LITERATURE CITED

1.  Yu. V. Shakhnazarov, Metalloved. Term, Obrab., No. 11 (1966).

2. G. P. Guslyakova, G. N. Pendikova, and L. D. Sokolov, Izv. Akad. Nauk SSSR, Metally, No. 6 (1972).

3. Yu. N. Goikhenberg, M. M, Shteinberg, et al., in: Reliability and Endurance of Metallic Materials for
Mechanical Engineering and Apparatus Building [in Russian], Leningrad (1972).

4. A, N. Chukhleb, Metalloved, Term. Obrab, No. 9 (1959).

5. L. A, Gindin, I. M. Neklyudov, et al., Probl. Prochn., No. 11 (1971).

6. I. A. Gindin, Ya. D. Starodubov, and M. P, Starolat, Zavod. Lab., No. 4 (1971).

7. V. Ya, Il'ichev, L. V. Skibina, and V. M. Startsev, Probl. Prochn,, No. 8 (1971).

8. A. P. Gulyaev and I. V, Cherenko, Metalloved. Term. Obrab., No. 5 (1957).

9. 8. P. Pati and M, Cohen, Acta Metall,, No. 17 (1969).

10. V. Pagavan and A, R. Entwisle, J. Iron Steel Inst,, Spec. Rep. No. 93 (1965).

MECHANICAL PROPERTIES OF MATERIALS STUDIED
FROM KINETIC DIAGRAMS OF LOAD VERSUS DEPTH
OF IMPRESSION DURING MICROIMPRESSION

S. I. Bulychev, V. P. Alekhin, UDC 620.178.15
M. Kh. Shorshorov, and A. P. Ternovskii

The mechanical properties of the technological layers formed near the contact surfaces of different ma-
terials considerably affect the durability of constructions manufactured from composite materials such as bi-
metals prepared by soldering or welding, Owing to the brittleness and the small sizes of the layers, their prop-
erties usually cannot be determined by utilization of the normal procedures. The method of microimpression
by an indentor and plotting of the results of the tests along two coordinates, viz,, plotting the load on the in-
dentor along the abscissas and the depth of the impression along the ordinates [1] is one of the few methods
permitting the mechanical properties of such materials to be estimated, For "uniform" materials this method
should be considered a highly efficient micromechanical test procedure.

TABLE 1, Some Physicomechanical Properties of the Materials Examined

HV, kgf/ = 10— 3 10—3
i R N L R I [ W e R
1 |30KhGSA 79 250 250 1,07 20,5 21,0 5 20
2 [30KhGSA 130 365 446 1,10 20,0 21,6 2 9
3 |Steelds : 90 365 246 L1 19,5 19,5 4 20
4 |L62 46 250 133 1,09 9,5 9,8 0 12
5 |D18T 60 250 161 1,06 7.8 8,02 2 6
¢ |Tialloy — 250 247 1,085 — 13 9 9,5
7 |Glass — 90 625 0,91 — 7,37 - 12
g | FesAly - 200 915 0,91 — 13 0 1,5
g | FeAlg - 300 718 0,88 — 11,0 0 1,5

Note. 1.Pmax denotes the load on the indentor at the moment of unloading; HV and H are the hardnesses calculated
from the diagonal and the depth of the impression of Bikkers pyramid; E and Eq are the values of Young's modulus
calculated from the stretching and impression tests. 2. Each value is the result of five to ten impression tests carried
out in an equipment analogous to that described in (3, 4].
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Fig. 1. Diagram of impression by an identor and some parameters,

Fig. 2. Plots of m and n vs the relative pressure in the center of the impression
(2) and the relative load on the indentor (b, c): 1) 30KhGSA steel, op = 79 kgf
/mm?, Pray =250 gf; 2) 30KhGSA steel, » Op =130 kgf/mm?, P ax =365 gf;

3) glass, Pyax = 90 gf.

One of the important characteristics of the material — the Young's modulus — can be found from the un-
loading branch of the impression diagram (Fig. 1), If the load is relieved after the relaxation processes
under the impression have come to an end, the initial stage of unloading is a purely elastic process. In
this stage loading and unloading are reversible processes and can be described by the theory of elasticity.
The sample can be considered to be an elastic semispace if its linear sizes exceed the diameter (diagonal)
of the impression by a factor of about ten or more., Then during elastic impression of a rigid cylinder
with a plane end face of diameter d (when the pressure on the contour of the area of contact tends to in-
finity) the load P distributed over the surface of the impression is related to the vertical displacement z
of the center of the impression by the relationship (2]

P=2, (1)

e

where e = (L—u)/E (1 and E are Poisson's coefficient and Young's modulus of the semispace). For elastic
impression of a spherical punch of radius R the formula reads

_4 VR _an
P-—a- 7 (2a)

The formula for a cone with the apex angle 2¢ reads:

=2 ! 3
P-—;.WZZ. ()

We shall determine the derivatives dP/dz of these functions. Since in the first function d = const.,
it follows that dP/dz =d/e.
For function (2a) dP/dz = (2/e)V Rz. Since

£ (2)
6Pe ’

and z = (3/2)(Pe/d), only two of the parameters P, z, d, and R are independent; we may take, e.g., P and
d as independent parameters, After substitution we get dP /dz = d/e.

R=
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Fig, 3. Monogram suited for calcu-
lating the microhardness from the
function n = {(P),

For the third function (second limiting case where the pressure in the center of the impression tends
to infinity) dP/dz = (4/7) - (z/ctg pe). On the other hand [5], z = (7 /4)dctg ¢. After substitution we find
the same value dP/dz = d/e,

Consequently, the finding that the slope of the initial unloading branch of the loading—impression
diagram is independent of the distribution of the pressure under the impression is an important practical
property of the curve of elastic unloading of a plastic impression, We shall express the linear size d of
the impression by the area F of its projection:

_d__ 2 V¥F
dP/dz-_-e——T;- —. (4)
Taking into account the elastic properties of the indentor we find e = ¢; + e, = (1-p?/E + (l—u:'l)/Ea,
where 15 and E4 denote the elastic constants of the indentor, Solving Eq. (4) with respect to E, we derive

—— VF d2/dP — ¢y )
Assuming p = 0.3, we determine E to an accuracy of +3%, if 0.25 = u =< 0.35,

In order to apply the proposed procedure fo a square impression in a plane, we compare the values
of z for a round (zp)anda square impression (z) at identical areas F. In the case of a uniform pressure
on round and square areas, respectively, we find [2]

_2(—py P

ZO— —_E——' VF 1]
. = 2= VZ4+1 P
o ak Y2—1 VF'

It is easily shown that zg =~ 1.0056 z3. Consequently, the processes and equations which describe them
are almost identical, Since the actual distribution of the pressure under the indentor is not uniform but
increases upon passing towards the center of the impression and, owing to the decreasing difference be-
tween the moments of the forces with respect to the impression axis, the equations differ still less, it can
be concluded that Egs. (4}, (5} are applicable both to a round and to a square impression.

An experimental check of the procedure proposed showed that Young's modulus E determined from
stretching tests agrees fairly well with Young's modulus Eq determined from impression tests. It should
be noted that the value Eq is slightly higher than E for two theoretical reasons. If F denotes the area of
the impression and Fg denotes the area of the contact between the indentor and the sample, the latter area
slightly exceeds the area of the impression, owing to the elastic contact at the contour of the impression.
Therefore, Eq > E in formula (5). The presence of a hydrostatic pressure which raises Young's modulus
is typical of the stressed state under the indentor. According to data of [5, 6] this rise equals 50, when
the pressure is increased by 0.01 E. From this it follows that Eq = E(1 + k(HV /E)). According to tabu-
lated data, k =~2-0,

The capability of the material to relax the stresses in the course of the time 6H was calculated from
the formula
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where Hy = c(P/ h%) (see Fig. 1) denotes the hardness found from the loading branch; H; is the bardness at
the moment t (the rise of the loading being stopped at t = 0) after which the hardness practically did not
change further, The time t for the various materials varied from a few seconds to several minutes. The
slope of the arc which corresponds to the time lag is not correlated to the properties of the material (the
latter are determined by the parameter 5H) and characterizes the rigidity of the spring in the equipment
with which the forces are measured.

Table 1 contains several properties of the two metal alloys Fe,Al; and FeAl;, which have been hardly
examined so far; since they are brittle, they cannot be studied by means of the usual methods.

Relationships (1)-(3) derived above permit a general exponential function P = amz™ to be introduced
for describing the actual elastic process of unloading; in this function 1 = m = 2, as follows from the two
limiting cases, the value of m characterizing the distribution of the pressure under the indentor (2, 7]. If
the pressure in the center of the impression and the mean pressure are denoted by q and qp, respectively,
q/qF = 0.5 at m =1 (for this case we take z =1); at m =1.,5,q4f = 1.5, z = 1.5; at m = 2, q/qF — «,
z=2;at q=qp,z= 4/w. The plot of g/qF = f(m) in Fig. 2a was constructed from these data.

To determine the value of m in any point of the unloading curve characterized by the parameters P,
z, and dP/dz, we have two equations P = amz™ and dP/dz = mamzm'i. Solving the first equation with
respect to ap,, substituting the expression thus obtained for apy in the second equation, and solving the
latter with respect to m, we find:

m =dPldz : Plz. ' (6a)

In the case of graphical determination of dP /dz the differential dz = Az. The . the difference Az should be
so chosen that dP = Pj (see Fig. 1), where Pj denotes the value of the load in the considered point of the
curve, Then

m = z/dz. (6b)

Figure 2b and ¢ shows the variation of parameter m for three materials during unloading, from
which the distribution of the pressure under the indentor can be estimated.

This evaluation of the unloading branch is a universal procedure and can be used in many practical
studies, e.g., in the consideration of the unloading branch when the latter is described by the equation
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P = gh®! [8]; however, in the latter case n is variable. Consequently, the functions n = f(p) or n = ¢(h) can
be found experimentally. This function essentially describes the effect of the scale factor during impres-
sion. The equation which is analogous to Eq. (6b) (see Fig. 1) reads

n = hlda. (6¢c)

krom a comparison of the data obtained by evaluating the loading and unloading branches for the ma-
terial 30KhGSA in two structural states and those for industrial glass (see Fig. 2b and ¢, where every point
represents the average over five to ten tests) it is evident that m increases as the index n decreases (the
rise of the hardness increases when the size of the impression decreases), i.e., the pressure under the
apex of the indentor increases, which is especially noticeable for glass. This is related to a considerable
extent to the effect of the rate of unloading and the dependence of the geometry of the unloading branch on
this rate, This dependence does not occur in metals.

The continuous function H = ¥ (P) can be constructed from the function n = f(P) and a single known
value of the hardness. To do this, it is convenient to utilize a simplified procedure consisting in division
of the function n = {(P) into parts to which a constant value is assigned, Then by applying some transfor-
mations we derive from the power function P = gh™ the expression dH/H = [(m—2)/n]dP/P. Integrating the
latter expression and substituting the integration limits, we find

InHylHy =2=" InPyIP, av P, Py (72)

InHyH, = 2= 1npJP, a P, < P,. _ (7)

n
A plot of these equations along logarithmic coordinates is a straight line and the slope of this line,
equaling (2—n)/n, indicates the ratio between the change of the logarithm of the hardness and the change
of the logarithm of the load, e.g., at n = 1.9 this ratio equals 1/19 and at n = 1,5 it equals 1/3, Figure 3
shows a nomogram suited for calculating the hardness from known values of n, Such a nomogram may be
constructed also along the coordinates H, /H, vs by/h;, and then the slope of the rays will equal 2—n,

In the case of unloading of metals the variation of m has a complex character (see Fig. 2b), which,
evidently, is related to the Bauschinger effect, which is revealed by the hysteresis loop found upon renewed
loading of the impression. Figure 4 shows the hysteresis loops for 30KhGSA steel (see Table 1), where
sample No, 1 shows an increase of the depth of the impression, whereas in several tests on sample No, 2
the depth of the impression remains constant and the hysteresis loops coincide. "Explosion" of the impres-
sions in the first cycles is typical of brittle materials, The hysteresis

P =48/z (8)

(see Table 1) for samples No, 1 and No, 2 equaled 20 and 99%. respectively. The value of y thus determined
is an analogue of the measure which characterizes internal friction and the so-called absorption coeificient
(91

Our investigations proved the general validity of some regularities of cyclic loading during impres-
sion and in few-cycle fatigue tests on samples of the usual shape when the durability is predicted from the
width of the hysteresis loop [10]. With regard to the magnitude, the hysteresis during impression is of
the same order as the Bauschinger effect, Therefore, we shall consider the physical nature of the latter
effect in more detail,

The Bauschinger effect appears when the direction of the effective stresses is altered, while the
magnitude is kept constant or slightly reduced. During unloading of an impression this situation may oc-
cur, if the mean pressure on the countact area left remains constant or is slightly reduced. We shall
analyze how the pressure changes in the three cases described by Egs. (1)-(3).

If P = d/ez, where d = const, then qp = 4Pmax/ wd?., We shall denote the mean pressure and the
load during unloading by qf and P, respectively: q5 = 4P/ rd?, from which it follows that

g4lq. =.PIP_ ., 9
i.e., in this case the mean pressure decreases proportionally to the reduction of the load on the indentor.
During elastic unloading of a spherical punch the following equation holds:
P = d¥/6Re, (2b)
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from which it follows that

PP —(did

max )3'

where djpax denotes the diameter of the contact area at the moment of unloading; d the diameter of the con-
tact area during the unloading process. On the other hand, we can always write P = 1 d2/4qf or P/Pmax

= Qf/qF(d/dmax)z. Consequently, P/Pax = (d/dmax)3 = Qf/QF(d/dmax)z. Substituting P from Eq. (2h)
for d and dj 5, we get

9/9e = (P/P_ NP, (10)

i.e., the mean pressure decreases considerably slower than the load,

In the third case by substituting z = (r /4)dcot ¢ in Eq. (3) we find P = (w/8) - (cot p)d?/e = cF, from
which it follows that

¢ = P/F = const = g,, 1)
or, in other words, in this limiting case the pressure remains constant during the unloading process,

Figure 5 shows how the mean pressure qg/qp depends on P/Ppax at three fixed values of m and m
at fixed values of P /Pmax.

Since Eqgs, (1)-(3) hold both for round and for square impressions, the plots shown in Fig. 5 are
evidently applicable also to a square impression in a plane.
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