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THERMAL ELASTICITY OF A HOLLOW SPHERE WITH
TEMPERATURE-DEPENDENT THERMAL CONDUCTIVITY

I. N. Makhorkin UDC 539.377

Consider a hollow sphere free of external loading, the inner surface of which (r =R;) is subjected to
heating by a heat flux of constant density q, while the outer surface (r =R,) is maintained at a constant tem-
perature T,.

As was indicated earlier [1], the temperature dependence of Young's modulus E, Poisson's ratio v, and
the coefficient of thermal expansion ¢4 is immaterial for many crystalline dielectrics, and these quantities
can be considered constant. The coefficient of thermal conductlvxty A\t depends heavily on temperature.

To determine the steady temperature field t(r), the radial displacement u(r), and the temperature —
stress components oy.,., 0,,=0gg, We have in this case the following relationships:

[P ] =0 1)
N S [ R LR NI | IR P Y Y
O = "MF+va—2v ar T t '
(2)
du .
%0 = %0 = ~(1tv) (115-—2\;) [_:‘ +v g a9 (r)],
d a(l +v) d
_“;r_ [’Tl" - (rzu)] =——— & 1t0O] (3)
as well as boundary conditions
dt . T,=t| . 4
9= MO ] i To=tlsi @
(o 'r=R1= 0: O "=R1 =0. (5)

If the law governing the change in the coefficient of thermal conductivity with temperature takes the form

{1]
A () =4~ k= const, (6)

one obtains from Eq. (1) with consideration given to Eq. (6) and Eq. (4) this expression for determination of
the steady temperature field:

@ Ry—r
) =TeR @)
where
R}
o= —fF

Integrating Eq. (3) with consideration given to Eq. (7), we have

a, (14v)
U= —( v)r?

Here

Lvov. Translated from Problemy Prochnosti, No. 12, pp. 39-40, December, 1977. Original article
submitted January 5, 1977.
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Fig. 1. Distribution of temperature (a), and circum-
ferential (b) and radial (c) stresses as function of r/R,
with outer surface at temperature of 27°C and with
internal surface heated by heat flux.

o a
-_—— — . o
0 = LT ™ |7 (20 4 ra(r+a)] —a'Ei ().
where Ei{a/r) is an integral exponential funetion.
Solving Eq. (8) for boundary conditions (5), we can determine the constants of integration

6z, (1 —2v)

C=—TwE—5

[8(R) — 8 (RY];
(9)
a, (14 v)

3 3,
=t — R0 .
Tty LRI8 (R) — Ri® (R)]

Substituting relationship (8) in Eq. (2) with consideration given to Eq. (9), one obtains the desired tem-
perature stresses

o = = [ eR)—08(R) _ RORI_ROR) o).
Tl R}—R? A RE—RY) oy
E R (Ry) — R3O (R)) (1o
ot 218 (R;) — 6 (Ry)] ] - 1 8 (n
qu):UGe: l-—‘-‘V { R;E_R;l; L + lr’(;g—;?) + P —t(f)}

The temperature field and field-induced temperature stresses in a sphere made of 98% polycrystalline
aluminum oxide Al,0; with k =2.8 cal/mm - sec .- deg were computed from Egs. (7) and (10). The results of
the computations are presented in Fig. 1 from which it follows that the maximum temperature is observed on
the inner surface of the sphere. Radial stresses reach a maximum value when r/R, =0.945, and circumferen-
tial stresses are maximum on the inner surface of the sphere; in this case, the latter exceed the maximum
radial stresses by a factor of ~20.
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