
Annals of Mathematics and Artificial Intelligence 8(1993)315-343 315

Subsumption and indexing in constraint query
languages with linear arithmetic constraints

D i v e s h Srivastava*

Computer Sciences Department, University of Wisconsin-Madison, WI 53706, USA

Abstract

Bottom-up evaluation of a program-query pair in a constraint query language
(CQL) starts with the facts in the database and repeatedly applies the rules of the
program, in iterations, to compute new facts, until we have reached a fixpoint. Checking
if a fixpoint has been reached amounts to checking if any "new" facts were computed
in an iteration. Such a check also enhances efficiency in that subsumed facts can be
discarded, and not be used to make any further derivations in subsequent iterations, if
we use Semi-naive evaluation. We show that the problem of subsumption in CQLs with
linear arithmetic constraints is co-NP complete, and present a deterministic algorithm,
based on the divide and conquer strategy, for this problem. We also identify polynomial-
time sufficient conditions for subsumption and non-subsumption in CQLs with linear
arithmetic constraints. We adapt indexing strategies from spatial databases for efficiently
indexing facts in such a CQL: such indexing is crucial for performance in the presence
of large databases. Based on a recent algorithm by C. Lassez and J.-L. Lassez for
quantifier elimination, we present an incremental version of the algorithm to check for
subsumption in CQLs with linear arithmetic constraints.

1. Introduction

Recently, there have been attempts ([2,4, 9,13] among others) to increase the
expressive power of database query languages by integrating constraint paradigms
with logic-based database query languages; such languages are referred to as constraint
query languages (CQLs). Constraint query languages retain the important declarative
aspect of database query languages since constraint programming paradigms are
inherently declarative. Bottom-up evaluation of a program in a CQL is very important
since it is sound and complete with respect to the declarative semantics [7] of such
programs. Bottom-up evaluation also offers considerable scope for optimization,
which is essential since evaluating such programs can be expensive due to the
manipulation of constraints.

* This work was supported by a David and Lucile Packard Foundation Fellowship in Science and Engineering,
a Presidential Young Investigator Award, with matching grants from the Digital Equipment Corporation,
Tandem and Xerox, and NSF Grant No. IRI-9011563.

�9 J.C. Baltzer AG, Science Publishers

316 D. Srivastava, Subsumption in constraint query languages

Bottom-up evaluation of a program in a CQL starts with the facts in the
database and repeatedly applies all the rules of the program, in iterations, to compute
new facts. The evaluation terminates once we have reached a fixpoint. A fundamental
aspect of bottom-up evaluation is that we must constantly check to see if the
fixpoint has been reached. This amounts to checking if any new facts were computed
in an iteration. Such a check also enhances efficiency in that subsumed facts can
be discarded, and not be used to make any further derivations in subsequent iterations,
if we use Semi-naive evaluation [1,3].

Facts in a constraint query language (referred to as constraint facts) are
conjunctions of constraints. Relations are finite collections of facts, as is usual in
database query languages. In this paper, we concern ourselves with the problem of
subsumption in constraint query languages where the only constraints permitted are
linear arithmetic constraints. Constraint facts in such a CQL can be viewed geometrically
as convex polyhedra [14], and relations can be viewed geometrically as finite (non-
convex) unions of convex polyhedra. Checking whether a newly computed constraint
fact is subsumed by the existing constraint facts in a relation also has a geometric
interpretation. It is the problem of checking whether a convex polyhedron is contained
within a finite union of convex polyhedra.

Our contributions are as follows:

(1) We show that determining whether a convex polyhedron is contained in a
finite union of convex polyhedra is co-NP complete (section 3).

(2) We present a deterministic algorithm, based on the divide and conquer strategy,
to determine whether a convex polyhedron is contained in a finite union of
convex polyhedra (section 4).

(3) We adapt indexing strategies from spatial databases for efficiently indexing
convex polyhedra (section 5). Such indexing is crucial for performance in the
presence of large databases of constraint facts.

(4) We identify polynomial time sufficient conditions to check when a convex
polyhedron is or is not contained in a finite union of convex polyhedra
(section 6).

(5) We present an incremental variant of the algorithm presented in section 4 to
check whether a convex polyhedron is contained in a finite union of convex
polyhedra (section 7).

The results are also of independent interest to researchers in linear programming.

2. Preliminaries

2.1. BOTTOM-UP EVALUATION OF CQL PROGRAMS

We assume familiarity with the syntax and semantics of constraint logic
programs, as well as the issues involved in the bottom-up evaluation of such programs
(see [7,9] for details). A few important definitions are given here:

D. Srivastava, Subsumption in constraint query languages 317

DEFINITION 2.1: LINEAR ARITHMETIC CONSTRAINT

A linear arithmetic constraint is of the form:

alX1 + . . . +amX,, op am+l,

where al am+l are real-valued constants, and the operator op is one of < or _.

Constraints involving >, > and = can be rewritten as conjunctions of constraints
involving only < and -<, and we use such constraints in our examples.

DEFINITION 2.2: NEGATION OF A LINEAR ARITHMETIC CONSTRAINT

Given a constraint c - - a l X i + . . . + amXm < am+l (respectively, alX1 + . . . +
amXm < am+ l), the negation of c, denoted by --, c, is the linear arithmetic constraint
alXl +. �9 �9 + amXm > am+l (respectively, alX1 + . . �9 + amX= > am+l).

A rule in a CQL is of the form:

p (~ ') : - c , p l (x--7) p . (x---~),

_ _ m m

where C is a conjunction of constraints, and p(X) , Pl(Xl) p , t (X,) are atoms.
p(X) is referred to as the head of the rule, and C, pl(Xl) p,,(X~) is referred
to as the body of the rule. A rule with no body atoms (although it could have a
conjunction of constraints in the body) is referred to as a constraint fact. It is also
represented as p(X'; C), and is thus a conjunction of constraints [9, 12]. It is a finite
representation of the (potentially) infinite set of ground facts that satisfy the conjunction
of constraints C.

A relation is a finite collection of such facts, i.e. a disjunction of conjunctions
of constraints. A database is a finite set of relations. A program is a finite set of
rules, and the meaning of a program is given by its least model [7].

Bottom-up evaluation of a program in a CQL proceeds by starting with the
facts in the database and repeatedly applying all the rules of the program, in iterations,
to compute new facts. The evaluation terminates once we have reached a fixpoint.
We now intuitively describe a rule application, the basic step in bottom-up evaluation.

DEFINITION 2.3: RULE APPLICATION

Consider a program rule:

r : p (~) : - C, pl(X--7) p . (x ~) ,

where r is just a label we use, and is not part of the syntax of a rule. A derivation
of a p fact using rule r consists of two steps:

318 D. Srivastava, Subsumption in constraint query languages

B

�9 First, choose one Pi fact for each pi(Xi), 1 < i <_ n, to obtain a satisfiable
conjunction of constraints over the variables present in the body of rule r.

�9 Next, variables not present in the head of the rule are eliminated using
variable (quantifier) elimination techniques to obtain a conjunction of constraints
over the variables in X.

An application of rule r consists of making all possible derivations that can
be made using rule r and the set of facts known at the end of the previous iteration.

Newly computed p facts must be compared against previously computed p
facts to check whether these are indeed "new" facts. This involves subsumption
checks rather than equality checks (which is all that is required if each fact is a tuple
of constants, as in traditional database query languages).

Note that bottom-up evaluation uses the representation of the constraint facts
directly, instead of working with the potentially infinite set of ground facts represented
by the constraint facts. The equivalence of the constraint facts computed in the
bottom-up evaluation of a program P and the meaning of P in terms of its least
model is in terms of the ground facts represented by the constraint facts.

THEOREM 2.1 [151

Consider a program P and database D in a CQL with arithmetic constraints,
and let ~ be the set of constraint facts computed in the bottom-up evaluation of
(P, D). Let ~ be the meaning of (P, D), in terms of its least model. Then,

�9 (soundness) each ground instance f of a constraint fact F ~ ~; is in ~t, and

�9 (completeness) each fact f in ~ is a ground instance of a constraint fact
F~f l ; .

In this paper, we consider only constraint query languages with linear arithmetic
constraints.

2.2. LINEAR PROGRAMMING

We assume the standard terminology of linear programming. The reader is
referred to [14] for details. A few important definitions are given here.

DEFINITION 2.4: CONVEX POLYHEDRON

A set P of points in R m is called a convex polyhedron if:

P = {XIX �9 Rm, AX < b}

for some n x m matrix A and a vector b, i.e. P is the intersection of finitely many
affine half-spaces.

D. Srivastava, Subsumption in constraint query languages 319

A X < b is said to define P. A convex polyhedron can thus be represented as
a conjunction of linear arithmetic constraints; each constraint representing one of
the affine half-spaces. A X < b is said to be the half-space representation of a convex
polyhedron.

DEFINITION 2.5: MINIMAL HALF-SPACE REPRESENTATION

In a half-space representation, C -- cl & �9 �9 & Cm, a constraint cl is said to be
redundant if C "= - cl & . �9 �9 & ci-1 & ci+l & �9 �9 �9 & Cm represents the same convex
polyhedron as C.

A half-space representation C ---- c~ & . . . & Cm of a convex polyhedron is said
to be minimal i f no cl is redundant in C.

For instance, the constraint X < 10 is redundant in X < 5 & X < 10. Thus, the
half-space representation X < 5 & X < 10 is not minimal, whereas the half-space
representation X < 5 is minimal.

Checking whether a constraint ci is redundant in C involves solving a linear
program, and can be carried out in time polynomial in the size of the constraint set
C. Further, each constraint in C needs to be considered exactly once for redundancy
purposes, and hence obtaining a minimal half-space representation can be carried
out in time polynomial in the size of the constraint set.

However, there need be no unique (even modulo multiplication by constants)
minimal half-space representation of a convex polyhedron, as demonstrated by the
following example.

EXAMPLE 2.1

Given a conjunction of constraints X + Y + Z = 6 & 2X + Y - Z = 2 & 3X + 2Y = 8
representing a convex polyhedron, the following two conjunctions are equivalent to
it; each of them is also minimal: X + Y + Z = 6 & 2 X + Y - Z = 2 and X + Y + Z
= 6 & 3X+ 2Y= 8.

If a convex polyhedron satisfies certain conditions, it does have a unique
minimal half-space representation. However, this is not relevant to the results in this
paper and we do not discuss this any further.

DEFINrrION 2.6: CONTAINMENT OF A CONVEX POLYHEDRON IN A CONVEX POLYHEDRON

A convex polyhedron represented by A I X < bl is said to be contained in

another convex polyhedron represented by A2X < b2 if

{XlX e Rm, A1X <_ {XlX e ter',A2X <- bE}.

If this is true, we say that A1X < bl c A2X < b2, or A2X < b2 D AIX < bl.

320 D. Srivastava, Subsumption in constraint query languages

Given two convex polyhedra in half-space representations Cl and C2, we
would like to determine whether C1 c C2. This involves solving a number of linear
problems of satisfiability of conjunctions of linear arithmetic constraints. Procedure
polyhedron_containment below is based on the result that C1 c C2 if and only if the
following holds: for all selections of constraints c2,j from C2, the conjunction of
constraints C~ & ~c2,j is unsatisfiable.

polyhedron_containment (C1, C2)
(

/* To check if C1 c C2. */

let C l be Cl, l & �9 �9 �9 & cl,=l.
let C2 be c2,1 & �9 �9 �9 & C2,m2.
for j = l t o m 2 d o {

if C1 & "-~c2,j is satisfiable, return (NOT_CONTAINED)
}
return (CONTAINED)

Since procedure polyhedron_containment has to solve only m2 problems of
satisfiability of conjunctions of linear constraints, each with m~ + 1 constraints, it
is a polynomial-time (in the size of the half-space representations of the two convex
polyhedra) algorithm. Several improvements are possible to improve the efficiency
of this algorithm. We do not discuss these further.

A finite union of convex polyhedra can be represented as a (finite) collection
of the half-space representations of each of the constituent convex polyhedra. The
collection {A~X < bl AkX < bk} represents the union:

{ X l X Rm, <- • . . . u { X l X R I , AkX <- bk}.

This union need not have a half-space representation since it may be non-convex.
For instance, the union of X1 > 4 & XI < 5 & X2 > 0 & X2 < 8 and X1 > 0 & X 1

< 7 & X2 -> 5 & X2 -< 6 is the non-convex region shown in fig. 1.

X1 >= 4, X1 <= 5,
X2 X2 >=O, X2 <= 8

~ "] . ~ XI >~ O, XI <= 7,
-1 X2 :,=5, X2 <= 6

Fig. 1. Relations.

D. Srivastava, Subsumption in constraint query languages 321

DEFINITION 2.7: CONTAINMENT IN A UNION OF CONVEX POLYHEDRA

A convex polyhedron represented by Ao X < bo is said to be contained in the
union of k convex polyhedra represented by {AIX < bl AkX < bk} if:

{ X J X E Rm, Ao x < bo} c_ { X I X E Rm, A1X < bll u . . . u { X I X E Rm, AkX < bk}.

If this is true, we say that

AoX <- bo c ((AIX <- bl) v . . . v (AkX <- bk)).

When each convex polyhedron C" in a collection % is contained in the union of k
convex polyhedra C1 Ck, we say that

c (e l v . . . v Ck).

DEFINITION 2.8: M1NIMALITY OF REPRESENTATION

A representation q~ = {C1 Cn} of a finite union of convex polyhedra is
said to be minimal if there is no Ci c (C1 v . . . v Ci_l v Ci+l v . . . v Cn).

A finite union of convex polyhedra could also have non-unique minimal
representations. For instance, the union {X < 6, X > 5 } (representing the whole space)
is equivalent to the union {X < 5, X > 4} (also representing the whole space); the
two representations are both minimal. Note that this non-uniqueness does not arise
due to the non-uniqueness of the minimal (half-space) representation of a convex
polyhedron.

In the rest of this paper, we assume that a convex polyhedron is represented
in minimal half-space representation and, hence, we often identify the half-space
representation of a convex polyhedron with the convex polyhedron itself. Thus,
when we use "a convex polyhedron C", we mean "a convex polyhedron represented
by C in half-space representation".

3. Subsumption: The problem

In this paper, we consider the problem of subsumption of a constraint fact
in a CQL with linear arithmetic constraints by a relation (a finite collection of such
constraint facts).

DEFINITION 3.1: SUBSUMPTION OF A CONSTRAINT FACT BY A RELATION

A constraint fact p (X ; C) is said to be s u b s u me d by a relation
{p(~; C1) p(X; Cn)} if each ground instance of p(X; C) is also an instance of
one of the p(X; Ci), 1 < i < n.

322 D. Srivastava, Subsumption in constraint query languages

Checking for subsumption may make the difference between termination and
non-termination of a CQL program, as the following example illustrates.

EXAMPLE 3.1 (TERMINATION VERSUS NON-TERMINATION)

Consider the CQL program P:

rl : e(X) : - X < 10,X > 5.

r2 : e(X) : - X < 5 ,X > O.

r3 : p(X) : - e(X).

r4 : p(X) : - p(X1), p(X2), X = 0.5 * X1 + 0.5 * X2.

If r4 is applied using p(X; X < 5 & X > 0) (computed using rules r2 and r3) in the
first occurrence of p, and p(X; X < 10 & X >_ 5) (computed using rules r l and r3)
in the second occurrence of p, we compute the fact p(X; X < 7.5 & X > 2.5). This
constraint fact can be seen to be subsumed by the collection of the two facts
computed by rule r3. Further, it can be verified easily that each fact computed by
rule r4 is subsumed by the collection of the facts computed by rule r3.

Bottom-up evaluation terminates after one iteration, is subsumption checks
are performed. However, if subsumption checks are not performed, this program
does not terminate.

The above example also gives some idea of the complexity of subsumption
checking for programs in constraint query languages. The newly computed fact
p(X; X < 7.5 & X > 2.5) using rule r4 is not subsumed individually by any of the
facts p(X; X < 5 & X > 0) or p(X; X <_ 10 & X > 5), although it is subsumed by the
collection of the two facts.

3.1. COMPLEXITY RESULTS

In a CQL with linear arithmetic constraints, constraint facts can be viewed
geometrically as convex polyhedra, and relations can be viewed geometrically as
finite (non-convex) unions of convex polyhedra. Checking whether a newly computed
constraint fact is subsumed by the existing constraint facts in a relation also has a
geometric interpretation. It is the problem of checking whether a convex polyhedron
is contained within a finite union of convex polyhedra. The following result formalizes
the relationship between containment of convex polyhedra and our original problem
of subsumption of constraint facts.

THEOREM 3.1

A constraint fact p(X; C) is subsumed by a relation {p(X'; C1) p(X; Cn)}
of constraint facts if and only if C c (C I v . . . v Cn).

D. Srivastava, Subsumption in constraint query languages 323

The following results describe the complexity of the problem of containment
of convex polyhedra, and hence the problem of subsumption of constraint facts.

LEMMA 3.2

Checking whether one convex polyhedron C is contained in the union of n
convex polyhedra C1 C, is co-NP hard.

Proof

Given a Boolean formula in disjunctive normal form with at most three
literals per disjunct, checking if this formula is a tautology is co-NP complete (LO8
in [5]). Call this problem 3-TAUTOLOGY. We show the co-NP hardness of checking
containment by reducing 3-TAUTOLOGY to checking whether one convex polyhedron
is contained in a union of convex polyhedra.

Consider a Boolean formula in disjunctive normal form with m variables
A1, A2 Am and n disjuncts. Associate with each variable A i the constraint Xi < O,
and with Aithe constraint associated is ~(X~ < 0), i.e. X~ > 0. With each disjunct
(which has at most three literals) we can now associate the convex polyhedron
which is the intersection (in m dimensions) of the three half-spaces corresponding
to each of the three literals. With the Boolean formula itself, we now associate the
union of the convex polyhedra associated with each disjunct. Thus, the Boolean
formula represents the union of n convex polyhedra in m dimensions.

It is easy to prove that the convex polyhedron represented as (X~ < 10 & X~ >
-10 & . . . & Xm < 10 & Xm > - 10) is contained in the union of the convex polyhedra
associated with the Boolean formula if and only if the Boolean formula is a tautology.
This completes the proof of the result. []

LEMMA 3.3

Checking whether one convex polyhedron C is not contained in the union of
n convex polyhedra C~ Cn is in NP.

Proof

A convex polyhedron C is not contained in the union of n convex polyhedra
C~ Cn if and only if there exists at least one convex polyhedron C" that is
contained in C, and disjoint with each of the Ci, 1 < i < n.

The oracle guesses this convex polyhedron C" (in half-space representation),
and one can easily verify in polynomial time that C" is contained in C, and disjoint
with each of the Ci, 1 < i < n, by solving a polynomial number of linear programs.
Further, procedure check_containment (described in section 4.3) provides a constructive
proof that such a convex polyhedron can be represented (in half-space representation)
in the required polynomial space. More precisely, if m, is the space needed to

324 D. Srivastava, Subsumption in constraint query languages

represent the polyhedra C, C1 Cn, then the desired convex polyhedron C ' can
be represented in O (m s) space. This completes the proof of the result. []

From the above two lemmas, we obtain the result that:

THEOREM 3.4

Checking whether one convex polyhedron C is contained in the union of n
convex polyhedra C1 Cn is co-NP complete.

From the equivalence of convex polyhedra to constraint facts in a CQL with
linear arithmetic constraints (theorem 3.1), we have the following corollary to
theorem 3.4.

COROLLARY 3.5

Consider a program P in a CQL with linear arithmetic constraints. Checking
if a constraint fact p(X; C) computed in a bottom-up evaluation of P is subsumed
by the constraint facts {p(~'; C1) p(~'; C,,)} in a relation is co-NP complete.

Although we described the importance of subsumption checks in constraint
query languages in the context of a bottom-up evaluation, similar considerations
also hold in a top-down evaluation strategy that chooses to memo the constraint
facts computed, instead of recomputing them (as in CLP(~) [8], for instance). Such
memoing of facts is essential for completeness with respect to the declarative
semantics of CQL programs.

4. Containment of a convex polyhedron in a finite union

In section 3.1, we described the complexity of checking whether a convex
polyhedron is contained in a finite union of convex polyhedra. In this section, we
first describe a straightforward deterministic algorithm for this purpose, and show
that it can be quite inefficient when the convex polyhedron is indeed contained in
the finite union of convex polyhedra. We then present an algorithm based on the
divide and conquer strategy and a linear partitioning algorithm for convex polyhedra
that is often more efficient than the straightforward algorithm when the convex
polyhedron is contained in the finite union.

4.1. A STRAIGHTFORWARD ALGORITHM

First, consider the simple case of a convex polyhedron represented by
Co - Co,1 &. �9 �9 & C0.mo being contained in the union of two convex polyhedra represented
by C1 - c1,1 & �9 �9 �9 & cl,ml and C2 - c2,1 & �9 �9 �9 & C2,m2, without being contained in
either of them individually. Figure 2 illustrates this.

D. Srivastava, Subsumption in constraint query languages 325

Ci

C2

cii i-i
k !

Fig. 2. A convex polyhedron contained
in the union of two convex polyhedra.

This immediately suggests a mathematical way of checking this. We need to
solve the following linear programs to achieve this:

Co & ~Cl,i c C2, l < i < m l .

This involves ml calls to procedure polyhedron_containment, and determines whether
the difference of the convex polyhedra Co - C1 is contained in the convex polyhedron
represented by C2. The above set of linear programs is equivalent to checking that
each of

C08L"nCl,it~'-nC2,j, l < i < m l , l < j<m2,

is unsatisfiable.
Consider fig. 3, where it is not the case that Co c C1 v C2. It can easily be seen

how the linear programs above will determine that the polyhedron represented by Co
is not contained in the union of the convex polyhedra represented by C1 and C2.

Cl

Fig. 3. A convex polyhedron not conta ined
in the union of two convex polyhedra.

The algorithm can be extended in a straightforward fashion to determine when
a convex polyhedron is contained in a union of n convex polyhedra, instead of just
two convex polyhedra. Procedure straighlforward_check_containment below is based

326 D. Srivastava, Subsumption in constraint query languages

on the result that Co is contained in the union of a finite collection of convex
polyhedra, represented by ~ m = {C1 C,} if and only if the following holds: for
all selections of cl,j, from C1 c,.j, from C,,

is unsatisfiable.

Co & ~cl,j~ & �9 �9 �9 & ~ c . , j .

straightforward_check_containment (C, %m)
{

let {Cl C,,} be the convex polyhedra in %r.l,
where each C i is of the form Cj, m & . . . & cj,=~.

f o r i l =1 to ml do {

f o r i . = l t o m . do {
if (C & ~ c l , i , & �9 �9 �9 & "~cn, i.) is satisfiable,

return (NOT_CONTAINED)
}

}
return (CONTAINED)

PROPOSITION 4.1

Procedure straightforward_check_containment (C, ~m), where ~ m = {C1 Cn},
returns CONTAINED if and only if C c (C1 v . . . v Cn). Further, if m is the maximum
number of constraints in C or any of the Ci in ~,el, procedure straightforward_check_
containment solves at most m" problems of satisfiability of conjunctions of linear
constraints, where each problem has at most m + n constraints.

The main problem with procedure straightforward_check_containment is that
if the convex polyhedron C is contained in the finite union of the convex polyhedra
represented by q~,,t, procedure straightforward_check_containment can perform a
considerable amount of unnecessary computation. This is seen in the following
example.

EXAMPLE 4.1

Let Co, Ci, C2, C3 and C4 be convex polyhedra as shown in fig. 4. Each of
CI C4 overlap with Co, and each of the constraints in C1 C4 is considered
while checking for containment of Co. Note that Co is contained within the union
of just C1 and C2, for example. Procedure straightforward_chock_containment, however,
does not take advantage of such a possibility. We next present an algorithm, procedure
chock_containment, that does take advantage of such possibilities.

D. Srivastava, Subsumption in constraint query languages 327

Cl

ill
C 2

C3

C4

Fig. 4. Checking containment.

4.2. A LINEAR PARTITIONING ALGORITHM

We present an algorithm, linear_partition, that takes two convex polyhedra in
half-space representations C1 and C2, with ml constraints and m2 constraints,
respectively, such that:

Cl & C2 is satisfiable, i.e. the two convex polyhedra are not disjoint, and

C2 ~ Cl, i.e. the convex polyhedron represented by C1 does not contain the
convex polyhedron represented by C2.

The algorithm then partitions the convex polyhedron represented by C2 into
ml + 1 convex polyhedra C2,1 C2,ral+ 1 such that:

�9 C2,1 c C1, i.e. one of the convex polyhedra is contained in the convex polyhedron
C1, and

�9 C2,i & C1 is unsatisfiable for 2 _< i _ ml + 1, i.e. the convex polyhedra represented
by C2, 2 C2,m~+1 are each disjoint with the convex polyhedron represented
by C1.

This algorithm for partitioning a convex polyhedron is interesting in its own
right. For example, it is used as part of a technique for optimizing queries on CQL
programs in [15].

linear_partition (C1, C2)
{

/* partition C2 using C1. */
l e t C 1 = c l , l & �9 �9 �9 & Cl.r.~

let C 2 = c2,1 & . �9 �9 & C2.m=
let C2,1 = C2 & C1 /* C2.1 is contained in Cl *t
%,,, = E~

f o r i = 2 t o m l + l do {

328 D. Srivastava, Subsumption in constraint query languages

let C2,i = C2 & Cl,1 (~ . �9 . • Cl,ml+l-i t~ "~Cl,mt+2_ i
if C2,1 is satisfiable, qgr,, = %,e, L){C2,i}

}
return ~res

T H E O R E M 4.2

Consider two convex polyhedra C1 and C2, with ml and m2 constraints,
respectively, such that:

�9 C1 & C2 is satisfiable, and

�9 (:'2(~ C 1 .

Then, procedure linear_partition (C1, C2) partitions the convex polyhedron represented
by 6'2 into at most m~ + 1 convex polyhedra C2,1 C2,,,,,+1 such that:

(1) the convex polyhedron represented by C2,~ is contained in the convex polyhedron
represented by C1,

(2) each convex polyhedron represented by C2,i, 2 <_ i <mx + 1, is disjoint with
the convex polyhedron represented by C1, and

(3) each convex polyhedron represented by C2,i, 1 < i < ml + 1, has at most m: + m2
constraints.

Proof
We prove the theorem by proving the following claims:

Claim 1: Each C2,1, 1 _< i _ ml + 1, is a convex polyhedron.

Proof of claim l: Note that the negation of a linear arithmetic constraint is also a
linear arithmetic constraint. Hence, each C2,i, 1 <_ i <_ mi + 1, is a finite conjunction
of linear arithmetic constraints, and this completes the proof of claim 1.

Claim 2: C2,1 c C 1.

Proof of claim 2:C2,1 - (C2 & C1) c C1. This completes the proof o f claim 2.

Claim 3: C2,i & Cl is unsatisfiable for 2 < i < ml + 1.

Proof o f claim 3: This follows from the fact that each C2,i, 2 < i < ml + 1, has in
its conjunction --,cl,j as one of its constraints, and cl,j & ~cl , j is unsatisfiable.

Claim 4" The convex polyhedra C2,i, 1 < i < ml + 1, partition C2.

Proof o f claim 4" First, it is easy to see that

D. Srivastava, Subsumption in constraint query languages 329

C 2 - ((c 2 • C1,1 & . . . & Cl.m,) V (C 2 & el, 1 c~u5..o & Cl.~l_ 1 &-"lCl.m,) V~ v (C 2 & ----lC1,1)).

Next, note that C2,i & C2.j, i ~:j, is unsatisfiable since one of them has in its conjunction
c],k as one of its constraints, and the other has ~c],k by construction. This completes
the proof of claim 4.

Claim 5: Each convex polyhedron C2,i, 1 < i < m] + 1, has at most ml + m2 constraints.

Proof of claim 5: Each convex polyhedron Czd, 1 < i < ml + 1, is a conjunction of
constraints and has all the m2 constraints of 6'2. Further, for each 1 _< j < ml, C2,i
either has c~.j, or ~c],j, or neither of the two. No other constraints are present in
the conjunction. This completes the proof of claim 5.

Claims 1-5 complete the proof of the theorem. []

Figure 5 depicts a convex polyhedron represented by B 2 being partitioned by
Bl into three convex polyhedra, represented by A], A2 and A3. The convex polyhedron
represented by AI is contained in BI, and each of the convex polyhedra represented
by A2 and A3 are disjoint with BI.

........... ~',, Ca
B1 .~ ,,

Fig. 5. Partitioning a convex polyhedron
into several convex polyhedra.

B2

Using procedure linear_partition need not result in a unique partitioning of C2.
The set of convex polyhedra actually created depends on which of the half-spaces
in C~ is treated as c1.1, which as c~,2 and so on. However, any partition created by
procedure linear_partition satisfies theorem 4.2.

4.3. A DIVIDE AND CONQUER ALGORITHM FOR CONTAINMENT

Procedure linear_partition can be used as the basis of an algorithm to check
whether a convex polyhedron represented by C is contained in the union of a
collection of convex polyhedra, represented by ~,,l = {C1 C,,}. Procedure check_
containment, which performs this check, is described below.

330 D. Srivastava. Subsumption in constraint query languages

check_containment (C, (~rel)
{

let {Cl Cn} be the convex polyhedra in ~ , e t o

% . e = {c}
f o r i = l t o n d o {

for each element C' of ~ i ~
if (polyhedron_containment(C', Ci) = CONTAINED), remove C' from ~imp

/* we have removed all convex polyhedra that are already contained */
if (~ i~ = O) return (CONTAINED)

/* indicates that we have successfully checked containment of C in ~ret */
else {

for each element C" of ~i,,,e that is not disjoint with Ci {
= - { C ' }

%,'mr, = ~i,,,t, L) linear_partition (Ci, C')
}

}
}
return (NOT_CONTAINED)

t* when at least one of the (sub) convex polyhedra is not contained in any of
the Ci */

An analysis of procedure check_containment shows that the cost of checking
whether the convex polyhedron represented by C is contained in the union of
convex polyhedra represented by <g,,t depends on the maximum number of partitions
of C created by the various elements in %,et, and the cost of checking whether a
convex polyhedron is contained in another convex polyhedron. Containment of one
convex polyhedron by another can be done in polynomial time, using procedure
polyhedron_containment, for instance. All we need to know now is the maximum
number of partitions that can be created from the convex polyhedron represented
by C.

THEOREM 4.3

Procedure check_containment (C, %r,t), where %,,t = {C~ C,}, returns
CONTAINED if and only if C c (C1 v . . . v C,). If m is the maximum number of
constraints in C or any other of the Ci in ~,et, procedure check_containment solves
O(m "+1) problems of satisfiability of linear constraints to achieve this. Further, the
size of each problem is bounded by m + m * n.

Proof

We prove the theorem by proving the following claims.

D. Srivastava, Subsumption in constraint query languages 331

Claim 1: In iteration i of procedure chock_containment,

C c (C1 v . . . v C,,) iff ~i,nt, c (Ci v v Cn).

Proof of claim 1 : We prove it by induction on i. Let ~imp denote %~,,,, at the
beginning of iteration i. The base case is trivial. Consider the induction step. Each
convex polyhedron C ' ~ i m e such that C' c Ci is first removed in iteration i. Next,
we consider only polyhedra C ' in ~ , ,~ that intersect with Ci and we partition such
C" using Ci. These polyhedra C' satisfy the preconditions of theorem 4.2, and hence
the partitions of C ' satisfy theorem 4.2. Since each of the polyhedra added to ~ime
are disjoint with Ci, we have

,.gi+lp c (C i+ l v . . . v C~) i f f %/~ c (C i v . . . v Cn) .

From the induction hypothesis, it follows that

 ii c(Ci+l iff C c (q

This completes the induction step and the proof of claim 1.

Claim 2: Procedure check_containment (C, %,,l), where ~,et = {C1 Cn}, returns
CONTAINED if and only if C c (C1 v . . . v Cn).

Proof of claim 2: Procedure check_containment (C, %,,t) retums CONTAINED if and
only if %Zmt, is empty at the end of some iteration i, 1 < i < n. The proof of claim 2
now follows from claim 1.

Claim 3: If m is the maximum number of constraints in C or any o f the Ci in ~rel,
Rime has at most m z polyhedra at the end of iteration i. Procedure chock_containment
solves at most O(m') problems of satisfiability of conjunctions of linear constraints
in the ith iteration. Further, the size of each of these problems is bounded by
m + i * m .

Proof of claim 3: We prove this by induction on i. Let %i~,,~ denote %i,,,~, at the
beginning of iteration i. The base case is trivial. Consider now the induction step and
the ith iteration. From the induction hypothesis, there are at most m i-1 convex
polyhedra in ~!mp, each with at most m + (i - 1) * m constraints. Since Ci has a
maximum of m constraints, checking which of the convex polyhedra C" in %imp are
contained in C~ involves solving at most m i problems of satisfiability. Further, each
C' can be partitioned by Ci into at most m + 1 convex polyhedra, of which at most
m are added to ~mp. Since there were at most m i-1 convex polyhedra in ~/mp, there
are at most m i convex polyhedra in -m,.~i+l Since each convex polyhedron in %~,,~, had
at most m + (i - 1) * m constraints, each convex polyhedron in ~i+1 has at most ~vnp
m + i * m constraints. This completes the induction step and the proof of claim 3.

332 D. Srivastava, Subsumption in constraint query languages

From claim 3, it follows that if m is the maximum number of constraints in
any of the Ci in (~rel, procedure check_containment solves at most O(m "+1) linear
programs to check for containment. This completes the proof of the second part of
the theorem. The proof of the third part of the theorem follows from claim 3, and
the fact that there are at most n iterations. []

Now, the worst-case time bound of procedure check_containment can be seen
to be worse than the worst-case of procedure straightforward_check_containment.
However, there are several situations in which procedure check_containment is
better than procedure straightforward_check_containment.

Consider again example 4.1. In this example, procedure check_containment
(Co, %,,z), where %,et = {Cb 6'2, 6'3, C4), needs to solve fewer problems of satisfiability
of conjunctions of linear arithmetic constraints than procedure straightforward_check_
containment. However, if Co was not contained in the ~,,t, procedure straightforward_
check_containment would infer this by solving fewer problems of satisfiability of
conjunctions of linear arithmetic constraints.

In general, procedure check_containment can be expected to perform better
than procedure straightforward_check_containment if the convex polyhedron C is
contained in the union of the convex polyhedra represented by %,,t. On the other
hand, if the convex polyhedron is not contained in the union of the convex polyhedra
represented by %,a, procedure straightforward_check_containment can be expected
to perform better. Which of these two procedures should be used depends on the
newly generated constraint fact, and is outside the scope of this paper. As a heuristic,
one might use a hybrid scheme where the two procedures are evaluated in an
interleaved fashion until one of them returns an answer.

5. Indexing constraint facts

Recall the iterative bottom-up evaluation procedure to compute the fixpoint
of a CQL program. After a rule is applied, one has to check whether each newly
computed constraint fact p(X; C) is subsumed by the collection of known constraint
facts {p(~'; 6'1) p(X'; (7,)} in the p relation. Checking for subsumption can be
performed either by using procedure straightforward_check_containment or by using
procedure check_containment to check i f the convex polyhedron represented by C
is contained in the union of the convex polyhedra represented by Cl Cn.

Only those convex polyhedra Ci that intersect with (equivalently, are not
disjoint with) C need be used to check for containment. This involves solving
several problems of satisfiability of conjunctions of linear constraints - and, although
this can be performed in polynomial time, it could dominate the overall cost of
containment if the number of constraint facts in the p relation is very large (as is
the case in database applications), and only a few of the convex polyhedra intersect
with C. Consequently, we need an indexing mechanism to efficiently eliminate a
large number of convex polyhedra that do not intersect with C.

D. Srivastava, Subsumption in constraint query languages 333

R,trees (Guttman [6]) and R+-trees (Senis et al. [16]) have been proposed as
dynamic index structures to efficiently index spatial data. The index record entries
for these index structures are m-dimensional rectangles of the form

I = I ra) ,

where each li is a closed bounded interval [ai, bi] describing the extent of the object
along dimension i. Alternatively, one or both of ai and/or bi may be infinity,
indicating that the object extends indefinitely. These index structures can be used
to efficiently index constraint facts in a constraint query language with linear arithmetic
constraints (equivalently, convex polyhedra) by associating a bounding box with
each constraint fact.

While the indexing strategies described are themselves not novel (since we
adapt them from indexing strategies for spatial databases), the idea of using these
strategies for indexing constraint facts in the bottom-up evaluation o f a CQL program
is a novel contribution.

5.1. USING MINIMUM BOUNDING BOXES

DEFINITION 5.1: MINIMAL BOUNDING BOX

Given a convex polyhedron C, a bounding box BB for C is said to be a minimal
bounding box if there does not exist a bounding box BB" for C such that (1) BB is
also a bounding box for BB', and (2) BB" is not a bounding box for BB. []

The existence of a unique minimum bounding box for a convex polyhedron
is guaranteed by the following proposition.

PROPOSITION 5.1

Given a convex polyhedron C, if BB~ and BB2 are bounding boxes for the
convex polyhedron C, then the intersection of bounding boxes BB~ and BB2 is also
a bounding box for the convex polyhedron C.

Minimum bounding boxes have several nice properties1):

Intersection:

Containment:

If two convex polyhedra C1 and C2 intersect, so do their minimum
bounding boxes.

If a convex polyhedron C1 is contained in convex polyhedron Cg,
the minimum bounding box BBct for C~ is also contained in the
minimum bounding box BBc2 for C2.

1) Note that property intersection is also satisfied by non-minimum bounding boxes for convex polyhedra,
although property containment may not be.

334 D. Srivastava, Subsumption in constraint query languages

If the half-space representation is chosen for convex polyhedra, obtaining a
minimum bounding box BBc involves solving 2 * m linear programs, where m is the
number of dimensions of the convex polyhedron. Minimum bounding boxes can be
used to efficiently eliminate a large number of convex polyhedra in the collection

that do not intersect with a given convex polyhedron C. This is done by associating
the minimum bounding box with each convex polyhedron, and maintaining the
bounding boxes as an R+-tree, for example. Procedure index_constraint_facts below
describes this algorithmically.

index_constraint_facts (C, %)
{

let �9 be { C1 C,,}.
/* we need those Ci which intersect with C. */

let BB,r be {BBct BBc,,} be the minimum bounding boxes
for C1 C, maintained as an R*-tree.
/* these are assumed to be known */

compute BBc, the minimum bounding box for convex polyhedron C.
use the R§ data structure to efficiently retrieve those BBcl that intersect with
BBc.
return those Ci whose minimum bounding boxes BBci intersect with BB c.

THEOREM 5.2

Consider a convex polyhedron C, and a finite collection of convex polyhedra
~ . Let ~1 be the result of applying procedure index_constraint_facts (C, %). Then,

C c ~ iff C c % I .

Proof
The proof follows from property intersection of bounding oxes, which states

that if the minimum bounding boxes of two convex polyhedra dt aot intersect, then
neither do the convex polyhedra. []

5.2. USING NON-MINIMUM BOUNDING BOXES

Recall that our motivation for indexing convex polyhedra was to eliminate
constraint facts while checking for subsumption of a newly generated constraint fact
in the bottom-up evaluation of a CQL program. However, in computing the minimum
bounding box BBc for the convex polyhedron C corresponding to the newly computed
p fact, procedure index_constraint_facts does not make use of the bounding boxes
for the convex polyhedra corresponding to the Pi facts used to compute this p fact
(definition 2.3 describes rule applications). However, these are available (by assumption)
and one could use the bounding boxes corresponding to the body facts to efficiently

D. Srivastava, Subsumption in constraint query languages 335

compute a bounding box corresponding to the newly computed head constraint fact
based on the following two results:

PROPOSITION 5.3

Consider two convex polyhedra C1 and C2 in m dimensions. Let C3 = C1 & C2
represent the intersection of these two convex polyhedra. Let BBcl and BBc2 be
bounding boxes for C1 and C2, respectively, and let BBc3 be the intersection of the
two bounding boxes.

Then, BBc3is a bounding box for C3. Further, BBc3 can be computed in time
O(m).

Note that bounding box BBc3 need not be the minimum bounding box for C 3
even if BBcl and BBc2 are the minimum boxes for Cl and C2, respectively. This can
be seen from fig. 6. However, non-minimum bounding boxes still satisfy property
intersection, i.e. if two convex polyhedra intersect, so do their bounding boxes.

Fig. 6. Bounding boxes for convex polyhedra.

PROPOSITION 5.4

Consider a convex polyhedron CI in m dimensions, and let Cz be its projection
onto k < m dimensions. Let BBc~ be the minimum bounding box of C1, and BBc2 be
the projection of BBc~ onto to the corresponding k dimensions.

Then, BBc2 is the minimum bounding box for (72. Further, BBc2 can be computed
in O(m).

The results of propositions 5.3 and 5.4 can be used to efficiently compute a
bounding box, though not the minimum possible, for a newly computed constraint
fact, using bounding boxes for the facts used in the body to compute the head
constraint fact. Procedure compute_bounding_box below describes this algorithmicaUy.

m

compute_bounding_box (r, PI(X1; Cl) p . (X . ; C.))
{

let r be the rule:

r " p (X) " - C, pl(X'l]) p.(X--~).

336 D. Srivastava, Subsumption in constraint query languages

m

let pi(Xi; Ci) be the constraint fact used in atom pi(Xi).
let BBcl BBc, be bounding boxes for C1 (7,.

/* these are assumed to have been previously computed. */
let m be the number of variables in rule r.
extend each BBci to all m dimensions.
compute BB = f"l'~=l (BBc,).
let k be the number of variables in the head.
compute BBc = IIk(BB).

I* BBc is a bounding box for the newly computed p fact. */
return BB c.

Although the bounding box computed by procedure compute_bounding_box
is not the minimum bounding box, it still satisfies property intersection. Consequently,
if procedure compute_bou nding_box is used to compute the bounding box in procedure
index_constraint_facts, the resulting algorithm will still satisfy theorem 5.2. This
modified algorithm can be used to efficiently eliminate some convex polyhedra in
% that do not intersect with C. However, since procedure compute_bounding_box
does not compute minimum bounding boxes, we may not be able to eliminate as
many convex polyhedra as were eliminated by using procedure index_constrainL
facts directly. Thus, we have a trade-off between efficiently computing a bounding
box for C versus efficiently eliminating a large number of convex polyhedra in ~,
and each strategy may be more efficient in certain situations. Which method to
adopt depends on the constraint facts in the p relation in question, and is outside
the scope of this paper.

6. Polynomial time sufficient conditions

Checking whether a convex polyhedron is contained in a finite union of
convex polyhedra is extremely expensive, in general. Since the problem is co-NP
complete, there is no polynomial time deterministic solution for the problem (unless
P = NP), in general. In this section, we describe conditions under which containment
or non-containment can be checked in polynomial time.

6.1. CHECKING CONTAINMENT

If all the constraints in a convex polyhedron are equality constraints, the
convex polyhedron is a finite conjunction of hyperplanes, and is affine. For such
convex polyhedra, containment can be checked in polynomial time. This leads to
the following interesting restriction on CQL programs for which subsumption can
be checked in polynomial time.

D. Srivastava, Subsumption in constraint query languages 337

PROPOSITION 6.1

Consider a constraint query language where only linear arithmetic equality
constraints are permitted. In such a CQL, a constraint fact p(,Y; C) is subsumed by
a finite collection of constraint facts {p(,~; G) p(X; Cn)} if and only if it is
subsumed by p(X; Ci) for some 1 < i < n.

As a consequence of the above result, subsumption of p(X; C) needs to be
checked against only one constraint fact in the p relation at a time. Consequently,
subsumption can be checked in polynomial time.

This result is important from the perspective of evaluating CQL programs.
Given a program with only linear arithmetic equality constraints - and this can be
checked at compile time - one need check for subsumption of a newly generated
constraint fact against only one fact at a time, considerably improving the efficiency
of bottom-up evaluation of CQL programs.

6.2. CHECKING NON-CONTAINMENT

We describe two simple polynomial-time sufficient conditions that allow us to
check that a convex polyhedron is not contained in a finite union of convex polyhedra.

The first one is based on checking that the given convex polyhedron is not
contained in a sufficiently large convex polyhedron.

Using procedure index_constraint_lacts, we can efficiently eliminate a large
number of convex polyhedra that do not intersect with C, the polyhedron that is
being checked for containment in the union of convex polyhedra represented by ~.
Let ~ = {C1 Ck} be the result of applying procedure index_constraint_facts
(C, ~) . Let BBcj, 1 <j< k, be the corresponding minimum bounding boxes, each
an m-dimensional rectangle.

Let BB be the minimum m-dimensional rectangle that contains each of BBcj.
Such an m-dimensional rectangle can be obtained in time 2 * m * k be examining
each of the k bounding boxes, and finding the minimum and maximum value along
each of the m dimensions. Bounding box BB can be used to check for non-containment
in polynomial time, as the following result indicates.

PROPOSITION 6.2

Consider a convex polyhedron C, and a finite collection of convex polyhedra
�9 . Let %1 be the convex polyhedra obtained using procedure index_constraint_facts
(C, ~) . Also, let BB be a bounding box that contains each of the bounding boxes
of the convex polyhedra in %1. Then,

i f C C B B t h e n C r

Further, this check for non-subsumption can be performed in polynomial time.
The result follows from the properties of bounding boxes.

338 D. Srivastava, Subsumption in constraint query languages

The second polynomial-time sufficient condition for non-containment is based
on obtaining points on the surface of the given convex polyhedron C and checking
that at least one of these points is not contained in each C' in %1, the convex
polyhedra obtained using procedure index_constraint_facts. As a heuristic, we suggest
obtaining such points by maximizing or minimizing (in the feasible region given
by C) each of the objective functions obtained by considering the constraints of
each convex polyhedron in <gl.

PROPOSITION 6.3

Consider a convex polyhedron C, and a finite collection of convex polyhedra
%. Let ~1 = {C~ Ck} be the convex polyhedra obtained using procedure index_
constraint_facts (C, %). Let ~ = P1 Pt be a collection of points on the surface
of C obtained by maximizing or minimizing each of the objective functions obtained
by considering the constraints of each of the Ci. Then,

if 3j, such that (PjfL Cl) & . �9 �9 & (Pj cs Ck) then C r ~.

Further, this check for non-subsumption can be performed in time polynomial in
the size of the representations of C, C1 Ck.

The proof of the time complexity follows from the fact that there are only
a polynomial number of objective functions we consider for this heuristic.

Again, this is just a sufficient condition since each surface of a convex
polyhedron represented by C may be contained in the union of convex polyhedra
represented by q~, but C may still not be contained in %. An example is given in
fig. 7.

Ca

c~

C,

IIc.

Fig. 7. Surfaces of a convex polyhedron contained.

7. Incrementally checking for containment

Recall the iterative bottom-up evaluation procedure for computing the fixpoint
of a CQL program. In each iteration, the procedure first applied the program rules
to compute constraint facts as follows: Consider the program rule

D. Srivastava, Subsumption in constraint query languages 339

r : p(X) : - C, pl(X1) pn(Xn).

Given a Pi fact for each pi(Xi), 1 < i < n, we have a conjunction of constraints over
the variables present in the body of r. To obtain a p fact using these body facts and
rule r, variables not present in the head of rule r need to be projected out. Then
the bottom-up evaluation procedure checked whether each newly computed constraint
fact was subsumed or was a "new" constraint fact. Computing constraint facts is
quite expensive because of the projection operation [11] used in computing the head
fact. If the newly computed constraint fact is subsumed, the cost of computing this
constraint fact is "wasted".

We now describe an algorithm that interleaves the computation of constraint
facts with checking for subsumption in the bottom-up evaluation of a CQL program.
This algorithm tries to minimize the wasted effort by early detection of when a
newly computed constraint fact is subsumed. It is based on a recent algorithm by
Lassez and Lassez [10] for quantifier (variable) elimination for systems of linear
constraints. The algorithm in [10] computes successive approximations using linear
programming techniques and an on-line convex hull construction algorithm. Further,
the algorithm can provide an upper bound or lower bound approximation or both.

We use the algorithm in [10] as the basis of an incremental algorithm to
check for subsumption. Given this algorithm, we can perform the projection operation
used in computing a constraint fact in an incremental fashion, to obtain better and
better upper bound approximations to the actual p fact that follows from the given
body facts and the rule r. This can be used to advantage in incrementally checking
for containment. Procedure incremental_containment below performs this incremental
check.

incremental_containment (C (Y), X, egret)
{

C(Y) is the convex polyhedron that needs to be projected onto X.
the resultant polyhedron Cp needs to be checked for containment in egret.
let C~ be a first upper-bound approximation to C e obtained using the algorithm

of [10].
partition C~ using ~,,t (and linear_partition) into two sets of convex polyhedra.

~,,b,: where each polyhedron in r is contained in %,,z, and
r where each polyhedron in q~aisj is "disjoint from %,,1.

repeat
if rs E~ return (CONTAINED)

let C~ be the next upper-bound approximation obtained. /* C j c C j-1. */
let r'~disj = { C 1 Ck}.
f o r i = l t o k d o

if Ci & C~ is unsatisfiable, discard Ci from ~ai,j.
else replace Ci in q~disj by Ci & C],.

340 D. Srivastava, Subsumption in constraint query languages

until C~ = Ct,.
if ~aisj = O return (CONTAINED)
else return (NOT_CONTAINED)

THEOREM 7.1

If the algorithm in [10] terminates, procedure incremental_containment
(C(Y'), X, ~ret) retums CONTAINED if and only if the convex polyhedron that is
the projection of C(Y) on the variables in X is contained in the union of the convex
polyhedra represented by %ret-

Proof
Let Cp be the projection of C(Y) on the variables in X, and let q~,:l be the

convex polyhedra corresponding to the previously computed p facts. Let C~, denote
the upper bound approximation to Cp at the ith stage of the algorithm of [10]. The
upper-bound approximations satisfy the following properties:

(I) Vi, c'i+l i vp c Cp, and

(2) Vi, Cp c C~,.

We prove the theorem by proving the following claims:

Claim 1: Consider a partition of C~ using ~m. Let i �9 %subs be the convex polyhedra
in the partition contained in %m, and %'ai,j be the convex polyhedra in the partition
disjoint with the polyhedra in ~,a. Then,

(1) each convex polyhedron in %iai, j is contained in the union of the convex
J polyhedra in % di,j, J < i, and

(2) each convex polyhedron in ~i,b, is contained in the union of the convex
s,,bs, J < i. polyhedra in J

Proof of claim 1: The proof of each part of claim 1 follows from the fact that
each C~, is contained in each C j , j < i, i.e. the successive approximations to C e are
better and better upper-bound approximations.

Cla im 2: Procedure incrementaLcontainment returns CONTAINED in the ith iteration
if and only if cip c ~rel.

Proof of claim 2: We prove this by induction on i. The base case follows trivially
from theorem 4.3. Consider the induction step and the ith iteration. Assume that
procedure incrementaLcontainment has not returned CONTAINED prior to iteration
i. I f procedure incremental_containment returns CONTAINED, it is b e c a u s e r = O.
Since i i -] ~s,,bs C~subs (from claim 1), it follows that C~ c ~ , e t .

D. Srivastava, Subsumption in constraint query languages 341

If procedure incremental_containment does not return CONTAINED, it is because
~ / s j ~ 9 . Thus, there must be some convex polyhedron C" in <~idi, j such that
C" & Cit, is satisfiable. Since each C" in <~i,j is disjoint from each of the convex
polyhedra in ~,,t, it follows that Cip cZ <~ rel. This completes the proof of claim 2.

Claim 3: If the algorithm in [10] terminates, procedure incremental_containment
retums CONTAINED if and only if Cp c %,,1.

Proof of claim 3: If procedure incremental_containment returns CONTAINED, it
returns it in some iteration i. From claim 2, we know that it must be the case that
cip c~r~t ' Since C~ is an upper-bound approximation to Cp, Cp c cip. This
completes the "only if" part of the proof. Since the algorithm in [10] for quantifier
elimination terminates, from the precondition of the claim it must terminate in some
iteration i. The proof of the "if" part now follows from claim 2.

This completes the proof of the theorem. []

Note that procedure incremental_containment uses linear_partition only once,
on the first upper-bound approximation, C~ to Cp. Subsequently, we only find the
intersection of each convex polyhedron in %aisj with the next (better) upper-bound
approximation. If in each iteration, ~,el was used to partition C~, the algorithm
would repeat a lot of work, and would not be truly incremental.

Procedure incremental_containment can be used as the basis of an incremental
procedure for bottom-up evaluation of CQL programs. We check whether C e is
contained in (~rel using the sequence of approximations C~ instead. If an upper-
bound approximation to Cp is contained in the union of the existing p facts, the p
fact represented by Cp will be eliminated. Hence, one does not have to continue
computing further upper-bound approximations, C~, +l, C~, +2 to C e. This can
improve the efficiency of evaluation, by preventing considerable wasted effort.

However, if C e is not contained in the union of the existing Cp facts, the
interleaved algorithm is more time consuming than just the serial application of
variable elimination and checking containment. One can modify procedure incremental_
containment to also check for non-containment using procedure straightforward_
check_containment and lower-bound approximations obtained using the algorithm
of [10]. Deciding when this interleaved algorithm is worthwhile depends on the
constraint facts generated, and is outside the scope of this paper.

8. Conclusions and future work

We considered the problem of subsumption in constraint query languages
with linear arithmetic constraints and showed the problem to be co-NP complete.
We presented a deterministic algorithm based on the divide and conquer strategy
to solve this problem. We identified a class of constraint query languages where
subsumption can be checked in polynomial time, and suggested polynomial-time

342 D. Srivastava, Subsumption in constraint query languages

heuristics to check that a constraint fact is not subsumed by a relation. We adapted
index structures for spatial data to efficiently index constraint facts in a CQL with
linear arithmetic constraints. To our knowledge, this is the first indexing scheme
described for this class of constraint facts. We also described an incremental scheme
for bottom-up evaluation of CQL programs that interleaves approximate computation
of constraint facts with an incremental check for subsumption.

There are several interesting directions of future research. One of the most
interesting directions is to determine the conditions best suited for each of the
containment algorithms described in this paper. Another direction is to identify
larger classes of constraint query languages where subsumption is in polynomial
time. Identifying efficient polynomial-time heuristics to check for non-subsumption
is also practically useful. Index structures for spatial data typically support a larger
class of operations than are required in the bottom-up evaluation of CQL programs.
A promising direction of research is to come up with more efficient indexing
strategies for constraint facts given the set of desired operations on these facts.

Acknowledgements

We would like to thank Olvi Mangasarian, Raghu Ramakrishnan and Peter
Stuckey for valuable discussions. We would also like to thank the referees for
providing several valuable suggestions to improve the content and presentation of
this paper.

References

[1] F. Bancilhon, Naive evaluation of recursively defined relations, in: On Knowledge Base Management
Systems - Integrating Database and AI Systems, ed. Brodie and Mylopoulos (Springer, 1985).

[2] M. B audinet, M. Niezette and P. Wolper, On the representation of infinite temporal data and queries,
in: Proc. lOth ACM Syrup. on Principles of Database Systems, Denver, CO (1991) pp. 280-290.

[3] I. Balbin and K. Ramamohanarao, A generalization of the differential approach to recursive query
evaluation, J. Logic. Progr. 4(3) (1987).

[4] J. Chomicki, Polynomial time query processing in temporal deductive databases, in: Proc. 9th ACM
Syrup. on Principles of Database Systems, Nashville, TN (1990) pp. 379-391.

[5] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness
(Freeman, 1979).

[6] A. Guttman, R-trees: A dynamic index structure for spatial searching, in: Proc. ACM SIGMOD Conf.
on Management of Data (1984) pp. 47-57.

[7] J. Jaffar and J.-L. Lassez, Constraint logic progranuning, in: Proc. 14th ACM POPL, Munich (1987)
pp. 111-119.

[8] J. Jaffar, S. Michaylov, P. Stuckey and R. Yap, The CLP(~) language and system, Technical Report,
IBM, T.J. Watson Research Center (1990).

[9] P.C. Kanellakis, G.M. Kuper and P.Z. Revesz, Constraint query languages, in: Proc. 9th ACM Syrup.
on Principles of Database Systems Nashville, TN (1990) pp. 299-313.

[10] C. Lassez and J.-L. Lassez, Quantifier elimination for conjunctions on linear constraints via a convex
hull algorithm, submitted.

D. Srivastava, Subsumption in constraint query languages 343

[11] J.-L. Lassez and M.J. Maher, On Fourier's algorithm for linear arithmetic constraints, Technical
Report, IBM, T.J. Watson Research Center (1988).

[12] R. Ramakrishnan, Magic templates: A spellbinding approach to logic programs, in: Proc. Int. Conf.
on Logic Programming, Seattle, Washington (1988) pp. 140-159.

[13] P.Z. Revesz, A closed form for Data.log queries with integer order, in: Int. Conf. onDatabase Theory,
France (1990) pp. 187-210.

[14] A. Schrijver, Theory of Linear and Integer Programming, Distr. Math. Optim. (Wiley-Interscienee,
1986).

[15] D. Srivastava and R. Ramakrishnan, Pushing constraint selections, in: Proc. 11th ACM Syrup. on
Principles of Database Systems, San Diego, CA (1992).

[16] T. Sellis, N. Roussopoulos and C. Faloutsos, The R+-tree: A dynamic index for multi-dimensional
objects, in: Proc. 13th Int. Conf. on Very Large Databases (1987) pp. 507-518.

