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Abstract. The paper deals with the problem ofpreassigning the shape for bodies of 
constant width. In particular, the free choice of boundary points for sets of constant 
width is discussed. 

1. Introduction 

Many problems concerning bodies of constant width are inspired 
by the famous Borsuk-conjecture stating, that every compact subset of 
E d is the union of at most d + 1 sets of smaller diameter (of. [2]). It is 
well-known that every compact subset C of  diameter c is contained in a 
convex body K of  constant width c (cf. [1]), and so it is sufficient to 
prove the conjecture for sets of  constant width. 

Indeed, much more information on the properties of Kis available, 
namely, there exists a body K with no additional singularities to those 
of  C. This has independently been proved in [3] and [5], thereby 
answering a former question of DANZER and GR~NBAUM (cf. [4]). In 
this paper we shall refer to the results of [5], since they also include 
statements on certain symmetry properties of K. 

Before posing the problems of this paper and stating the main 
results we introduce some notations. Throughout  the whole paper the 
underlying space will be the Euclidean space Ea. For two different 
points x and y in n :a let ~y ,  x y and [x y] denote the line through x and 
y, the ray issuing from x and passing through y and the segment 
joining x and y, respectively. For  x in Ea and r > 0 let B (x, r) be the 
(closed) Euclidean ball with center x and radius r. For each boundary 
point x of a compact set C of diameter c ( > 0) we define S (x, C) : = 
: -- C n bd B (x, c), and in case S (x, C) r ~ also 

Sing (x, C): = cony ( U 2~) c~ bd B (x, c). 
yeS(x, C) 
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Note  that each body K of  constant  width c containing C also contains 
the sets Sing (x, C). If  x and y are in C and Ix - Y l = c, we call the 
segment joining x and y a c-chord of  C with ends x andy. As usual we 
call a boundary  point x of  a convex body  regular, if and only if the 
body is supported at x by exactly one hyperplane. Otherwise, x is a 
singular boundary  point. Note  that the word "singular" has been used 
in a slightly different sense in [5]. 

The following theorem was proved in [5]. 

Theorem 1: Let C be a compact, convex subset of  ~_d of  diameter 
c ( > 0). Then C can be embedded into a convex body K of constant width 
c with the following properties. 

(a) Each point in C ~ bd K is an end of  a c-chord of  C. 

(b) The symmetry group of  C is contained in that of  K. 

(c) Each singular boundary point x of  K is a singular boundary point 
of  C (relative to the affine hull aft(C) of  C), for which the set of  
antipodes in K is the spherical convex hull of  the antipodes in C, that is 
S (x, K) = Sing (x, C). 

The present paper deals with a problem raised by D. G. LARMAr~ at 
the Oberwolfach symposium on convexity in July 1982. It  concerns the 
free choice of  boundary  points for sets of  constant width. Therefore, it 
fits in the more general problem ofpreassigning the shape for bodies of  
constant  width. The exact formulat ion of  the general problem as well 
as its solution are contained in the next section. 

2. Preassigning the Boundary 

Given a convex body L of  diameter 2 and a compact  subset C of  L 
with diameter c, c < 2, we may ask whether there exists a convex body 
K of  constant  width c such that C c K c L and C ~ bd L = K n bd L. 
The latter property would of  course imply that  we can arbitrarily 
preassign any compact  subset of  bd L with diameter c for the set of  
contact  points of  bd L with a suitable body K of  constant  width c 
contained in L. Since we wish to prove a result for all c sufficiently 
close to 2, the body L has to be of  constant  width 2, which we assume 
from now on. An affirmative answer to the problem for the particular 
case L is the circumscribed ball of  C has been given in [8] (compare also 
[6] and [7]). We shall generalize the result to a larger class of  sets L and 
C, also requiring additional properties for K such as symmetry and 
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regularity properties. In particular we shall prove the following 
theorem and its corollary. 

Theorem 2: Let  L be a body o f  constan( width 2. Assume that a ball o f  
radius r > 0 slides freely in L, that is, for  each x in b d L  there exists a 
ball B o f  radius r such that x ~ B c L. Let  (1 ~<) 2 - r < c < 2 and C be 
a compact, convex subset o f  L with diameter c. Then there exists a body 
K o f  constant width c such that 

(a) C c  K c  L a n d K c ~ b d L = C n b d L .  

(b) Each point in (C c~ bd K) \ bd L is at the end o f  a c-chord o f  C. 

(c) Each common symmetry o f  C and L is a symmetry o f  K. 

(d) Each singular boundary point x o f  K is a singular boundary 
point o f  C (relative to aft(C))  and, i f  x ~ K \  b d L ,  then S ( x , K ) =  
= Sing (x, C). 

Corollary: Let  L be as in theorem 2, 2 - r < c < 2, and C be a 
compact subset o f  bd L with diameter c. Then there exists a body K o f  
constant width c such that 

(a) C c K c L and K c~ bd L = C. 

(b) Each common symmetry o f  C and L is a symmetry o f  K. 

(c) Each singular boundary point x o f  K lies in C and is a singular 
boundary point o f  the convex hull o f  C (relative to aft(C)) .  

A careful inspection of  the proofs will show that both results also 
hold for 2 - r = c, if each ball of  radius r contained in L touches bd L 
in at most one point. But nevertheless, the results will not  hold with 
weaker assumptions on L and c, that is, theorem 2 is in a sense best 
possible, In fact, we shall prove the following reverse statement to 
theorem 2. 

Theorem 3: Let  L be a set o f  constant width 2 and 1 <<. c < 2. Each 
subset C o f  diameter c is embeddable into a body K o f  constant width c 
contained in L (and with K c~ bd L = C ~ bd L )  , i f  and only i f  a ball o f  
radius r = 2 - c slides freely in L (with exactly one point o f  contact with 
bd L) .  

The following characterization of  the ball is an immediate 
consequence of  theorem 3. 

Corollary" The unit ball is the only set L o f  diameter 2, for which each 
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subset o f  diameter c, c >~ 1., is embeddable into a body K o f  constant 
width c contained in L. 

We turn to the proofs  of  the above-ment ioned results. The 
assumptions  on L will imply that  L is a Minkowski -sum of  two sets. 

Lemma: Let a ball o f  radius r ( >  0) slide freely in the body L o f  
constant width 2. Define L r : =  n B(x ,2  - r). For x in b d L  and its 

x~bdL 
respective antipode x '  in L let p (x) denote the unique point o f  [x x'] at 
distance 2 - r f rom x. Then we have 

(a) Lr is a body o f  constant width 2 - 2 r  with boundary 
{p(x) l x e b d L } .  

(b) L = Lr + B (0, r), the Minkowski-sum o f  the two sets. 

(c) I f  r is maximal with respect to L, then no ball o f  positive radius 
slides freely in Lr. 

(d) I f  K is a body o f  constant width 2 - r with L r c K, then K ~ L. 
Furthermore, x ~ K n bd L implies p (x) ~ bd K. 

Proof" If  x and x '  are ant ipodes in L, then 

Lr = B(x ,  2 - r) n B ( x ' , 2  - r), 

and so the width of  Lr in the direction determined by x x '  is at most  
2 - 2 r. On the other hand  p (x) and p (x') are in Lr. Indeed, by the 
assumptions  on L, x ' e B ( p ( x ) , r )  c L and x ~ B ( p ( x ' ) , r )  ~ L. 
Since d iam(L)  = 2, this implies ]p(x) - z[, [p(x)  - z[ <. 2 - r for 
each z in bd L, hence p (x), p (x') e Lr. Consequently,  Lr is of  constant  
width  2 -  2r.  Fur thermore ,  if z ~ b d L r ,  there is a point  x in b d L  
with [ z -  x[ = 2 -  r, for which its respective support ing plane to 
L is or thogonal  to Y2. Hence, z = p (x) as required. Tha t  proves 
par t  (a). 

The inclusion Lr + B (0, r) c L is obvious. Conversely, if x and x '  
are ant ipodes  in L, then x ~ B ( p ( x ' ) , r ) ,  hence x ~ L r +  B(0, r) as 
required. Part  (c) is an immediate  consequence of  (b), and so we are 
left with the p roo f  of  (d). 

Now,  let K be given. Since a body of  constant  width 2 - r is the 
intersection of  all balls of  radius 2 - r containing it (cf. [1]), we 
obviously have 

K c  n B ( y , 2 - r ) ,  
y~bdLr 
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but the right hand side is just L. If  x e bd L n K, the plane at x 

orthogonal  to xp (x) supports K. Its parallel supporting plane of  K at 
distance 2 - r contains p (x), and so p (x) ~ bd K. 

Proof of theorem 2: We shall apply theorem 1 to a suitable set C2 of  
diameter c. Note that the assumptions on L imply in particular, that a 
ball of  radius 2 - c slides freely in L. 

Define C1.'= conv(C  u L2_c) with L2_ c as in the lemma. Since 
[ x - y l  ~< c for each x in L and y in L2 c, C1 is a convex body of  
diameter c. Each e-chord of  C1 has either both ends in C or one in C 
and the other in L2-c. Also C1 n bd L = C c~ bd L. 

Define the non-negative functions a: L ~ ~ and e: C1 ~ ~ by 

~(x) :=  �89 sup{tlB(x,t) c L} 
and 

9 (x): = �89 (c - sup {lY - x[ ]y ~ C1})" ~ (x). 

Then, 9 vanishes at x, if and only i fx  is :in C cn bd L or is at the end of  a 
e-chord in G -  An easy calculation shows 

e(xl) + Ix1 -x21 + o(x2) e (x ,x2eG) (*) 

with equality, if and only if ]Xl - x2] = c. Let 

c2: = conv ( U B(x, (x))). 
x~C1 

By (*), C2 is a convex body of  diameter c, for which each c-chord has its 
ends in C~, hence either both in C or one in C and the other in L2_c. Let 
x be at the end of  a c-chord of  C2 and consider S (x, C2). 

Assume XELz_e,  hence x = p ( z )  for some z in bdL.  By the 
assumptions on L, there is a ball B of  radius r > 2 -  c such that 
B(x, 2 -  c ) c  B c L. With respect to d i a m ( L ) =  2, this implies 
that z is the only point in L with I z - x] = c. Consequently, as z 
is at the end of  a c-chord of  C2, z :is in C rn bd L. In particular, 
S (x, (72) = {z} = Sing (x, C2). 

If  x E C m int (L), the above considerations show that no antipode 
of  x in C2 can lie in L2_c. Hence S (x, C2) = S (x, C). 

For  x in C rn bd L the set of  antipodes may  increase, even in such a 
way that Sing (x, C) _~ Sing (x, C2), since p (x) ~ S (x, (72) but  possibly 
p (x) r Sing (x, C). But this would of  course imply that x is a singular 
boundary  point of  C. 

Next we apply theorem 1 to C2 yielding a body Kofeons t an t  width 
c with (72 ~ K and the properties of  theorem 1. Since L2 c c C2, our 
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lemma shows K c L. Also x e K c~ bd L implies p (x) e bd K and, by the 
above considerations, p (x) is at the end of  a c-chord of  C2 and x is in 
C c~ bd L. This proves part  (a) of  theorem 2. 

By theorem 1 (a), each point x in (C n bd K) \ bd L is at the end of  
a c-chord of  C2. As x is an interior point of  L, no antipode o f x  in L can 
lie in L2_ c. That  proves part  (b) of  theorem 2. Part  (c) is clear from the 
construction. 

By theorem 1 (c) each singular boundary  point x of  Kis  a singular 
boundary  point of  C2 such that S ( x , K ) =  Sing(x, C2). Since 
Sing (x, C2) is not  a single point, this implies x CL2 c, hence x e C. 
Since C c K, x must  be a singular boundary  point of  C. If  x r bd L, 
then S (x, C) = S (x, Cz) and therefore Sing (x, C) = Sing (x, C2) = 
= S (x, K) as required. But that completes the proof. 

Proof of  the corollary: We apply theorem 2 to C': = c o n v  (C). Note 
that  C' n bd L = C n bd L and that each c-chord of  C' has its ends 
in C. 

Let K have the properties of  theoree 2. Obviously, (a) and (b) of  the 
corollary hold. By (b) and (d) of  theorem 2, each singular boundary  
point x of  K is one of  C' and lies in bd L, hence in C as required. 

Proof o f  theorem 3: From theorem 2 and the above remarks we 
know that the regularity assumptions on L are sufficient for each 
subset C of  diameter c to be embeddable into a suitable body K of  
constant  width c. Now, let us assume conversely, that each subset C is 
contained in a body K with the required properties. 

First we deduce that  all boundary  points of  L are regular. In fact, 
each singular x in bd L has more than one antipode in L. Hence, there 
are two antipodes Yl and Y2 in Sing (x, L) with [Yl - Y2[ ~< c and a point 
z in conv (x, Yl, Y2) with [Yl - z l = [Y2 - z [  -=- C. By the assumptions on 
r the set C: = c o n v  (z, Yl, Y2) is embeddable into a set K of  constant 
width c contained in L. But this is in fact impossible, since L does not  
contain all arcs with radius c and ends y~ and y2, which are nevertheless 
contained in K. 

Let r denote the greatest real number,  for which a ball or radius r 
slides freely in L. The case r = 0 is a priori not  excluded. However we 
shall prove that r >~ 2 - c > 0. Let us assume to the contrary that 
r < 2 - c, that is c < 2 - r. 

By the definition of  r, there is an x in bd L, for which no ball B of  
radius t with t > r and x e B c L exists. However,  x e B (y, r) c L for a 
suitable y in L (if r = 0, then y = x). Denote  the unique antipode of  x 
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in L by x '  (compare figure 1). Since c < 2 - r, there is an interior point  
z of  [y x'] with Iz - x'l > c. By the choice of  x, the maximum r Z of  the 
radii t with B (z, t) ~ L satisfies rz < I x - z l < 2 - c. By the definition 
of  rz, the ball B (z, r~) touches bd L in at least one point u. Let u' be its 
antipode in L, hence u'eg2". Then we have 

l u ' -  zl = 2 -  rz > 2 -  I x -  zt = f z -  x'f. 

Now,  two cases are possible. 
If  Ix' - u'l < c, then there exist u" in [u 'x ']  and z' in the relative 

interior of  conv (u ', x', z) such that ] z ' -  u"t = I z ' -  x'J = c. By our 
assumptions on c, the set C : =  conv(u",x ' ,z ' )  of  diameter c is 
embeddable into a body K of  constant  width c contained in L. 
However,  this is impossible, since on the one hand the hyperplane in x '  

or thogonal  to x x '  supports  L, but  on the other hand its respective 
halfspace does not  contain all arcs with radius c and ends u" and x', 
belonging however to K. 

Similar arguments apply for the case Ix' - u'[ >t c. If  we choose u"  
in [x'u'] such that I x ' - u " l  = c and define C : =  [u"x'], then a 
contradiction arises as in the former case. 

~77 j 

Figure 1 
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The considerations shows that  r ~> 2 -  c. Now, let us assume 
additionally that  each subset C is even embeddable into a body K 
satisfying K n bd L = C c~ bd L. Suppose to the contrary that  there is 
a ball B (x, 2 - c) with center x and radius 2 - c touching bd L in two 
points y and z. Let y '  and z '  respectively denote their antipodes. Since 
L is a body of  constant  width 2, its boundary  contains the arc s of  
radius c with ends y '  and z'  contained in a f f ( x , y , z ) .  If  we define 
C: = c o n v ( x , y ' , z ' ) ,  then each body K containing C also contains s 
and therefore K n b d L  ~ C n bdL.  So, each ball of  radius 2 -  c 
contained in L touches bd L in at most  one point. That  completes 
the p roof  o f  theorem 3. 

The above-mentioned results do not take into consideration the 
particular shape a given set C may have. So, one might think about  
more individual assumptions on C and L implying the existence of  a 
suitable body K. However, an answer to this general problem would 
require more powerful methods. 
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