 uses this alternating approach for the computation of the consistent 
perfect models of DB z with respect to ICe. 

ALGORITHM 4 

Assume {DB 1, . . . .  DB,} is a stratification for a DSDB, DB and 
1CDB t . . . . .  ICDB" are sets of integrity constraints for each stratum of DB. 

1. Let T4--e. 

2. F o r i = l  to r d o  
Let DB i = {C 1 . . . . .  Cm} and let ICDBi = {St . . . . .  St} 
Repeat 

For j = 1 to m do T <--- Tc~ (T) using algorithm 1. 
Until no modification is performed on T. 
For j = 1 to t do T <--- (T)S~ using algorithm 3. 
If T is empty then return 7". 

3. Return T. 
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EXAMPLE 6 

Let DB be an NDDB with the following semi-stratification: 

DB1 = {v(a); u(a); q(a);} 

DB2 = {r(X) ~ t(X), not s(X); s(X) ~-- u(X), not r(X); t(X) ~-- v(X), not w(X); } 

DB3 = {p(X) ~ q(X), not r(X); p(X) ~ q(X), not s(X); } 

The stratified evidential transformation produces the disjunctive stratified databases, 
integrity constraints and model tree for each semi-stratum that is shown in fig. 1. 

The first semi-stratum produces a definite program and therefore a model  tree 
representing one minimal model. The second semi-stratum produces a disjunctive 
stratum with three different minimal models. Out of  these models, on ly  two are 
consistent with the integrity constraints. Finally, in the third stratum, we use each 
one of  the stable models of  the previous stratum to generate the two stable models 
of  DB ~ which represent the stable models  {v(a),u(a), q(a),t(a),r(a),p(a)} and 
{v(a), u(a), q(a), t(a), s(a), p(a)} in DB. 

For programs without stable models, our approach to stable model semantics 
is useful in detecting the cause of  inconsistencies. The following example shows 
what happens when a program does not have stable models. 

EXAMPLE 7 

Let DB = {w(X) ~ re(X, Y), notw(Y); m(a, b); m(b, c); m(d, d)}; then 

%-transformation 5) 

~o(x) v E~o(Y) ~- ~(x ,  Y). 

ra(a,b). 

m(b,c). 

~(d, d). 

c~(x)  ~ ~(x). 

z~ (x ,Y )  ~ ~(x,Y).  

~(x) ~ z~(x). 

re(x, Y) ~ s Y). 

Model tree for ~OB* 

m(a,b) 
m(b,c) 

~(d,a) 
&n(a,b) 

Em(b,c) 
Em(d,d) 

~.~(d) 
/ N 

jw(a)  Cw(b) 

g w( a'~ f f  
/ w(b) s~o(~) 

5) Notice that in this figure as well as in fig. 1, the symbol % is represented by the symbol e. 
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S e m i - s t r a t u m  1 

~(a). 

~Ca): 
q(a). 

S e m i - s t r a t u m  2 

, .(x) v cs (x )  ,-.- t (x) .  

~(x) v z, . (x)  ,-- u(x).  

t(x) ,-- ,4x), not ~(x): 

S e m i - s t r a t u m  3 

p(x)  ,-- q(X), not ,.(x). 

p(X) ,- q(X), not s(X). 

~ , ( x )  ,-- ,~(x). 

E~,(x) , -  ~,(x). 

cq(x)  , -  q(x). 

z ~ ( x )  ~ ~,(x). 

c r ( x )  , -  ,-(x). 

z~(x)  ,-- ~(x). 

z , ( x )  , -  t (x) .  

Cp(X) ,-- p(x).  

~,(x) r c~,(x). 

, , ( x )  ~ E,~(x).  

q(X) .r Sq(X). 

~o(x) , :  c~ (x ) .  

, .(x) ~ s,-(x). 

~(x) ~ c~(x). 

t ( x )  ~ ct(x). 

v (x )  ~ Ev(x). 

~vta) 

.(!) , 
! 

$qta ) ', 
! 

L . . . . .  : 

. . . . . .  ; to ,  , oi 

grta) s (a~  ~r(a) 

L L L --_-.--.-.----.-_---:' 

Fig. 1. Computing stable models in a semi-stratified database. 

there is no stable model since no minimal model of DB ~g satisfies the integrity 
constraints. 

In example 7, the violated constraints are: w(c)~ ~w(c),  in branches 1 
and 3; w(b) ~ %w(b), in brach 3; and w(d) ~ %w(d) in all branches. It is clear that 
if we eliminate the violation of  the third constraint, the theory would have stable 
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models. By tracking down why %w(d) is true, we can see that it comes from the 
fact that m(d, d) is true. Removing that fact m(d, d) from the program restores its 
consistency. 

The integrity constraints can be used in this way to detect and correct 
inconsistencies in a normal logic program under the stable model semantics. How 
this can be achieved in the general case is a problem for future research. 

6. Related work 

In the four years since the development of stable models by Gelfond and 
Lifschitz [8], a great deal of work has been done on the declarative aspects of stable 
models, and the relationships between stable models and other non-monotonic 
logics [11, 12, 15]. In comparison, relatively few techniques have been developed 
for the computation and implementation of non-monotonic logic programming. 

Cuadrado and Pimentel [3] show how to compute stable models of propositional 
logic programs. Their technique iteratively constructs a set of labeled trees for 
computing stable models. The node labels are sets of interpretations. Eventually, a 
tree is generated whose labels capture the stable models of P, However, to our 
knowledge, Cuadrado and Pimentel do not provide a proof that their procedure 
computes the set of all stable models of a given program. Our methods are sound 
and complete. 

Fuentes [7] presents an algorithm for computing a stable model of  a program. 
This work does not compute all stable models of a program. Thus, even though a 
program P may have n stable models where n > 1, his procedure would stop after 
one stable model is found. It is not clear how this technique extends to the computation 
of  all stable models. 

The LOPS project [2] is one of the first attempts to seriously study computation 
and implementation of non-monotonic logic programming. In ref. [2], a uniform 
framework for comparing, both theoretically and experimentally, three alternative 
strategies for computing non-monotonic logic programming is presented. The authors 
develop a prototype implementation of three techniques for stable model computation 
and compare and contrast these alternative strategies based both on theoretical 
arguments and on experimental results. The stratified evidential transformation 
described in this paper (definition 3.7) makes use of the dependency graphs of 
programs to prune the search space. We believe transformations of this kind can 
be used to enhance the computational methods described in [2]. 

Finally, concurrently with this effort, Warren [19] is working on a similar 
problem. His work attempts to modify OLD-resolution with tabulation and negation 
as failure for computing stable models. His procedure is a run-time computation 
procedure: given a query Q, it is possible to determine whether Q is true in some 
stable model of the program. Our method, on the contrary, computes all stable 
models of a program. Furthermore, our methods are query independent. 
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Given, as input, a logic program P and a set S of Herbrand interpretations, 
determining whether S is the set of all stable models of P is known to be NP-hard. 
Hence, all complete algorithms addressing this problem would be non-polynomial, 
unless P = NP. Hence, one way to compare altemative approaches is via implementation 
and experimentation. 

7. Conclusions 

The major result of this paper is the equivalence between stable models of 
normal logic programs and the minimal models of a transformed program that are 
consistent with a set of integrity constraints as defined by the transformations. The 
transformation to a negation-free disjunctive logic program allowed us to present 
a characterization of the stable model semantics for normal logic programs in terms 
of the EGCWA and integrity constraints. On the other hand, the transformation to 
a stratified disjunctive logic program allowed us to describe a procedure to compute 
the stable models of function-free programs. The algorithm is developed using the 
concept of  model trees introduced by Fem~indez and Minker [5, 6] in the context 
of  disjunctive stratified databases and extends their previous algorithm to cover the 
presence of integrity constraints in the stratified program. All these results extend 
naturally to normal disjunctive logic programs. 

In our approach, the detection of inconsistency implies the lack of stable 
models. This inconsistency is introduced by the integrity constraints that are produced 
by the evidential transformation of the original normal logic program, For the class 
of normal deductive databases, we can identify the set of constraints that are possible 
causes of the inconsistency and through them, it may be possible to isolate the part 
of the original program that caused the non-existence of stable models. This information 
can be used either to correct the program or to compute answers that do not depend 
on the unstable part of the theory. Techniques by which this can be accomplished 
are a topic of future research. 

Finally, we recognize that, for disjunctive programs, the two notions of integrity 
constraint satisfaction (consistency and entailment) differ. We believe that Kowalski's 
definition allows a powerful role for integrity constraints. Under the consistency 
satisfaction interpretation, constraints augment the expressive power of  logic 
programming. Although we present algorithms to handle integrity constraints, these 
algorithms process information in a bottom-up fashion, which restricts their usage 
to a limited class of programs. Another direction of research is the study of top- 
down algorithms for processing integrity constraints in a larger class of  logic programs. 
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