Annals of Mathematics and Artificial Intelligence 8(1993)315-343 315

Subsumption and indexing in constraint query
languages with linear arithmetic constraints

Divesh Srivastava*
Computer Sciences Depariment, University of Wisconsin-Madison, WI 53706, USA

Abstract

Bottom-up evaluation of a program-query pair in a constraint query language
(CQL) starts with the facts in the database and repeatedly applies the rules of the
program, in iterations, to compute new facts, until we have reached a fixpoint. Checking
if a fixpoint has been reached amounts to checking if any “new” facts were computed
in an iteration. Such a check also enhances efficiency in that subsumed facts can be
discarded, and not be used to make any further derivations in subsequent iterations, if
we use Semi-naive evaluation. We show that the problem of subsumption in CQLs with
linear arithmetic constraints is co-NP complete, and present a deterministic algorithm,
based on the divide and conquer strategy, for this problem. We also identify polynomial-
time sufficient conditions for subsumption and non-subsumption in CQLs with linear
arithmetic constraints. We adapt indexing strategies from spatial databases for efficiently
indexing facts in such a CQL: such indexing is crucial for performance in the presence
of large databases. Based on a recent algorithm by C. Lassez and J.-L. Lassez for
quantifier elimination, we present an incremental version of the algorithm to check for
subsumption in CQLs with linear arithmetic constraints.

1. Introduction

Recently, there have been attempts ({2,4,9, 13] among others) to increase the
expressive power of database query languages by integrating constraint paradigms
with logic-based database query languages; such languages are referred to as constraint
query languages (CQLs). Constraint query languages retain the important declarative
aspect of database query languages since constraint programming paradigms are
inherently declarative. Bottom-up evaluation of a program in a CQL is very important
since it is sound and complete with respect to the declarative semantics [7] of such
programs. Bottom-up evaluation also offers considerable scope for optimization,
which is essential since evaluating such programs can be expensive due to the
manipulation of constraints.

* This work was supported by a David and Lucile Packard Foundation Fellowship in Science and Engineering,
a Presidential Young Investigator Award, with matching grants from the Digital Equipment Corporation,
Tandem and Xerox, and NSF Grant No. IRI-9011563.

©].C. Baltzer AG, Science Publishers

316 D. Srivastava, Subsumption in constraint query languages

Bottom-up evaluation of a program in a CQL starts with the facts in the
database and repeatedly applies all the rules of the program, in iterations, to compute
new facts. The evaluation terminates once we have reached a fixpoint. A fundamental
aspect of bottom-up evaluation is that we must constantly check to see if the
fixpoint has been reached. This amounts to checking if any new facts were computed
in an iteration. Such a check also enhances efficiency in that subsumed facts can
be discarded, and not be used to make any further derivations in subsequent iterations,
if we use Semi-naive evaluation [1,3].

Facts in a constraint query language (referred t0 as constraint facts) are
conjunctions of constraints. Relations are finite collections of facts, as is usual in
database query languages. In this paper, we concern ourselves with the problem of
subsumption in constraint query languages where the only constraints permitted are
linear arithmetic constraints. Constraint facts in such a CQL can be viewed geometrically
as convex polyhedra [14], and relations can be viewed geometrically as finite (non-
convex) unions of convex polyhedra. Checking whether a newly computed constraint
fact is subsumed by the existing constraint facts in a relation also has a geometric
interpretation. It is the problem of checking whether a convex polyhedron is contained
within a finite union of convex polyhedra.

Our contributions are as follows:

(1) We show that determining whether a convex polyhedron is contained in a
finite union of convex polyhedra is co-NP complete (section 3).

(2) We present a deterministic algorithm, based on the divide and conquer strategy,
to determine whether a convex polyhedron is contained in a finite union of
convex polyhedra (section 4).

(3) We adapt indexing strategies from spatial databases for efficiently indexing
convex polyhedra (section 5). Such indexing is crucial for performance in the
presence of large databases of constraint facts.

(4) We identify polynomial time sufficient conditions to check when a convex
polyhedron is or is not contained in a finite union of convex polyhedra
(section 6).

(5) We present an incremental variant of the algorithm presented in section 4 to
check whether a convex polyhedron is contained in a finite union of convex
polyhedra (section 7).

The results are also of independent interest to researchers in linear programming.

2. Preliminaries

2.1. BOTTOM-UP EVALUATION OF CQL PROGRAMS

We assume familiarity with the syntax and semantics of constraint logic
programs, as well as the issues involved in the bottom-up evaluation of such programs
(see [7,9] for details). A few important definitions are given here:

D. Srivastava, Subsumption in constraint query languages 317

DEFINITION 2.1: LINEAR ARITHMETIC CONSTRAINT

A linear arithmetic constraint is of the form:
aXi+...+a,X, 0P Guets
where ay, . . ., a,.,1 are real-valued constants, and the operator op is one of < or <.

Constraints involving >, 2 and = can be rewritten as conjunctions of constraints
involving only < and <, and we use such constraints in our examples.

DEFINITION 2.2: NEGATION OF A LINEAR ARITHMETIC CONSTRAINT

Given a constraint c =a X, + ... + a,X, < a,,.1 (respectively, ¢; X; + ...+
anXm < ap.1), the negation of ¢, denoted by —c, is the linear arithmetic constraint
alXi1+...+auX,> ay . (respectively, a1 X1+ ...+ auXn 2 Qpit)-

A rule in a CQL is of the form:

p(}_{—) = Cvpl(Yl)’ LR ’pn(X_n)o

where C is a conjunction of constraints, and p(X), pi(X}), . . . , po(X,) are atoms.
p(X) is referred to as the head of the rule, and C, pi(X)), . . . , pa(X,) is referred
to as the body of the rule. A rule with no body atoms (although it could have a
conjunction of constraints in the body) is referred to as a constraint fact. It is also
represented as p(X;C), and is thus a conjunction of constraints [9, 12]. It is a finite
representation of the (potentially) infinite set of ground facts that satisfy the conjunction
of constraints C.

A relation is a finite collection of such facts, i.e. a disjunction of conjunctions
of constraints. A database is a finite set of relations. A program is a finite set of
rules, and the meaning of a program is given by its least model [7].

Bottom-up evaluation of a program in a CQL proceeds by starting with the
facts in the database and repeatedly applying all the rules of the program, in iterations,
to compute new facts. The evaluation terminates once we have reached a fixpoint.
We now intuitively describe a rule application, the basic step in bottom-up evaluation.

DEFINITION 2.3: RULE APPLICATION
Consider a program rule:

r:pX):=C,pX), . . ., pa(Xy),

where r is just a label we use, and is not part of the syntax of a rule. A derivation
of a p fact using rule r consists of two steps:

318 D. Srivastava, Subsumption in constraint query languages

« First, choose one p; fact for each p;(X;), 1 <i<n, to obtain a satisfiable
conjunction of constraints over the variables present in the body of rule r.

» Next, variables not present in the head of the rule are eliminated using
variable (quantifier) elimination techniques to obtain a conjunction of constraints
over the variables in X.

An application of rule r consists of making all possible derivations that can
be made using rule 7 and the set of facts known at the end of the previous iteration.

Newly computed p facts must be compared against previously computed p
facts to check whether these are indeed “new” facts. This involves subsumption
checks rather than equality checks (which is all that is required if each fact is a tuple
of constants, as in traditional database query languages).

Note that bottom-up evaluation uses the representation of the constraint facts
directly, instead of working with the potentially infinite set of ground facts represented
by the constraint facts. The equivalence of the constraint facts computed in the
bottom-up evaluation of a program P and the meaning of P in terms of its least
model is in terms of the ground facts represented by the constraint facts.

THEOREM 2.1 [15]

Consider a program P and database D in a CQL with arithmetic constraints,
and let & be the set of constraint facts computed in the bottom-up evaluation of
(P, D). Let M be the meaning of (P, D), in terms of its least model. Then,

+ (soundness) each ground instance f of a constraint fact F € ¥ is in M, and

+ (completeness) each fact fin M is a ground instance of a constraint fact
Fe¥%.

In this paper, we consider only constraint query languages with linear arithmetic
constraints.

22. LINEAR PROGRAMMING

We assume the standard terminology of linear programming. The reader is
referred to [14] for details. A few important definitions are given here.

DEFINITION 2.4: CONVEX POLYHEDRON
A set P of points in R™ is called a convex polyhedron if:
P={X|X € R", AX < b}

for some n X m matrix A and a vector b, i.e. P is the intersection of finitely many
affine half-spaces.

D. Srivastava, Subsumption in constraint query languages 319

AX £ b is said to define P. A convex polyhedron can thus be represented as
a conjunction of linear arithmetic constraints; each constraint representing one of
the affine half-spaces. AX < b is said to be the half-space representation of a convex
polyhedron.

DEFINITION 2.5: MINIMAL HALF-SPACE REPRESENTATION

In a half-space representation, C=c¢, & ... & ¢y, a constraint ¢; is said to be
redundant if C'=c, & ... &¢c;_1 & ¢c;.1 & ... & ¢, represents the same convex
polyhedron as C.

A half-space representation C=c¢; & . . . & ¢, of a convex polyhedron is said
to be minimal if no ¢; is redundant in C.

For instance, the constraint X < 10 is redundant in X < 5 & X < 10. Thus, the
half-space representation X <5 & X £ 10 is not minimal, whereas the half-space
representation X < 5 is minimal.

Checking whether a constraint c; is redundant in C involves solving a linear
program, and can be carried out in time polynomial in the size of the constraint set
C. Further, each constraint in C needs to be considered exactly once for redundancy
purposes, and hence obtaining a minimal half-space representation can be carried
out in time polynomial in the size of the constraint set.

However, there need be no unique (even modulo multiplication by constants)
minimal half-space representation of a convex polyhedron, as demonstrated by the
following example.

EXAMPLE 2.1

Given a conjunction of constraints X + Y+ Z=6 & 22X+ Y-Z=2& 3X +2Y=§
representing a convex polyhedron, the following two conjunctions are equivalent to
it; each of them is also minimal: X+ Y+Z=6&2X+Y-Z=2 and X+Y+Z
=6&3X+2Y=8.

If a convex polyhedron satisfies certain conditions, it does have a unique
minimal half-space representation. However, this is not relevant to the results in this
paper and we do not discuss this any further.

DEFINITION 2.6: CONTAINMENT OF A CONVEX POLYHEDRON IN A CONVEX POLYHEDRON

A convex polyhedron represented by A, X < b, is said to be contained in
another convex polyhedron represented by A,X < b, if

[X]X € R™, AX < b} C {X|X € R™, AX < by).

If this is true, we say that AX S b C AAX < b, or AX < b DAX<bh.

320 D. Srivastava, Subsumption in constraint query languages

Given two convex polyhedra in half-space representations Cy and C,, we
would like to determine whether C; c C,. This involves solving a number of linear
problems of satisfiability of conjunctions of linear arithmetic constraints. Procedure
polyhedron_containment below is based on the result that C; < C, if and only if the
following holds: for all selections of constraints c;; from C,, the conjunction of
constraints Cy & —c,,; is unsatisfiable.

polyhedron_containment (C;, C5)
{
/* To check if C, c Cy. */
let C, be C1,1 &... & Cl,my
let C, be C2,1 &...& C2,my
for j=1 to m, do {
if C1& —cy; is satisfiable, return (NOT_CONTAINED)

}
return (CONTAINED)

Since procedure polyhedron_containment has to solve only m, problems of
satisfiability of conjunctions of linear constraints, each with m; + 1 constraints, it
is a polynomial-time (in the size of the half-space representations of the two convex
polyhedra) algorithm. Several improvements are possible to improve the efficiency
of this algorithm. We do not discuss these further.

A finite union of convex polyhedra can be represented as a (finite) collection
of the half-space representations of each of the constituent convex polyhedra. The
collection {A| X < by, ..., A X < b} represents the union:

(XIXER™ AX<h}uU...U{X|X €R™ AX < b).

This union need not have a half-space representation since it may be non-convex.
For instance, the unionof X; 24 & X, £5& X, 20& X, <8and X, 20 & X;
<7&X,25 & X,<6 is the non-convex region shown in fig. 1.

X1>=4,X1<=5,
X25=0,X2<=8

J_ X1>=0,X1<=7,

] X25=5,X2<=6

X1

Fig. 1. Relations.

D. Srivastava, Subsumption in constraint query languages 321

DEFINITION 2.7: CONTAINMENT IN A UNION OF CONVEX POLYHEDRA

A convex polyhedron represented by AgX < by is said to be contained in the
union of k convex polyhedra represented by {A1 X < by, ..., AX < b} if:

{XIX€eR" AX <l {X|XER"AX<h}u...U{X|X € R",AX < bl
If this is true, we say that
AXSbc(AXSh)v...v(AX <b)).

When each convex polyhedron C’ in a collection € is contained in the union of k
convex polyhedra Cy, ..., C;, we say that

Cc(Civ...v(C.

DEFINITION 2.8: MINIMALITY OF REPRESENTATION

A representation 6 = (Cy, ..., C,} of a finite union of convex polyhedra is
said to be minimal if there isno C;c(C;v...vCi_1vCiaiv...v ().

A finite union of convex polyhedra could also have non-unique minimal
representations. For instance, the union {X £ 6, X = 5} (representing the whole space)
is equivalent to the union {X <5, X 24} (also representing the whole space); the
two representations are both minimal. Note that this non-uniqueness does not arise
due to the non-uniqueness of the minimal (half-space) representation of a convex
polyhedron.

In the rest of this paper, we assume that a convex polyhedron is represented
in minimal half-space representation and, hence, we often identify the half-space
representation of a convex polyhedron with the convex polyhedron itself. Thus,
when we use “a convex polyhedron C”, we mean “a convex polyhedron represented
by C in half-space representation”.

3. Subsumption: The problem

In this paper, we consider the problem of subsumption of a constraint fact
in a CQL with linear arithmetic constraints by a relation (a finite collection of such
constraint facts).

DEFINITION 3.1: SUBSUMPTION OF A CONSTRAINT FACT BY A RELATION

_ A constraint fact p(X;C) is said to be subsumed by a relation
{p(X;C1), . . ., p(X;C,)) if each ground instance of p(X;C) is also an instance of
one of the p(X;C;), 1<i<n.

322 D. Srivastava, Subsumption in constraint query languages

Checking for subsumption may make the difference between termination and
non-termination of a CQL program, as the following example illustrates.

EXAMPLE 3.1 (TERMINATION VERSUS NON-TERMINATION)
Consider the CQL program P:

rl:e(X):-X<£10,X 25.
r2:eX):-X<5Xx20.

r3: p(X) :— e(X).

rd: p(X) :— p(X1), p(X2),X = 05* X1 + 0.5 * X2.

If r4 is applied using p(X; X <5 & X 2 0) (computed using rules r2 and r3) in the
first occurrence of p, and p(X; X £10 & X 2 5) (computed using rules 1 and r3)
in the second occurrence of p, we compute the fact p(X; X <7.5 & X 22.5). This
constraint fact can be seen to be subsumed by the collection of the two facts
computed by rule r3. Further, it can be verified easily that each fact computed by
rule r4 is subsumed by the collection of the facts computed by rule 3.

Bottom-up evaluation terminates after one iteration, is subsumption checks
are performed. However, if subsumption checks are not performed, this program
does not terminate.

The above example also gives some idea of the complexity of subsumption
checking for programs in constraint query languages. The newly computed fact
pX; X<7.5 & X 22.5) using rule r4 is not subsumed individually by any of the
facts p(X; XS5 & X20) or p(X; X<10& X 2 5), although it is subsumed by the
collection of the two facts.

3.1. COMPLEXITY RESULTS

In a CQL with linear arithmetic constraints, constraint facts can be viewed
geometrically as convex polyhedra, and relations can be viewed geometrically as
finite (non-convex) unions of convex polyhedra. Checking whether a newly computed
constraint fact is subsumed by the existing constraint facts in a relation also has a
geometric interpretation. It is the problem of checking whether a convex polyhedron
is contained within a finite union of convex polyhedra. The following result formalizes
the relationship between containment of convex polyhedra and our original problem
of subsumption of constraint facts.

THEOREM 3.1

A constraint fact p(X; C) is subsumed by a relation {p(X; (), . . . , p(X;C,)}
of constraint facts if and only if Cc(Cyv...Vv).

D. Srivastava, Subsumption in constraint query languages 323

The following results describe the complexity of the problem of containment
of convex polyhedra, and hence the problem of subsumption of constraint facts.

LEMMA 3.2

Checking whether one convex polyhedron C is contained in the union of »
convex polyhedra Cy, ..., C, is co-NP hard.

Proof

Given a Boolean formula in disjunctive normal form with at most three
literals per disjunct, checking if this formula is a tautology is co-NP complete (I.LOS8
in {5]). Call this problem 3-TAUTOLOGY. We show the co-NP hardness of checking
containment by reducing 3-TAUTOLOGY to checking whether one convex polyhedron
is contained in a union of convex polyhedra.

Consider a Boolean formula in disjunctive normal form with m variables
Ay, Ay, . .., A, and n disjuncts. Associate with each variable A; the constraint X; <0,
and with A;the constraint associated is —(X;<0), i.e. X;> 0. With each disjunct
(which has at most three literals) we can now associate the convex polyhedron
which is the intersection (in m dimensions) of the three half-spaces corresponding
to each of the three literals. With the Boolean formula itself, we now associate the
union of the convex polyhedra associated with each disjunct. Thus, the Boolean
formula represents the union of n convex polyhedra in m dimensions.

It is easy to prove that the convex polyhedron represented as (X; < 10 & X, 2
-10&...&X,<10 & X,, =2 —10) is contained in the union of the convex polyhedra
associated with the Boolean formula if and only if the Boolean formula is a tautology.
This completes the proof of the result. d

LEMMA 3.3

Checking whether one convex polyhedron C is not contained in the union of
n convex polyhedra Cy, ..., C, is in NP.

Proof

A convex polyhedron C is not contained in the union of n convex polyhedra
Ci ..., C,if and only if there exists at least one convex polyhedron C’ that is
contained in C, and disjoint with each of the C;, 1 <i< n.

The oracle guesses this convex polyhedron C’ (in half-space representation),
and one can easily verify in polynomial time that C’ is contained in C, and disjoint
with each of the C;, 1 <i < n, by solving a polynomial number of linear programs.
Further, procedure check_containment (described in section 4.3) provides a constructive
proof that such a convex polyhedron can be represented (in half-space representation)
in the required polynomial space. More precisely, if m, is the space needed to

324 D. Srivastava, Subsumption in constraint query languages

represent the polyhedra C, Cy, .. ., C,, then the desired convex polyhedron C’ can
be represented in O(m;) space. This completes the proof of the result. O

From the above two lemmas, we obtain the result that:

THEOREM 3.4

Checking whether one convex polyhedron C is contained in the union of n
convex polyhedra Cy, ..., C, is co-NP complete.

From the equivalence of convex polyhedra to constraint facts in a CQL with
linear arithmetic constraints (theorem 3.1), we have the following corollary to
theorem 3.4,

COROLLARY 3.5

Consider a program P in a CQL with linear arithmetic constraints. Checking
if a constraint fact p(X;C)) computed in a bottom-up evaluation of P is subsumed
by the constraint facts {p(X;C}), . . . , p(X;C,)} in a relation is co-NP complete.

Although we described the importance of subsumption checks in constraint
query languages in the context of a bottom-up evaluation, similar considerations
also hold in a top-down evaluation strategy that chooses to memo the constraint
facts computed, instead of recomputing them (as in CLP(R) [8], for instance). Such
memoing of facts is essential for completeness with respect to the declarative
semantics of CQL programs.

4, Containment of a convex polyhedron in a finite union

In section 3.1, we described the complexity of checking whether a convex
polyhedron is contained in a finite union of convex polyhedra. In this section, we
first describe a straightforward deterministic algorithm for this purpose, and show
that it can be quite inefficient when the convex polyhedron is indeed contained in
the finite union of convex polyhedra. We then present an algorithm based on the
divide and conquer strategy and a linear partitioning algorithm for convex polyhedra
that is often more efficient than the straightforward algorithm when the convex
polyhedron is contained in the finite union.

4.1. A STRAIGHTFORWARD ALGORITHM

First, consider the simple case of a convex polyhedron represented by
Co=coy & ... & ¢ p, being contained in the union of two convex polyhedra represented
by Ci=c1n&...&cym and Cr=cy1 & . .. & ¢y, Without being contained in
either of them individually. Figure 2 illustrates this.

D. Srivastava, Subsumption in constraint query languages 325

&
G

Fig. 2. A convex polyhedron contained
in the union of two convex polyhedra.

This immediately suggests a mathematical way of checking this. We need to
solve the following linear programs to achieve this:

Co&—ICI’;CC2, ISlSml

This involves m; calls to procedure polyhedron_containment, and determines whether
the difference of the convex polyhedra Cy — C; is contained in the convex polyhedron
represented by C,. The above set of linear programs is equivalent to checking that
each of

Co&—wcl,;&—-cz’j, 1€i<m, ISjSm2,

is unsatisfiable.

Consider fig. 3, where it is not the case that Cy < C; v C,. It can easily be seen
how the linear programs above will determine that the polyhedron represented by C,
is not contained in the union of the convex polyhedra represented by C; and C,.

G

N G,

-

Fig. 3. A convex polyhedron not contained .
in the union of two convex polyhedra.

The algorithm can be extended in a straightforward fashion to determine when
a convex polyhedron is contained in a union of n convex polyhedra, instead of just
two convex polyhedra. Procedure straightforward_check_containment below is based

326 D. Srivastava, Subsumption in constraint query languages

on the result that C, is contained in the union of a finite collection of convex
polyhedra, represented by €,.,= {C,, ..., C,} if and only if the following holds: for
all selections of ¢y ; from Cy,...,c,;, from C,,

Co & =Cy,j &... &—'C"Jn

is unsatisfiable.

straightforward_check_containment (C, €,.;)
{
let {C;,...,C,} be the convex polyhedra in 6,,,,
where each G; is of the form ¢;; & ... & ¢j ;.
for iy =1 to m; do {

for i,=110 m,do {
if (C&=cy;,&...&=c,,;) is satisfiable,
return (NOT_CONTAINED)
}

}
return (CONTAINED)

PROPOSITION 4.1

Procedure straightforward_check_containment (C, 6,.;), where 6,,; = {C, . . ., Cy},
returns CONTAINED if and only if C < (C, v ... v C,). Further, if m is the maximum
number of constraints in C or any of the C;in 6,,;, procedure straightforward_check_
containment solves at most m”" problems of satisfiability of conjunctions of linear
constraints, where each problem has at most m + n constraints.

The main problem with procedure straightforward_check_containment is that
if the convex polyhedron C is contained in the finite union of the convex polyhedra
represented by %,.;, procedure straightforward_check_containment can perform a
considerable amount of unnecessary computation. This is seen in the following
example.

EXAMPLE 4.1

Let Co, C;, Cy, C5 and C, be convex polyhedra as shown in fig. 4. Each of
Cy, ..., Cyoverlap with Cy, and each of the constraints in Cy, . . . , C, is considered
while checking for containment of Cy. Note that Cy is contained within the union
of just Cy and C,, for example. Procedure straightforward_check_containment, however,
does not take advantage of such a possibility. We next present an algorithm, procedure
check_containment, that does take advantage of such possibilities.

D. Srivastava, Subsumption in constraint query languages 327

C, C,

Co

Cs

Fig. 4. Checking containment.

42. A LINEAR PARTITIONING ALGORITHM

We present an algorithm, linear_partition, that takes two convex polyhedra in
half-space representations Cy and C,, with m; constraints and m, constraints,
respectively, such that:

+ C; & C, is satisfiable, i.e. the two convex polyhedra are not disjoint, and

« (¢ Cy, i.e. the convex polyhedron represented by C; does not contain the
convex polyhedron represented by C,.

The algorithm then partitions the convex polyhedron represented by C, into
my + 1 convex polyhedra Cy 3, ..., Cg p 41 such that:

« (1 <y, ie. one of the convex polyhedra is contained in the convex polyhedron

C,, and

* (& C;isunsatisfiable for2 <i<m, + 1, i.e. the convex polyhedra represented
by Ca, . . . » Cy m,+1 are each disjoint with the convex polyhedron represented
by C 1-

This algorithm for partitioning a convex polyhedron is interesting in its own
right. For example, it is used as part of a technique for optimizing queries on CQL
programs in [15].

linear_partition (C,, Cy)
{
/* partition C, using Cy. "/
let Cl =611 &... & Ci,my
let C2= €21 &...& C2.m,
let Cp,1=C2& C; /" C,, is contained in Cy */
Gres =D
fori=2 to my+1 do {

328 D. Srivastava, Subsumption in constraint query languages

let Cri=Co&ci1 & ... & Cymps1-i & SCL mya-i
if Cz,; is safisfiable, CG,;“ = CG,e—s v .{Cz,g}
}

return €6,

}

THEOREM 4.2

Consider two convex polyhedra C, and C,, with m; and m, constraints,
respectively, such that:

« (Cy & C, is satisfiable, and
d C2 z C].

Then, procedure linear_partition (Cy, C,) partitions the convex polyhedron represented
by C; into at most m,; + 1 convex polyhedra C, 5, ..., Cy,m1 such that:

(1) the convex polyhedron represented by C, ; is contained in the convex polyhedron
represented by Cj,

(2) each convex polyhedron represented by C,;, 2<i<my + 1, is disjoint with
the convex polyhedron represented by C;, and

(3) each convex polyhedron represented by C5 ;, 1 i< my + 1, has at most m, + m,
constraints.

Proof
We prove the theorem by proving the following claims:
Claim 1: Each Cy;, 1 £i<m;+ 1, is a convex polyhedron.

Proof of claim 1: Note that the negation of a linear arithmetic constraint is also a
linear arithmetic constraint. Hence, each C5 ;, 1 <i<m, + 1, is a finite conjunction
of linear arithmetic constraints, and this completes the proof of claim 1.

Claim 2: Cy; c (.
Proof of claim 2: Cy,=(Cy & Cy) c Cy. This completes the proof of claim 2.

Claim 3. C,; & C, is unsatisfiable for 2<i<m; + 1.

Proof of claim 3: This follows from the fact that each C,;, 2<i<m;+ 1, has in
its conjunction —c¢; ; as one of its constraints, and ¢y ; & —cy,; is unsatisfiable.

Claim 4: The convex polyhedra C,;, 1 i< m; + 1, partition C,.

Proof of claim 4: First, it is easy to see that

D. Srivastava, Subsumption in constraint query languages

329
CZE((CZ & €11 &...& cl.ml) \% (C2 & C1,1 &...& Cl,my -1 & —‘cl,ml) V...V (Cz & — cl,l))'

Next, note that Cy ; & C,j, i # j, is unsatisfiable since one of them has in its conjunction
€1, as one of its constraints, and the other has —c; , by construction. This completes
the proof of claim 4,

Claim 5: Each convex polyhedron C, ;, 1 £i<m; + 1, has at most m; + m;, constraints.
Proof of claim 5. Each convex polyhedron Cy;, 1 £i<m; + 1, is a conjunction of
constraints and has all the m, constraints of C,. Further, for each 1 <j<m,, Cy;
either has ¢y ;, or —c, j, or neither of the two. No other constraints are present in
the conjunction. This completes the proof of claim 5.

Claims 1-5 complete the proof of the theorem.

Figure 5 depicts a convex polyhedron represented by B, being partitioned by

O
B, into three convex polyhedra, represented by A;, A, and As. The convex polyhedron
by A, and Aj are disjoint with Bj.

represented by A, is contained in By, and each of the convex polyhedra represented

Fig. 5. Partitioning a convex polyhedron
into several convex polyhedra.

Using procedure linear_partition need not result in a unique partitioning of C,.
The set of convex polyhedra actually created depends on which of the half-spaces

in C, is treated as c;,;, which as ¢, ; and so on. However, any partition created by
procedure linear_partition satisfies theorem 4.2.

43.

A DIVIDE AND CONQUER ALGORITHM FOR CONTAINMENT

Procedure linear_partition can be used as the basis of an algorithm to check
whether a convex polyhedron represented by C is contained in the union of a
collection of convex polyhedra, represented by 6,,; = {C,
containment, which performs this check, is described below.

., C,}. Procedure check_

330 D. Srivastava, Subsumption in constraint query languages

check_containment (C, ,.;)
{
let {Cy,...,C,} be the convex polyhedra in €,,;.
%imp = {C}
fori=11to ndo {
for each element C’ of 6,,,
if (polyhedron_containment(C’, C;) = CONTAINED), remove C’ from €,
/* we have removed all convex polyhedra that are already contained */
it (6 =) return (CONTAINED)
/* indicates that we have successfully checked containment of C in G,,; */
else {
for each element C’ of 6,,, that is not disjoint with C; {
(gimp = (gimp_ {C,}
Gimp = Cimp U linear_partition (C;, C")
}
}
}
return (NOT_CONTAINED)
/* when at least one of the (sub) convex polyhedra is not contained in any of
the C; */

An analysis of procedure check_containment shows that the cost of checking
whether the convex polyhedron represented by C is contained in the union of
convex polyhedra represented by 6,,, depends on the maximum number of partitions
of C created by the various elements in ,,;, and the cost of checking whether a
convex polyhedron is contained in another convex polyhedron. Containment of one
convex polyhedron by another can be done in polynomial time, using procedure
polyhedron_containment, for instance. All we need to know now is the maximum
number of partitions that can be created from the convex polyhedron represented
by C.

THEOREM 4.3

Procedure check_containment (C, %,.;), where 6,,; = (Cy, ..., C,}, retumns
CONTAINED if and only if C < (Cyv...v (). If m is the maximum number of
constraints in C or any other of the C; in ,,;, procedure check_containment solves
o(m™*h problems of satisfiability of linear constraints to achieve this. Further, the
size of each problem is bounded by m + m * n.

Proof
We prove the theorem by proving the following claims.

D. Srivastava, Subsumption in constraint query languages 331

Claim I: In iteration { of procedure check._containment,
Cc(Civ...vC iff‘@i,,,pc(C,-v...vC,,).

Proof of claim 1: We prove it by induction on i. Let ‘6:3,,,;, denote 6;,, at the
beginning of iteration i. The base case is trivial. Consider the induction step. Each
convex polyhedron C’ €% ,‘-',,4, such that C’ ¢ C; is first removed in iteration i. Next,
we consider only polyhedra C’ in 6,,, that intersect with C; and we partition such
C’ using C;. These polyhedra C’ satisfy the preconditions of theorem 4.2, and hence
the partitions of C’ satisfy theorem 4.2. Since each of the polyhedra added to ‘6:3,,,,,
are disjoint with C;, we have

G C (Ciyy V...V Cy) iff Gy (Civ...v Cp.
From the induction hypothesis, it follows that
Grh C(Cin v...v G, iff Cc(Cv...v ().
This completes the indu