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Logic programming and reasoning with 
incomplete information 

Michael Gelfond 

Computer Science Department, University of  Texas at El Paso, El Paso, TX 79968, USA 

The purpose of this paper is to expand the syntax and semantics of logic programs 
and disjunctive databases to allow for the correct representation of incomplete infor- 
mation in the presence of multiple extensions. The language of logic programs with 
classical negation, epistemic disjunction, and negation by failure is further expanded 
by new modal operators K and M (where for the set of rules T and formula F, KF 
stands for "F is known to be true by a reasoner with a set of premises T" and MF 
means "F may be believed to be true" by the same reasoner). Sets of rules in the 
extended language will be called epistemic specifications. We will define the semantics 
of epistemic specifications (which expands the semantics of disjunctive databases from) 
and demonstrate their applicability to formalization of various forms of commonsense 
reasoning. In particular, we suggest a new formalization of the closed world assump- 
tion which seems to better correspond to the assumption's intuitive meaning. 

1. Introduction 

As was demonstrated in recent years, traditional logic programming 
language provides a powerful tool for knowledge representation. Its main non- 
monotonic  feature - negation as failure [5] - makes it possible to express many 
interesting types of  commonsense knowledge which are not  readily expressible in 
classical logic. Unlike classical logic, however, traditional logic programming 
does not allow a programmer to directly represent incomplete knowledge about  
the world. A consistent classical theory partitions the set of  sentences into three 
parts: those which are provable, those which are refutable, and those which are 
undecidable. A logic program partitions the set o f  ground queries into only two 
parts: A query is answered either yes or no. This happens because the syntax of  
logic programming does not  allow the representation of  disjunctive information 
and because the traditional declarative semantics of  logic programming automati-  
cally applies the closed worm assumption [30] to all predicates (i.e. each ground 
a tom that does not  follow from the facts included in the program is assumed to 
be false). Procedurally, the query evaluation methods of  logic programming give 
the answer no to every query that does not  succeed; they provide no counterpart  
for undecidable sentences, which represent the incompleteness of  information in 
classical axiomatic theories. 
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The first attempt to lift the syntactic limitation described above is probably 
due to Jack Minker. In [22] he considers positive disjunctive databases defined as 
collections of rules of the form 

A1 or . . .  orAn +-- B1,. . . ,Bm (1) 

where A's and B's are atoms. The type of incompleteness expressible in these data- 
bases is, however, rather limited since their semantics suggested in [22] implicitly 
assumes a form of closed world assumption. This work was generalized and/or 
modified by various authors (an overview can be found in [18, 26]) but most of 
the approaches still assume the closed world assumption and hence do not allow 
the representation of such simple forms of incompleteness as missing information 
in the database tables, null values, partial definitions, etc. 

The problem of lifting the closed world restriction of logic programming 
was recently addressed in [9] 1) where the authors consider "extended" logic 
programs, that contain classical (or strong) negation -~ in addition to negation as 
failure not. General (classical) logic programs provide negative information impli- 
citly, through closed-world reasoning; an extended program can include explicit 
negative information, as well as explicit closed-world assumptions for some of 
its predicates. In the language of extended programs, one can distinguish between 
a query which fails in the sense that it does not  succeed and a query which fails in 
the stronger sense that its negation succeeds. The semantics of extended logic 
programs is based on the notion of answer sets. This semantics views the program 
rules as constraints used by a reasoner associated with the program to build 
possible theories about the world. These theories (called answer sets, or belief 
sets) consist of literals and therefore are vivid in the sense of H. Levesque [16]. 
For extended programs without classical negation their answer sets coincide 
with stable models from [8]. 

In [9] we consider primarily well-defined extended logic programs, i.e. 
extended programs with unique consistent answer sets. The answer such a program 
returns to a ground query Q 2) is yes, no, or unknown,  depending on whether the 
answer set contains Q, -~Q, or neither. The existence of several answer sets indicates 
that the corresponding program P has several possible interpretations, i.e. it is 
possible for a rational reasoner to construct several theories satisfying P. Such a 
multiplicity becomes a norm rather than exception if the notion of extended logic 
program and its answer set semantics is expanded to that of extended disjunctive 
database [10] (see also [28]) - collections of rules of the form: 

A 1 or . . .  o r A  n +- B1,. . .  ,Bin, n o t C 1 , . . . ,  n o tCk  (2) 

1) A similar approach was independently developed and investigated in [29]. See also [15]. 
2) Here Q is a literal. In the next section we will consider more complicated queries. 
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where A's, B's, and C's are atomsp or their "classical" negations -,p. We will assume 
that rules with variables are used as shorthands for the sets of all their ground 
instantiations. (Notice the use of symbol or instead of classical V. The meaning of 
a connective or, called epistemic disjunction, is given by the semantics of disjunctive 
databases and differ from that of V. The meaning of a formula A V B is "A is true or 
B is true" while a ntle A or B+-- is interpreted epistemically and means "A is believed 
to be true or B is believed to be true.") Let A be the collection of answer sets of a 
disjunctive database II. We wilt say that the answer to a query Q is yes if every 
answer set from A contains Q, no if every answer set from A contains the comple- 
ment of Q, and unknown otherwise. (The last answer can be split into several more 
informative answers but above alternatives are sufficient for the purpose of this 
paper.) 

In [9] we argue that for well-defined programs the presence of two types of 
negation allows one to deal in a natural and convenient way with incomplete infor- 
mation. This, however, is no longer the case if the corresponding programs are not 
well-defined. The purpose o f  this paper is to expand the notions o f  extended logic pro- 
grams and disjunctive databases to allow for the correct representation o f  incomplete 
information in the presence o f  multiple belief sets. 

We will start by demonstrating the problem using a modification of the 
following example from [9]: 

Example 1 

Consider a collection of rules 

1. Eligible(x) +- HighGPA(x), 

2. Eligible(x) ~ Minority(x),FairGPA(x), 

3. -,Eligible(x) +-- -~FairGPA (x), -,HighGPA (x), 

4. Interview(x) ~---not Eligible(x), 
not ~Eligible(x) 

used by a certain college for awarding scholarships to its students. The first three 
rules are self explanatory (we assume that variable x ranges over a given set 
of students) while the fourth rule can be viewed as a formalization of the state- 
ment: 

(*) "The students whose eligibility is not determined by the first three rules 
should be interviewed by the scholarship committee." 

In its epistemic form the rule says: Interview(x) if neither Eligible(x) nor 
-,Eligible(x) is known. We assume that this program is to be used in conjunction 
with a database DB consisting of literals specifying values of the predicates 
Minority, HighGPA, FairGPA. Consider, for instance, DB consisting of the 
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following two facts about one of the students: 

5. FairGPA (ann) +-- 

6. -~HighGPA (ann) +-- 

(Notice that DB contains no information about the minority status of Ann.) Intui- 
tively it is easy to see that rules (1)-(6) allow us to conclude neither Eligible(ann) 
nor -,Eligible(ann), therefore eligibility of Ann for the scholarship is undetermined 
and, by rule (4), she must be interviewed. Formally this argument is reflected by the 
fact that program/'1 consisting of rules (1)-(6) has exactly one answer set: 

{ FairG PA ( ann ), -~ HighG PA (ann), In terview( ann ) }. 

The situation changes significantly if disjunctive information about students 
is allowed to be represented in the database. Suppose, for instance, that we need to 
augment rules (1)-(3) by the following information: 

(**) Mike's GPA is fair or high. 

The corresponding extended disjunctive database T2 consists of rules (1)-(3) aug- 
mented by the disjunction 

7. FairGPA(mike) or HighGPA(mike) +-- 

T2 has two answer sets: 

A1 = { HighGPA(mike), Eligible(mike)} 

and 

A2 = {FairGPA(mike) }, 

and therefore the reasoner modeled by 7"2 does not have enough information to 
establish Mike's eligibility for the scholarship (i.e. answer to Eligible(mike) is 
unknown). If we now expand this theory by (*) we expect the new theory T3 to be 
able to answer yes to a query Interview(Mike). It is easy to see however that if (*) 
is represented by (4) this goal is not achieved. The resulting theory T3 consisting 
of (1)-(4) and (7) has two answer sets 

A3 = { HighGPA(mike), Eligible(mike)}, 

A 4 = {FairGPA(mike), Interview(mike)}, 

and therefore the answer to query Interview(mike) is unknown. The reason of course 
is that (4) is too weak to represent (*). The informal argument we are trying to 
capture goes something like this: theory T 3 answers neither yes nor no to the query 
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Eligible(mike). Therefore, the answer to this question is undetermined, and, by (*), 
Mike should be interviewed. To formalize this argument our system should have a 
more powerful introspective ability (termed strong introspection in [7]) than the one 
captured by the notion of answer sets from [10]. Roughly speaking instead of 
looking at only one possible set of beliefs sanctioned by T it should be able to 
look at all such sets. [] 

Remark 

The situation will not change if (**) is represented by modeling disjunctions 
in the language of logic programs. For instance, replacing (7) by two rules 

FairGPA(Mike) ~-- not HighGPA(Mike), 

HighGPA(Mike) ~- not FairGPA(Mike) 

will not change answer sets of the program. [] 

In this paper we extend the syntax of disjunctive databases from [10] in 
two directions. Firstly, following [19], and [34] we allow the rules to contain other 
types of formulae in addition to literals. Secondly, and more importantly, we 
expand the language by modal operators K and M. Sets of rules in the extended 
language are called epistemic specifications. We will define the semantics of episte- 
mic specifications (which expands the semantics of disjunctive databases from 
[10]) and demonstrate their applicability to formalization of various forms of com- 
monsense reasoning. The notion of epistemic specification and some of the other 
material in this paper was first presented [7]. Our definitions are an improvement 
over those in [7]. 

2. Definitions 

Let us consider a language/20 consisting of predicate symbols p, q , . . . ,  object 
variables, function symbols, connectives &, -~, 3, and the modal operators K and M 
where KF stands for "F  is known to be true", and MF stands for "F  may be 
believed to be true." Terms and formulae of/20 will be defined in the usual way. 
Formulae of the form p(q , . . . ,  tn) where q , . . . ,  tn are terms are called atoms. By 
literals we will mean atoms p(tl , . . . ,  tn) and their strong negations ~p(q, . . . ,  tn). 
Literals not containing variables are called ground. The set of all ground atoms 
will be denoted by Atoms and the set of all ground literals will be denoted by 
Lit. 

Let us consider a collection A = {Ai} of sets of ground literals and a set W 
of such literals. (A can be thought of as a collection of possible belief sets of 
a reasoner while W represents his current (working) set of beliefs.) We will 
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inductively define the notion of truth (~) and falsity (7) of formulae ofs w.r.t, a 
pair M = (A, W). 

M ~ p ( q , . . . , t n )  iffp(t l , . . . , tn)  E W 

M ~ KF iff (A, Ak) ~ F for every A k from A 

M ~  

M ~  

M ~  

M ~  

M =  

M =  

M =  

M =  

M =  

M= 

MF iff (A, Ak) ~ F for s o m e  A k from A 

F&G iff M ~ F and M ~ G 

3xF iff there is a ground term t such that M ~ F(t) 

--,F iff M ~ F 

p ( q , . . . ,  tn) iff'-,P(tl,..., tn) E W 

KFi f fM ~ KF 

MF iff M ~ MF 

F&G iff M ~ F or M ~ G 

3xF iff for every ground term t, M ~ F(t) 

-~F iff M ~ F. 

In our further discussion we will expand language s by the connectives or 
and V defined as follows: 

(F or G) iff -~(-~F&-~G), 

VxF iff --,3x-~F. 

Formulae of the expanded language s not containing modal operators will be 
called objective formulae. Formulae constructed from KF and MF (where F is 
objective) and from logical connectives and quantifiers will be called subjective. 

It is easy to see that according to the definition above, the truth of subjective 
sentences does not depend on W while the truth of objective ones does not depend 
on A, i.e. we have a notion of objective formula being true (false) in W and subjec- 
tive formula being true (false) in A. We will denote the former by W ~ F (W ~ F) 
and the latter by A ~ F (A ~ F). 

The language and the satisfiability relation described above together with 
the notion of a rule from logic programming will be used to provide a specification 
of a reasoner with the desired beliefs. (This view on the role of logic in nonmono- 
tonic reasoning seems to be similar to the one advocated by H. Levesque in [17]). 
Formally, by an epistemic specification we will mean a collection of rules of the form 

F +--- G I , . . .  , am, not Gin+l,..., not Gg (3) 
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where F and Gm+l.. .  Gk are objective and G1.. .  Gm are subjective or objective 
formulae. 

Now we will define a collection A of sets of ground literals satisfying an 
epistemic specification T. We will call such a collection a world view of T and its 
elements belief sets of T. The precise definition of these notions will be given in 
several steps: 

Step 1. Let us first assume that T is an epistemic specification not containing 
modal operators and negation as failure. A set W of ground literals is called a belief 
set of such a specification iff W is a minimal set satisfying the following two 
conditions: 

1. For every rule F ~ G1,. . . ,  Gm from T such that W ~ G1 &. . .  &Gm we have 
w F. 

2. If W contains a pair of complementary literals then W = Lit. (This belief set 
will be called inconsistent.) 

Example 2 

Let T consist of the rules: 

1. p(a) or p(b) ~-. 

2. -,p(b) +-. 

3. 3x q(x) +--. 

It is easy to see that T has two belief sets: {p(a), -~p(b), q(a)}{p(a), --,p(b), q(b)} [] 

Step 2. Now let us assume that T is an epistemic specification not containing 
modal operators and let W be a set of literals in the language of T. By Tw we 
will denote the result of 

1. removing from T all the rules containing formulae of the form not G such that 
w o, 

2. removing from the rules in T all other occurrences of formulae of the form 
not G. 

Obviously, Tw contains neither modal operators nor negation by failure and there- 
for its belief sets are defined in step one. We will say that W is a belief set of T if W is 
a belief set of Tw. 

Example 3 

, 

2. 

Let T consist of the rules 

P(a) or P(b) ~ 3xQ(x), not Q(d). 

Q(c) +--. 
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It is easy to see that this specification has two beliefs sets {Q(c),P(a)} and 
{Q(c),P(b)}. [] 

Step 3. Finally, let T be an arbitrary epistemic specification, and A be a collection 
of sets of literals in its language. By TA we will denote the epistemic specification 
obtained from T by: 

1. removing from T all rules containing formulae of the form G such that G is 
subjective and A ~ G, 

2. removing from rules in T all other occurrences of subjective formulae. 

DEFINITION 1 

A set A will be called a world view of T if A is the collection of all belief sets of 
Ta. Elements of A will be called belief sets of T. The specification TA will be called 
the reduct of T w.r.t.A. [] 

Obviously, if T does not contain modal operators then it has a unique world 
view consisting of all belief sets of T. 

Example 4 

Let T consist of the rules 

1. Pa or Pb ,--. 

2. Pc +--. 

3. Qd+-. 

4. ~Px +- -~MPx. 

The specification T has three world views: 

A1 = {{ad, Pc, ea,-~Pb,-~Pd}}, 

Az = {{Qd, Pc, Pb, ~Pa, ~Pd}}, 

A 3 = {{Qd, Pa, Pc,~Pd}, {Qd, Pb, Pc,-Pd)}.  

Example 5 

. 

2. 

3. 

4. 

Let T consist of the rules 

Pa +--. 

Qb or Qc +-. 

Rx +- -~KQx. 

Sx +-- ~MQx. 

[] 
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The only world view of T is 

A = {{Pa, Ob, Ra, Rb, Rc, Sa}, {Pa, Qc, Ra, Rb, Rc, Sa}}. 

Example 6 

[] 

Example 7 

Let T = {p ~ -,Mq, q +-- -,Mp}. This specification is satisfied by two world 
views: A1 = {{q}} and A2 = {{p}}. [] 

DEFINITION 2 

We will say that a world view of epistemic specification T is consistent if it 
does not contain a belief set consisting of all literals. [] 

DEFINITION 3 

We will say that an epistemic specification is consistent if it has at least one 
consistent non-empty world view. 

Example 8 

Let T consist of rules p ~ and -~p +-. It is easy to see that specification T is 
inconsistent. Another inconsistent specification is given in example 6. [] 

DEFINITION 4 

Let T be an epistemic specification and A = {Ai} be a world view of T. A 
formula F is true in A (A ~ F) iff (A, Ai) ~ F for every Ai from A. [] 

DEFINITION 5 

Let T be an epistemic specification. A formula F is true in T (T ~ F) iff 
A ~ F for every world view A of T. 

This definition can be used to define the range of possible answers to a query 
Q (where Q is an arbitrary formulae of 12 without free variables). For the purpose of 
this paper we will limit ourselves to the simple case when answer to Q is yes if 
T ~ Q, no if T ~ -~Q, and unknown otherwise. 

Let T = {p ~ -,Kp}. It is easy to see that T does not have a world view. [] 
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The following simple proposition establishes the relationship between dis- 
junctive databases and epistemic specifications. 

PROPOSI~ON 1 

Let T be an epistemic specification consisting of rules 
F +--- GI , . . . ,  Gin, not Era+l, . . . ,  not Ek. 

Then 

. 

. 

of the form 

If F, G's and E's are atoms (i.e. T is a general logic program) then A is a world 
view Tiff  A is the set of all stable models of T. 

If G's, and E's are objective literals and F is a disjunction of objective literals 
(i.e. T is an extended disjunctive database) then A is a world view of T iffA is 
the set of all answer sets of T. [] 

Proof 

Follows immediately from the definition of world view of T and the fact that 
for any collection of sets of literals A and any general logic program (or an extended 
disjunctive database) T, TA = T. [] 

3. Applications 

In this section we will discuss several applications of epistemic specifications 
to formalization of commonsense reasoning. The emphasis will be on the expressive 
power of the language and not on the computational mechanisms necessary to 
design efficient query answering systems. Such mechanisms will be discussed 
elsewhere. 

3.1. REPRESENTING THE UNKNOWN 

We will start with demonstrating how statements of the form "unknown p" 
can be represented by strongly introspective formulae. We suggest to represent for- 
mulae of this form as a conjunction of statements -~Kp and -~K-~p. Let us go back to 
example 1 from the introduction to illustrate this point. 

Example 1 revisited 

Let us consider the theory consisting of rules (1)-(3) and (7) from example 1. 
To obtain the proper formalization of the statement 

(*) "The students whose eligibility is not determined by the first three rules 
should be interviewed by the scholarship committee" 
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We will just replace rule (4) by 

4'. Interview(x) ~ --,K Eligible(x), 
~ K  -,Eligible(x) 

which corresponds closely to the intuitive meaning of (*). It is easy to check that the 
theory T consisting of rules (1)-(3), 4 r, and (7) has the world view A = {A1,A2} 
where 

A 1 = {HighGPA(Mike) ,  Eligible(Mike), Interview(Mike)}, 

A2 = { FairGPA (Mike), Interview(Mike)}. 

Therefore T answers unknown to the query Eligible(Mike) and yes to the query 
Interview(Mike) which is the intended behavior of the system. 

3.2. CLOSED WORLD ASSUMPTION 

Now we will illustrate how epistemic specifications can be used to formalize 
the dosed world assumption of [30] in the presence of disjunctive information. This 
question has been extensively studied in the context of various nonmonotonic 
formalisms. [22] gives perhaps the most widely known form of the dosed 
world assumption for positive disjunctive databases called the generalized closed 
world assumption (GCWA). By now there are many useful generalizations of this 
assumption expanding the original idea. Most of them tend to interpret disjunction 
as exclusive. For instance, a positive disjunctive database {Pa or Pb ~ }  will answer 
"No"  to a query Pa & Pb. 3) [33] noticed that in some applications disjunctive data- 
bases with the semantics based on GCWA or its extensions may lead to unintuitive 
conclusions, and attempted to remedy the problem by weakening the corresponding 
assumptions. Some further work in this direction can be found in [3, 4], etc. In all 
these approaches however dosed world assumption remains a part of the seman- 
tics. We argue that to make disjunctive databases a viable language for representing 
knowledge in the presence of incomplete information the assumption should be 
removed from the semantics and made expressible as a statement of the language. 
This is especially clear when our language contains classical (strong) negation. 
Syntactically, general disjunctive databases not containing -1 are a special case of 
epistemic specification. Moreover, the "canonical" models are identical to their 
belief sets. In spite of this, there is a semantic difference between a set of rules 
viewed as a general database, and the same set of rules viewed as an epistemic 
specification. The absence of a ground atom Q in a "canonical" model of a general 
database indicates that Q is false, so that the correct answer to the query Q is no; the 

3) We follow the database tradition in using the term exclusive here. The term is somewhat misleading 
since a theory {Pa or Pb +--, Pa ~---, Pb +--}, which would be inconsistent if or were truly exclusive, is 
consistent in GCWA and other semantics. 
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absence of Q in the corresponding answer set of the same collection of rules treated 
as an extended program indicates that the answer to this query should be unknown. 

Example 9 

The epistemic specification II 

Pa or Pb 

Q a ~  

has two beliefs sets {Pa, Qa} and {Pb, Qa} neither of which contains Qb nor ~Qb. 
Therefore its answer to a query Qb is unknown. The same database viewed as a 
general disjunctive database answers no to Qb. To produce the same answer 
epistemic specification I-i should be extended by the closed world assumption for 
the predicate Q. [] 

The same phenomena in the context of general logic programs was discussed 
in [9], where it was shown that such an assumption could be expressed by the 
rule 

-~Qx +-- not Qx. (4) 

In the presence of multiple belief sets the situation is more complicated. In 
this section we will suggest a form of the closed world assumption which differs 
from the other proposals and will discuss the suitability of this assumption for 
knowledge representation. 

We will start with the following example: 

Example 10 [4] 

Suppose we are given the following information: 

(*) "If  a suspect is violent and is a psychopath then the suspect is extremely 
dangerous. This is not the case if the suspect is not violent or not a psychopath" 

which is used in conjunction with a database DB consisting of literals specifying 
values of the predicates violent and psychopath. Let us also assume that DB con- 
tains complete positive information about these predicates, i.e. ground atoms 
with predicate symbols violent and psychopath are assumed to be false if  there is 
no reason to suspect that they are true. This statement can be viewed as an informal 
description of Reiter's closed world assumption. 

The information from (*) can be easily expressed by three rules 

1. dangerous(x) +-- violent(x),psychopath(x), 
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2. --,dangerous(x) +-- --,violent(x), 

3. -~dangerous(x) ~ ~psychopath(x). 

Formalization of dosed world assumption is somewhat more problematic. 
The formalization given by formula (4) works nicely for well-defined extended 
programs but is not suitable in the general case. To see the problem let us apply 
this idea to our example. Closed world assumptions for predicates violent and 
psychopath will look as follows: 

4. ~violent(x) ~- not violent(x), 

5. -~psychopath(x) ~ not psychopath(x), 

Suppose that our DB contains the following information: 

6. violent(john) +-, 

7. violent(mike) .- ,  

8. psychopath(mike) ~---. 

It is easy to check that theory T1 consisting of clauses (1)-(8) is well-defined 
and has exactly one belief set A0: 

{violent(john), violent(mike), 

psychopath(mike), -~psychopath(john), 

-~dangerous(john), dangerous(mike) }, 

which properly reflects our intuition. The situation changes when disjunctive informa- 
tion is allowed in DB. Consider, for instance, a rule 

9. violent(sam) or psychopath(sam) +-- 

and a specification T2 consisting of clauses (1)-(5) and (9). Notice that (9) is not an 
exclusive disjunction and therefore T2 does not seem to sanction the conclusion 

10. ~dangerous(sam). 

But it is easy to see that T2 has two belief sets 

{violent(sam), ~psychopath (sam ) , ~dangerous( sam) } 

and 

{~violent(sam),psychopath(sam), ~dangerous(sam) } 

and therefore implies (10) which seems to be overly optimistic. The problem is 
apparently caused by an incorrect formalization of the closed world assumption 
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- the fact that not violent(sam) is true in one of the belief sets of T2 does not 
guarantee that, given T2, a rational reasoner does not have a reason to believe 
violent(sam). In the case of T2 such reason may be given by the existence of a belief 
set containing violent(sam). This consideration leads to a better representation of 
the closed world assumption for a predicate P which is provided by the rule 

+--  Me(x). (5) 

We will later prove that for well-defined programs both formalizations of the 
closed world assumption coincide. 

Let us now consider theory T3 obtained from T2 by replacing rules (4) and 
(5) by 

4'. ~violent(x) +" ~Mviolent(x), 
5'. -~psyehopath(x) +-- -~Mpsychopath(x). 

The resulting theory has three world views (see proposition 2 below): 

A1 = { {violent(sam) }, {psychopath(sam) }}, 

A2 = { {violent(sam),-~psychopath(sam), -~dangerous( sam) } }, 

A3 = { {-wiolent( sam) , psychopath(sam), -~dangerous( sam ) } }, 

T3 implies neither (I0) nor its negation and therefore answer to the query 
dangerous(sam) is unknown. 

The following proposition describes some basic properties of the operation of 
adding closed world assumption to the database. We will need the following 
notation and definitions. Let A = {Ai} be a collection of sets of ground literals. 
By SA we will denote the union of all literals from the elements of the set A, (i.e. 
SA = U{Ai}). Finally, ,A, = {-,et : Pt E Lit\SA}. We will say that A = {Ai} covers 
a set B of ground literals if for every literal l c B there is i such that I c Ai. 

Let II be a general disjunctive database and A = {Ai} be a collection of its 
belief sets. We will say that A is saturated if it contains every belief set of II covered 
by A. 

For instance, if II = {Pa or Pb +--, Pc or Pd ~ }  then the set A = {{Pa, Pc}} 
is saturated while the set A 0 = {{Pa, Pc}), {Pb, Pd}) is not (since it does not con- 
tain, say, {Pa, Pd) which is a belief set of 17 and is covered by A0.) Obviously, the 
collection of all belief sets of 1-i is saturated. 

17" will stand for the epistemic specification obtained from 1I by adding to it 
the set C of all the rules of the form 

~Px +- -~MPx, 

where P is a predicate symbol from the language of 17. 
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PROPOSITION 2 

Let II be a general disjunctive database. Then A* is a consistent world view 
of 1I* iff there is a saturated collection A of belief sets of 1I such that A * =  
{V: 3 W ( W  ~ A ,~ V =  W U A ) } .  [] 

To prove proposition 2 we will need the following lemmas. 
Let 1I be an extended disjunctive database. For any predicate P occurring in 

II, let/Y be a new predicate of the same arity. 1-I + will stand for the general dis- 
junctive database obtained from II by replacing all occurrences of negative literals 
--,P(...) by P '( . . . ) .  For any W C Lit, W + is obtained from W by replacing negative 
literals -~P(...) from W by P'( . . . ) .  

LEMMA 1 

A consistent set W c Lit is a belief set of an extended disjunctive database II 
iff W + is a belief set l'I +. [] 

Proof 

Proof of this lemma is similar to the proof of proposition 2 in [10] and will be 
left to the reader. [] 

Let W and/ , /be  sets of ground literals and A be a collection of sets of such 
literals. Then W N U will be denoted by W u and a set { W u : W E A} will be 
denoted by A u. 

LEMMA 2 

Let II 1 and II 2 be epistemic specifications whose rules do not contain quanti- 
tiers and let a and/3 be the sets of all ground literals in the languages of II 1 and II 2 
respectively. If a and/3 are disjoint then a collection A of sets of ground literals is a 
world view of 17i = II 1 u H a iff A n is a world view of IIi and A n is a world view of 
II z . [] 

Proof  

Let us first prove that if II is an extended disjunctive database then 

(*) W is a belief set of II iff W ~ and W ~ are belief sets of II 1 and II 2 respec- 
tively. 

(a) If II does not contain negation as failure not the statement is obviously 
true. 
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(b) Suppose now that  H = 1-11U II 2 is an arbitrary extended disjunctive 
database. Recall that  W is a belief set of  II iff it is a belief set of  the corresponding 
reduct  II w. Since a and /3  are disjoint, 

i i  W i l l  2 = U IIw~. 

Since IIrv does not  contain not, this together  with (a), implies (*). 
(c) N o w  let II be an arbitrary epistemic specification. A is a world view of  II 

iff A is equal to the collection of  all belief sets of  an extended disjunctive database 
HA. Obviously, 

H A = 1-11~ U Il2a. 

which, together with (b), implies the conclusion of  the lemma. [] 

LEMMA 3 

I f  an extended disjunctive database II is consistent then II has no inconsistent 
belief set. [] 

/'roof 

Let us assume that  Lit is a belief set of  II and  part i t ion the database II 
into two parts: II0 containing all rules of  II wi thout  occurrences of  negat ion as 
failure not and 1-11 containing the rest of  the rules. By definition, Lit is a belief 
set of  1-i iff it is a belief set of  IIL;r It is easy to see that  IXLi t = IX 0 and hence 
Lit must  be a belief set of  1-[0. To  see that  it is impossible notice that  since II is 
consistent it has a consistent belief set W C Lit which is obviously closed under  
the rules of  1-10 and smaller than Lit. Hence Lit cannot  be a belief set of  II which 
contradicts  our  assumption.  [] 

PROOF OF PROPOSITION 2 

Proof 

(a) Let A be a saturated collection of  belief sets of  II. For  every W E A we 
will define the set W* = W U A and show that  A* = { W* : W E A} is a world view 
of  1-I*. 

Let us first notice that  

(1) (II*)A* = HA* U Ca* 

Since II does not  contain -% definition of  the reduct  implies 

(2) (il*)A* U CA* -~- IlA U C A 
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and, by definitions of the reduct and of the sets C and ~, 

(s) u cA = I I  u 

This implies that A* is a world view of II* iff A* is the collection of all belief 
sets of II U J{. 

First let us demonstrate that every W* E A* is a belief set of II U .,~. It is easy 
to see that W* is consistent and therefore, by lemma 1, W* is a belief set of 1-[ U 
iff V = (W*) + is a belief set of a specification (II U A)+. Obviously, 

(4) (1-I U ,,xD+ = 1] U A+.  

Since languages of II and .A+ are disjoint, by lemma 2 and the definition of V 
we have that V is a belief set of II U A+, and therefore W* is a belief set of 1I U ~{. 
Observe also that, since W* is consistent, the above argument implies consistency of 
I I U ~ .  

Now let us assume that V is a belief set ofII  U J ,  and show that V E A*. From 
the consistency ofII  U A and lemma 3 we conclude that V is consistent. By virtue of 
lemma 1 V + is a belief set of II U A+. By lemma 2 we have that V = W U A where 
W is a belief set of II. Suppose that W ~ A. Since A is saturated this implies that W 
is not covered by A, i.e. there is some ground atom p(t) E W such that -,p(t) E ft. 
This implies that V is inconsistent which contradicts our assumptions. Therefore, 
V E A* which completes part (a) of the proof. [] 

(b) Assume that A* is a consistent world view of 1~* and show that there is a 
saturated collection A of belief sets of II such that A* = {W* : 3 W ( W  E A & W* = 
wux)}. 

Let A = { W  : 3 V ( V  E A* & W = V nAtoms)}.  Using an argument similar 
to the one above we can demonstrate that 

(5) W* E A* iff W* is a belief set of II tO ~{. 

First let us consider W* E A*. Since A* is consistent, so is W* and therefore, 
by lemma 2, there is W such that W is a belief set of II and W* = W U ,A. By con- 
struction of A we immediately conclude that W E A. 

Now consider W E A  and W * = W U ~ .  We will show that W*EA*.  
Observe, that A* is a world view of 11 tO ~ and hence, by construction of A and 
lemma 2 we have that any W E A is a belief set of II. This implies that W* is a belief 
set of II U ~,, and, by (5), W* E A*. 

Finally we will show that A is saturated. Let W0 be a belief set of II covered 
by A. From definition of j ,  we have that (W0)* = W0 tO a{ is consistent and, by 
lemma 2 (W0)* is a belief set of II U A. By (5) we have that (W0)* E A* and 
hence, by the construction of A, W E A. [] 
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COROLLARY1 

Let II be a general disjunctive database, B be a collection of all belief sets of 1-I 
and let 

B*= {W* : 3W(W W* = WUt )}. 

Then for any literal I, H* ~ l iff l is true in B*. [] 

Proof 

Follows immediately from proposition 2 and the fact that B is saturated. [] 

COROLLARY2 

Let II be a general disjunctive database. For any ground atomp(t),  II* ~ p(t) 
iff II ~ p(t). [] 

Proof 

Follows immediately from corollary 1. [] 

Proposition 2 implies that if a general disjunctive database II is consistent 
then so is II* and that no new positive information can be obtained by expanding 
II by the closed world assumption. This is no longer true if II contains classical nega- 
tion -,. Consider, for instance, a database 

II = {Q *---~P}. 

Obviously, 1-i does not entail Q while II* does. To get an example of a consis- 
tent database whose closure is inconsistent consider 

II = {Q ~ -~P,-~Q ~ } .  

It will be interesting to find broader classes of epistemic specifications 
satisfying conclusions of proposition 2. 

The following corollary demonstrates that for well-defined general logic 
programs our formalization of closed world assumption coincides with the one 
from [10]. More precisely, we have 

COROLLARY 3 

Let II be a consistent general logic program with a unique stable model. Let 
II* be as in proposition 2 and II** be an extended logic program obtained from II by 
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adding to it the rule - ,Px +--- not P x  for every predicate symbol P from the language 
of 1I. Then for every ground query Q in the language of II, Q is true (false) in 17 iff Q 
is true (false) in II** iff Q is true (false) in II*. [] 

/'roof 

The first equivalence follows from proposition 4 of[10], while the second is an 
immediate consequence of propositions 1 and 2 above. [] 

In the remainder of this section we will briefly discuss the relationship 
between our form of closed world assumption and other forms incorporated in 
the known semantics of disjunctive databases. First we will demonstrate that, in 
the presence of the dosed world assumption, epistemic semantics for positive dis- 
junctive databases coincides with the semantics from [22]. 

We will abuse the notation and use II to denote a positive disjunctive 
database as well as a first-order theory obtained from it by replacing every 
rule 

A 1 o r . . . o r A  n ~-- B1,. . . ,B m (6) 

by a formula 

BI & . . . & B m  D A 1 V . . .  VAn.  (7) 

Recall that Minker's generalized closed world assumption is defined as 
follows. (We will use the terminology from [12].) A disjunction D of ground atoms 
is called essential w.r.t, theory II ifII ~ D and no subdisjunction of D is entailed by 
11. A ground atom is called free for  negation in 11 if it does not belong to any clause 
essential in 17. Let 1~ be a set of negations of all ground atoms free for negation in II. 
Then 

6 c w A ( n )  = II u n .  

Let us denote the set of all Herbrand models of G C W A  by A/I. (We identify 
a Herbrand model with the set of ground atoms true in this model). For simplicity, 
we will limit ourself to positive ground queries of the form P(ct) V. . .  V e(cn) and 
their negations. To simplify the notation we will use the same letter Q to denote its 
epistemic counterpart e(cl )  o r . . .  or P(cn). 

According to [22], for every query Q, G C W A  answer to Q is yes if Q is true in 
all models from Ad, (which will be denoted by .M ~ Q), no if -~Q is true in all such 
models, and unknown otherwise. The closed worm answer to an (epistemic) query Q 
by a database II is the answer to Q by W. 
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PROPOSITION 3 

For any positive disjunctive database II and any query Q, the GCWA answer 
to Q coincides with the closed world answer to Q. [] 

/ ' roof 

First let us recall that, as was proved for a finite theory H in [22] and for an 
arbitrary II in [12], I] is equal to the set of negations of all ground atoms not 
belonging to any minimal Herbrand model of H. Obviously, M is a minimal 
model of H iff M is a belief set of II and hence, by proposition 2 a set B = 
{ W:  W = M tO 12} is a world view of H*. Recall, that by corollary 1, for any 
ground atom p(. . .) ,  II* ~p ( . . . )  iffp(. . .)  belongs to all belief sets of B. Consider 
two cases. 

(a) Q is a disjunction of atoms. Then it is easy to see that .M ~ Q iff Q is 
true in all minimal Herbrand models of II iff Q is true in all belief sets of B iff 
II* ~ Q. 

(b) Q is a conjunction of negative literals. Then the conclusion of the 
proposition follows from the fact that for any atom p(.. .) ,  .M ~-~p(...) iff 

e [] 

The following examples demonstrate differences between our semantics and 
several others. 

(a) Consider the semantics based on the extended closed world assumption 
(ECWA) [14, 35], and its extensions such as perfect models semantics [27], station- 
ary semantics [28], etc. 

Let H = {Pa or Pb *--}. The ECWA answer to a query Pa & Pb is no, while the 
closed world answer to Pa & Pb is unknown. 

(b) Consider possible world types of semantics [3, 4, 33] etc. Let 
17 = {PaorPb  ~ ,  Pa +---}. 

It is easy to see that the closed world answer to a query Pb is no, while the 
answer based on possible world semantics in unknown. 

3.3. UNIQUE NAME ASSUMPTION 

The unique name assumption [30] is normally used in the settings when one 
can assume that all the relevant information about the equality of individuals has 
been specified. In this case all pairs o f  individuals not specified as identical are 
assumed to be different. To express this assumption we will expand the language 
s by the binary predicate symbol E which stands for equality. 
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The following rules can be viewed as the definition of E: 

for every objective literal F. 

E(x,x) 

E(x,y) +-E(y,x), 

E(x,y) +--E(x,z),E(z,y), 

r(y) *---E(x,y),r(x), 

+ -  

These rules will be called predefined. From now on, we will only consider 
specifications containing these rules. 

Example 10 

Unique name assumption. 
Suppose that our language/~T contains the list of names such as mike, john, 

mary, etc., and assume that the specification 7"1 includes the following complete list 
of professors in a computer science department: 

1. P(mike, cs) ~ .  

2. P(john, cs) +--. 

To express the completeness of the list we will use the closed world 
assumption 

. "~P(x,y) +-- ~MP(x,y).  

The world view of the resulting theory consists of belief sets containing 

{ P(mike, cs), P(john, cs) } 

and the negations of all other atoms of the form 

where cl, c2 are other pairs of constants from ET. 
Let us now assume that Mike also goes by another name, say, Misha. This 

information can be coded in our system as 

4. E(mike, misha) ~---. 
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The belief sets of the new specification (1)-(4) can be obtained from the old 
belief sets by replacing ~E(misha, mike) and --,P(misha, cs) by E(misha, mike) and 
P(misha, cs) respectively. 

3.4. NORMATIVE STATEMENTS 

In this section we will discuss representation of statements of the form 

"P's are normally (typically, as a rule, etc.) Q's" 

(called normative statements). We suggest to code such statements by the rules of 
the form 

Q(x) ~ P(x),not AB(q, p,x),not-~Q(x), 

where AB is an abnormality predicate from [20] and q and p are object constants 
corresponding to predicate constants Q and P. This coding can be viewed as a 
combination of the representation of normative statements in circumscription 
with the method used in non-monotonic modal logics [20, 21]. It was also 
advocated in [25]. 

For illustration, let us consider database 7'1 from example 10 and expand it 
by the following information: 

"As a rule, professors in the computer science department have vax accounts. 
This rule is not applicable to Mike. He may or may not have an account." 

As suggested above, the first statement will be represented by the rule: 

5. A (x, vax) ~ e(x,  cs), not AB(a, p, x), not -~A (x, vax), 

where A(x, y) stands for "x has an account on y", while the second statement is 
translated as 

6. AB(a,p, mike) +--. 

It is easy to see that the resulting theory entails A(john, vax) but stays 
undecided about Mike (and Misha). The rule (6) allows us to block the application 
of the rule (5) without refuting its conclusion. Suppose now we have learned that 
"there is another exceptional professor (say Greg) who does not have a vax 
account." To reflect this knowledge we update the database by the rules 

7. P(greg, cs) ~ .  

8. ~A(greg, vax) ~ .  

Notice, that in this case, the application of the normative rule is blocked by 
the defeasible part of the premise. 
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The presence of normative statements can substantially complicate the 
process of translation from English to the language of epistemic specifications (as 
well as to other known logical formalisms). The following demonstrates some of 
the difficulties: Suppose we have learned that 

"every computer science professor has one of the vax or ibm accounts, but not 
both." 

In the absence of any other information about computer accounts this can be 
represented, say, by the rules: 

9. A(x, vax) or A(x, ibm) +- P(x, cs). 

10. -~A(x, ibm) +- A(x, vax). 

11. -~A(x, vax) +-- A(x, ibm). 

In conjunction with the results from example 10 this formalization produces 
the intuitive results and is also sufficiently simple. The situation changes however 
when we add the rules (5)-(8). We expect the resulting theory 7'3 to conclude, 
among other things, that John has a vax account. This is, however, not the case, 
since there are two belief sets in the world view of T3, one containing 
A(john,  vax) and another containing A(john,  ibm). The problem occurs because 
of the two contrary rules (5) and (11) which can both be applied to the same 
professor x, and no priority is given to the rule (5). The correct solution requires 
a finer analysis of the situation. First we should notice that the rule (5) should be 
used whenever possible and that the new information is only applicable to the profes- 
sors which are exceptions to (5). Two types of exceptions are possible: firstly, we 
may know that a professor x does not have a vax account. In this case we should 
instruct our database to believe that x has an ibm account. This is easily done by 
adding to it the rule: 

12. A(x, ibm) ~ -~A(x, vax), P(x, cs) 

Now the predicate A is undefined only for the professors known to be 
abnormal in some respects. For such professors we have no reason to prefer neither 
ibm or vax and this lack of preference is reflected by the rule 

13. A(x, vax) or A(x, ibm) ~ P(x, cs),ab(a,p,x) 

The next two rules insure that no computer science professor has both 
accounts 

14. -~A(x, vax) ~ P(x, cs), A(x, ibm) 
15. ~A(x, ibm) ~ P(x, cs),A(x, vax) 

It is easy to see that now the database from example 10 together with the rules 
(5)-(8) and (12)-(15) entails that John has a Vax account, Greg has one for the IBM 
and Mike (Misha) is still undecided (He has IBM's in one of the belief sets and 
VAX's in the other one). 
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It is too early to say if there is a uniform, formalizable strategy for translating 
disjunctive information of the type discussed above into epistemic specifications. It 
is clear, however, that developing methodology of such translation (similar to the 
development of programming methodologies in more conventional languages) is 
a necessary step in answering this question. 

3.5. EXTENDED QUERIES 

In the previous examples epistemic specifications were used to answer simple 
queries about their knowledge of the world. The next example demonstrates how 
they can answer more complicated queries. The following story was discussed (in 
a somewhat different context) in [2]. 

Ex ample  11 

Assume that we are preparing for a camping trip and we are deciding what 
equipment we are going to take on the trip. We would like to bring with us a stove 
and a blanket. However, we have learned from our previous trip that we have some 
restrictions. We know that we can take the stove only if we do not bring the tent and 
we can bring the blanket only if we do not bring the mat. We also know that to 
protect the blanket from the stove we need a plastic cover to cover the blanket. 
We need shelter from the rain, so we have to bring either the tent or the mat. The 
problem is to check if these restrictions allow us to take both the stove and the 
blanket. 

It is easy to see that the restrictions can be represented by the following 
epistemic specification T4: 

1. -~tent ~ stove. 

2. ~ m a t  ~ blanket.  

3. cover +- stove, blanket.  

4. tent or ma t  +--. 

Now let us consider the rules 

5. s tove +-. 

6. b lanket  +--. 

Obviously, taking both the stove and the blanket satisfies our restrictions iff 
database T4 expanded by the last two rules is consistent. It is easy to see that it is not 
the case, and therefore, we can not fully satisfy our wish. We can however take with 
us the tent and the blanket, the stove and the mat, etc. here rules (5) and (6) are used 
as a more sophisticated query which significantly uses the notion of inconsistent 
database. (We could, of course ask the database to give us a maximal subset of a 
given set of literals consistent with our restrictions.) 
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3.6. INTEGRITY CONSTRAINTS 

We will finish our discussion of applicability of strong introspection to 
formalization of commonsense reasoning by an example demonstrating the utility 
of strong introspection for expressing integrity constraints. 

Example 12 

Let us assume that we are given the specification for a departmental database 
T: 

(a) T should contain lists of professors, courses and teaching assignments for 
a CS department. Let us first assume that the department consists of professors 
named Sam and John and offers two courses: Pascal and Assembler, taught by 
Sam and John respectively. 

(b) The above lists contain all the relevant positive information about the 
department known to us at a time. 

(c) T must satisfy the following integrity constraint: Pascal is taught by at 
least one professor. 

Part (a) of the specification is formalized as follows: 

1. prof(sam) & prof(john) +--. 
2. class(pascal) & class(assembler) +-. 

3. teach(sam,pascal) & teach(john, assembler) ~ .  

Part (b) of the specification can be viewed as the Closed World Assumption 
and represented as 

4. -~P(x) +-- -~MP(x) 

for every predicate symbol P. 
Formalization of part (c) seems to be the less obvious task. The main 

difficulty is related to the lack of universally accepted interpretation of the meaning 
and the role of integrity constraints in knowledge representation. In this paper we 
will adopt the view on integrity constraints recently suggested by Reiter in [32]. 
According to Reiter an integrity constraint IC is a statement about the content of 
the knowledge base T (as opposed to IC being a statement about the world). T 
satisfies IC iff the answer to IC when viewed as a query to T is yes. A simple 
analysis of clause (c) from this standpoint shows that (c) can be interpreted in 
two different ways: 

IC1 : K 3p(prof(p) & teach(p,pascal)) 

or  

IC2: 3p K ( prof ( p) & teach( p, pascal ) ). 
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The first one says that the database knows that Pascal is taught by some 
professor (whose name can be unknown to the database), while the second one 
means that there is a person known to the database to be a professor teaching 
Pascal. It is easy to see that T1 consisting of rules (1)-(3) satisfies both integrity 
constraints. 

If, however, we consider 7'2 obtained from TI by replacing rule 2 by 

2 t. teach(sam,pascal) or teach(john,pascal) 

the situation changes. 
It is easy to check that T2 satisfies ICI but not IC2. This is, of course, the 

intended result since this time the database does not know what professor will teach 
Pascal but knows that Pascal will be taught. 

Remark 

Even though the approach to formalization of integrity constraint suggested in this 
paper is similar to the one of Reiter there are some important differences: Reiter 
views a knowledge base as a first-order theory and a query as a statement of 
Levesque's modal logic (called KFOPCE). In our case knowledge base and queries 
are both epistemic formulae while the underlying logic is nonmonotonic. [] 

4. Appendix 

In this section we will briefly discuss the relationship between epistemic 
specifications and some other general purpose nonmonotonic formalisms such as 
autoepistemic logics [21, 23, 24], and default logic of R. Reiter [31] and its extension 
[11]. By now we have a reasonably good understanding of the relationship between 
these formalisms and special classes of epistemic specifications. For the equivalence 
results about various subclasses see for instance [1, 6, 11]. It is more difficult to use 
these formalisms to model modal operators of epistemic specifications. Autoepi- 
stemic logics, which seem to be natural candidates for such modeling, apparently 
do not work. There are several important differences between them and epistemic 
specifications two of which are probably most important. First, the language of 
autoepistemic logic is a simple extension of the language of propositional calculus 
with its standard set of classical connectives &, A, D, --, while epistemic speci- 
fications use different set of connectives. 

Second, even though epistemic statement Kp as well as its autoepistemic 
counterpart Lp are both translated in English as "know (or believe) p" they refer 
to different knowing abilities of a reasoning agent. The former has strong (or 
global) power of introspection and concludes Kp by simultaneously looking at a 
whole collection of possible belief sets corresponding to his set of premises T while 
the latter is only capable of looking at one of such sets at a time. His conclusion 
about the truth of Lp is local and based on the set of statements he currently believes 
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in. This  makes  it difficult to  express epistemic c losed wor ld  a s sumpt ion  discussed in 
this pape r  in au toepis temic  logic. Similar p rob l e m arises when  defaul t  logic is used  
for  the same purpose .  A m o r e  detai led discussion o f  this (as well as some ideas a b o u t  
compu t ing  wor ld  views o f  epistemic specifications) can  be found  [13]. 
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