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1. Introduction

An extensive series of rheological meas-
urements has been made on a stabilized low-
density polyethylene melt [“Melt I (1) at
150 °C] having the following properties:
density 0.920 g/ml at 20 °C; melt flow
index (190/2.16) = 1.33; low-shear-rate vis-
cosity at 150 °C = 5.0 x 10° poise; M,/ M, —=
28.1: M, — 482,000; CH,/1000 C = 31. For
elongational flow with a step-function elon-
gation rate, Meissner (1) has measured
tensile stress (as a function of time) and ulti-
mate free recovery. Chang and Lodge (2)
have compared Meissner’s stress/time data
with the predictions of the network theory
“rubberlike liquid” constitutive equations,
using a memory function equal to a sum of
five exponential terms; the coefficients and
exponents (“‘set A”’) were chosen to fit the
stress/time data at the lowest elongation
rate (0.001 sect). Subsequently, Chang (3)
used a second set (“‘set B”’) of coefficients and
exponents, and obtained a somewhat im-
proved fit of the same data.

In the present paper, we present results of
meaguring shear stress p,; and primary
normal stress difference N, = py; — Py 88
functions of time in shear flow with a step-
function shear rate of magnitude §, we com-
pare stress/time data obtained in elongation
and shear flows; and we consider whether
the network theory gives a better descrip-
tion of the data in elongation than in shear.
All data in this paper refer to “Melt I at
150 °C.

2. Shear flow data

The shear flow data reported here were
obtained with a Weissenberg Rheogonio-
meter Model R12/15 modified, as described
by Meissner (4), so as to improve the re-

(Received July 29, 1972)

liability of stress/time data obtained with
liquids of viscosity up to 10° poise at elevated
temperatures. The modifications involved
stiffening of the apparatus, replacement of
the servo-mechanism by a direct thrust-
measurement system, and use of an improved
heating system for the specimen under test.
The cone-and-plate system was used with
the following values of gap angle and gap
diameter: 8° and 24 mm for § > 0.1 sec™!;
10° and 72 mm for § < 0.1 secL.
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Fig. 1. Measured values of log N, and log p,, as functions
of log ¢ for shear flow with step-function shear rate
starting at t = 0. Shear rate values are given for the N,
curves; the same shear rate values apply to the p,
curves taken in order on the left of the figure
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In fig. 1, the data for log NV, and logp,;, as
functions of log ¢ are presented for different
values of the shear rate §; the time ¢ is
measured from the instant ({ = 0) at which
the shear rate was first applied, the liquid
having been at rest for a sufficient period
before { = 0. It is seen that the familiar
maxima are obtained, with the N, maxima
occurring later than the p,; maxima. At the
higher shear rates (above 2 sec™?), it is seen
that there is a region of values of logi
throughout which NV, is substantially in-
dependent of §; this behavior is completely
different from that at lower shear rates, and
is rather unusual. It is intended to make
further tests in this region to see, in par-
ticular, whether the shear flow is homo-
geneous throughout the gap. In the present
paper, we confine our attention to the lower
shear rate region (§ < 2sec™), where the
strain rates are comparable with those used
in the elongational flow experiments reported
previously (1).

The constitutive equations for the “rub-
berlike liquid”’ may be written in the form

4
T(Pt) + pyt (Pt)= [ plt—t)y (P, t)dt,
o [2.1]

where st (P, t) and y~'(P,t) denote the con-
travariant body stress and reciprocal metric
tensors at particle P and time ¢; p is a scalar;
and the memory function u (¢t — #') isascalar
function of the time interval ¢t — ' (5, 6).
Following Chang (3), we shall use the fol-
lowing form for u:

5
p() = > ayexp(—t/zy)

r=1

[2.2]

the values of the constants a,, 7, (“set B”)
are given in table 1. Their values have been
chosen to make the predictions of [2.1] fit
the stress/time data of Meissner (1) in

Table 1. Constants (“set B”*) for the memory function

[2.2] for a low-density polyethylene (‘“MeltI”) at

150 °C. These constants have been chosen by Chang (3)

to fit the measured values of tensile stress as a function

of time in elongational flow at an elongation rate
& = 0.001 sec™?

7 Ty ar
(sec) (dyn/cm?/sec)

1 10° 1.6 x 102

2 102 1.926 x 10

3 10 1.723 x 108

4 1 6.64 x 10®

5 1071 3.972 x 10°

elongational flow with a step-function elon-
gation rate ¢ of magnitude 0.001 sec™.
For a rectilinear shear flow whose velocity
components, referred to a rectangular Car-
fesian coordinate system Owx;z,z, fixed in
space, are v; = $x,, v, = v3 = 0, in which §
is zero for ¢ < 0 and constant for ¢ > 0,
it is a straightforward matter to derive
from [2.1] the following well-known equations

5
N () =28 art?[L— (1 + tfz) exp(—tfw)], [2.3]

=1

5
Pult) =$§ D arm? ([1 — exp(—ifr)].  [24]

r=1
The curves obtained from these equations,
using the “set B’ constants of table 1, are
shown in figs. 2 and 3 along with the ex-
perimental data curves selected from fig. 1.
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Fig. 2. Comparison of network theory predictions with
measured values of shear stress as functions of time
from the start of shear flow at constant shear rate §
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Fig. 3. Comparison of network theory predictions with

measured values of primary normal stress difference

as functions of time from the start of shear flow at
constant shear rate §
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Because the memory function constants
were chosen to fit data obtained in a different
kind of experiment (elongational flow), with
the constitutive eq.[2.1] thereby com-
pletely determined for the material in ques-
tion, the comparison between theory and
experiment represented by figs. 2, 3 is a signi-
ficant, test of the network theory. It is seen
that the agreement between theory and
experiment is good during rather limited
time intervals following the start of shear
flow; for longer time intervals, there is
very substantial disagreement: predicted
values of N, are as much as 100 times
greater than those observed.

In the elongational flow experiments, on
the other hand, predicted values for the
tensile stress did not exceed the observed
values by more than a factor of about 3
[Chang (3)]. It appears, therefore, that the
network theory description of stress/time
behavior in “Melt I’ is much worse in shear
flow than it is in elongational flow. We think
thatit would be rather hard to account for such
a paradox in molecular terms. However, by
examining the comparison of shear flow and
elongational flow more closely, we shall show
that the paradox disappears, i.e. that the
discrepancies between theory and experi-
ment are about equal in size for shear flow
and for elongational flow.

3. Comparison of shear flow
and elongational flow

As one possible basis for comparing differ-
ent kinds of flow, it is natural to consider

Table 2. Principal strain rates x;, principal elongation
rates 4;(0, t), and principal stresses o; for elongational
flow and shear flow at constant elongation rate ¢ and
constant shear rate §. F, A, and p, denote applied
tensile force, cross-sectional area, and ambient pressure
in elongation of a cylindrical filament. o = x,#/2;
eot 2y == (P — Pes)l(2Pe1); Pu > 0 for a tensile
normal component of stress

Elongation Shear
vy = éxq vy == s'xz

%, 2é $
%y — & —38
g — £ 0
Ay e (I 4 a®)t2 + &
;b2 g2 1+ (Xz)l/z — &
As eo/? 1
01 F/A — p, (P11 + P22)/2 + pay cosec2y’
2 —Pa (P11 + P22)/2 — Pay cOSECZY

T3 —Pa Pss

the principal values of the various tensors
involved because these can be evaluated in a
manner which does not depend on the
choice of any special coordinate system such
as the coordinate system Ox,x,z; used to
define N, and p,, in shear flow. The prin-
cipal values of stress, strain, and strain rate
are given in table 2 in terms of measured
quantities for both shear flow and elongatio-
nal flow [see e.g. (7), pp. 36, 46, 282].

Table 2 emphasizes the well-known fact
that, although the shear flow and elongatio-
nal flow considered are steady in the sense
that their principal strain rates are inde-
pendent of time, the principal elongation
ratios 1,(0,%) depend on time ¢ in ways
which differ markedly for shear flow and
elongational flow; the greatest principal
elongation ratio 1, is represented as a func-
tion of time in fig. 4.

10°;
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1
10°

Fig. 4. Comparison of values of the greatest principal
elongation ratio 4,(0, ¢t) for elongational flow and shear
flow at constant principal elongation rate s,

To compare the variation of stress with
time for shear flow and elongational flow,
we shall evaluate the ratio Ap/d:x, where

FlA
(N2 + 4p,2)t

(elongation)

(shear), 8.1]

Apzo‘l—o'zz{

and

3¢ (elongation)

2§ (shear). [3.2]

An = 0y — xy= {

This choice of Ap/4x no doubt represents
an improvement over the choice of either
Poef8 or N[5, but still involves some arbi-
trariness: we could also take Ap to equal
o, — 03 in shear flow. The denominator Ax
perhaps also involves some arbitrariness,
because the stress and strain-rate tensors
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have common principal directions in elon-
gational low but not in shear flow.

For an incompressible Newtonian liquid
of viscosity 7, we have the result that
ApjAx = n for shear flow and for elonga-
tional flow.

In fig. 5, the values of log (4p/A ») obtained
from measured stress components are plotted
as functions of log¢. The shear data are
selected from those of fig. 1 above; the
elongation data have been published by
Meissner (1). It is seen that, at the lowest
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Fig. 5. Comparison of measured values of stress in
elongational low and shear flow. Ordinate: log(dp/4 %),
where Ap and Ax denote differences of principal values
of stress and strain rate; abscissa: log f. Numbers near
curves denote values of elongation rate ¢ and shear rate §

strain rates, shear data and elongation data
fall near a common curve; at higher strain
rates, data fall near this curve at short
times but deviate from this curve at longer
times; at the longer times and higher strain
rates, shear data and elongation data are very
different: the shear data fall below the low-
strain-rate curve while the elongation data
lie above this curve.

A possible explanation for the observed
difference in shear flow and elongation flow at
constant principal strain rates is suggested
by fig. 4 above, coupled with the elastic
recovery data of Meissner (1), fig. 7. As the
elongation rate is increased, the elastic
recovery increases and approaches values
appropriate to a perfectly elastic solid. This
supports the otherwise plausible suggestion
that, for “Melt I’ at 150 °C, the stress at
time ¢ is more strongly dependent on the
total strain measured from ¢= 0 than on
the values of principal strain rates at time ?;
if this is so, then the two types of experiment
considered here differ significantly not only
in their geometrical aspects but also in the
time dependence of their flow histories.
For a Newtonian liquid, the latter difference
would be expected to be unimportant

because the extra stress is determined by
the current rate-of-strain tensor. It would
be of interest to perform a different elonga-
tional flow experiment in which the strain
was made to vary with time in such a way
that the curve for 2, (0, ¢) coincided with the
corresponding curve for shear flow at
constant shear rate.

4. Comparison of network theory

with experimental data

The predictions of the network theory
rubberlike-liquid constitutive equations have
been compared with shear flow data in
figs. 2 and 3 above and with elongational
flow data by Chang (3). To see whether the
agreement is in fact better for elongational
flow than for shear flow, we now seek a
method of combining the two comparisons
in a single representation.

As a first step, we change the ordinate to
the ratio (Ap)w, [(4P)ex., where (Ap)y, de-
notes the value of ¢, — o, calculated from
the network theory equations using “set B”
constants, and (Ap).. denotes the wvalue
of 0, — 0, calculated from the experimental
data; the same time ¢ is used in numerator
and denominator. Agreement between theory
and experiment is represented by the value
unity for this ratio. In fig. 6,

log[(Ap)th./[{(Ap)ex.]

is plotted as a function of log ¢; the fact that
data for different strain rates lie on widely
separated curves suggests that the use of a
different abscissa might yield a common
curve for all the data.
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Fig. 6. Comparison of network theory predictions and

measured values of stress for elongational and shear

flows at constant elongation rates é and shear rates §

first applied at &= 0. Ordinate: log(dp¢n./Apex.),

where Apin, and Apex, denote values of a difference of

principal stresses obtained from theory and from
experiment. Abscissa: log#
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Fig. 7. Comparison of network theory predictions and

measured values of stress. Ordinate: as in fig. 6.

Abscissa: log(Irve), where I1y is the rate-of-strain
invariant defined in [4.1]

As a result of a somewhat haphazard
procedure, in which various symmetric
functions of the principal strain rates »;
were tried, we have found that most of the
data points fall near a common curve (fig. 7)
when Iy ¢ is used as abscissa, where

3 3
Ity = 2-12 {( Z %iz)Uz + ‘ z oy |1/3} [4.1]
=1 i=1

B { 3.01 ¢ (elongation)

§ (shear). [4.2]

In view of our remarks towards the end
of § 3, it is perhaps surprising that we should
employ a rate-of-strain invariant Iy (rather
than a strain invariant, for example) in this
context. We do not claim that the use of
Iyt as abscissa furnishes the only (or even
the best) way of plotting shear and elonga-
tion data so that they fall near a common
curve. Two other choices have been made:
using »,¢t and 1,(0,¢) as abscissae, we find
that the data points lie somewhat further
from a common curve than they do in
fig. 7.

We make the following comments on fig. 7.

1. The two points furthest from the
common curve represent elongation data
taken at the lowest elongation rate

(8 = 0.001 sec™?)

and theoretical values obtained under con-
ditions in which theory was made to agree
with experiment (by choice of constants in
the memory function). It is therefore not
unreasonable to find such points lying
away from the common curve.

2. The elongation experiments were all
subject to the restriction Iy < 10. In
the shear experiments, values of Iy ¢ up
to 130 were used. When Iy ¢ > 10 in the

elongation experiments, the filament be-
comes so thin that tension measurements are
too inaccurate. There is no corresponding
restriction in the shear experiments; the use
of a rotational apparatus to generate shear
flow enables one to measure torque and thrust
without limit on the value of Iy {, provided
that I;y is not so large that the liquid in the
cone/plate gap breaks up.

3. The fact that the shear points and
most of the elongation points in fig. 7 lie
close to a common curve enables us to
resolve the paradox stated in §2 above:
the extent of agreement between the nelwork
theory and the experimental data for Melt [
at 160 °C s substantially the same for shear
flow and for elongational flow; the fact that,
at first sight, the agreement is better for
elongational flow can now be attributed to
the smaller range of values of Iyy ¢ used in
elongational flow.

5. Utility of the network theory

The network theory is based on a plausible
molecular model for polymeric liquids and
gives a qualitatively successful description of
some of their main characteristic rheological
properties; the prediction that viscosity is
independent of shear rate, however, restricts
the possible range of validity of the theory,
when applied to prolonged flow at constant
strain rate, to the region of low strain rates.
Hitherto, this has been regarded as a rather
severe limitation on the usefulness of the
theory.

The results of fig. 7 above suggest, how-
ever, that the network theory may be quonti-
tatively useful for flows of short duration which
start from a state in which the liquid has been
undeformed for a sufficient length of time.
Fig. 7 shows that, for Melt I at 150 °C,
theory agrees with experiment to within
about 109, provided that

Iy < 3. [5.1]

This applies to shear and elongational
flows at strain rates which are large enough
for the viscosity to vary appreciably with
change of shear rate; the measurement of
viscosity requires prolonged flow (with
Iy t> 3) at constant shear rate in order
that the shear stress shall reach a constant
value.

The foregoing conclusions have been
based on the results of experiments which
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use step-function strain rates. It is tempting
to speculate that the network theory might
also apply to short-duration flows even when
the strain rates vary with time, provided, of
course, that the flows start from a state of
rest. One obvious generalization of the con-
dition [5.1], which might be applicable in
such circumstances, is the following:

t
j Irvs (8] de’ < 3. [5.2]

=0

It is possible that such considerations
could encompass the fact that the network
theory has been successfully applied to
certain recent experiments. For example,
Astarita and Nicodemo (8) have conducted
an experiment in which a free stream of
liquid (a solution containing 0.5%, Separan
ET597 in glycerol) was drawn upwards
from a reservoir of liquid at rest; meas-
urements of tensile force and stream profile
were found to be consistent with the pre-
dictions of the rubberlike-liquid equations
with a single-exponential memory function.
This experiment involved heterogeneous flow
with strain rates which, for a given material
element, varied with time. A rough estimate
made from the data of figs. 3 and 5 of (8)
(taking & == du/dx) yields a value between 1
and 1.5 for the integral in [5.2]. Provided
that the same number 3 on the right-hand
side of [5.2] is appropriate for the Separan/
glycerol solution, it follows that the result
of Astarita and Nicodemo is compatible with
the conclusion of the present paper.

The network theory predicts that the
viscosity will be independent of shear rate;
it is well known that this prediction is
associated with the assumptions that junc-
tion creation and loss rates are independent
of the flow history. Various semi-empirical,
semi-molecular, methods of modifying the

constitutive equations have been used (9, 10)-

in order to improve the quantitative utility
of the theory. The result [5.2] of the present
paper gives some support to those methods
of modifying the constitutive equations which
permit the memory function to depend on
values of rate-of-strain invariants. Even
with modifications of this kind, there is a
wide choice of possible modifications to be
considered; it would be helpful if suitable
experiments could be devised to serve as a
guide to the ‘“‘correct” modification to be
made for a given polymeric liquid. We have
recently proposed (11) the use of rapid, in-
cremental strain, tests for this purpose. It

might also be helpful to seek the explanation,
in terms of molecular structure, underlying
the value 3 for the right-hand side of [5.1]
or [5.2].
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Summary

Experimental data are presented which show the
variation with time of the shear stress and primary
normal stress difference during shear flow with a step-
function shear rate; the material (“Melt I” at 150 °C) is
a low-density polyethylene melt for which stress-growth
and elastic recovery data in elongational flow experi-
ments have been previously reported. A method of
comparing the data with the predictions of the rubber-
like-liquid constitutive equations is given, based on the
use of a specially-chosen rate-of-strain invariant Iyv,
defined in [4.1]. From this comparison, it is shown that
the disagreement between theory and experiment is
about the same for shear flow and for elongational
flow, and that the extent of disagreement does not
exceed 109, for short-duration flows such that

Ityt < 3.

Zusammenfassung

Es werden MeBergebnisse iiber die zeitliche Anderung
der Schubspannung und der ersten Normalspannungs-
differenz  bei ScherflieBen einer LDPE-Schmelze
(,,8chmelze I bei 150 °C) vorgelegt. Der zeitliche
Spannungsverlauf bei und die elastische Erholung nach
DehnflieBen sind fiir dieses Material bereits frither mit-
geteilt worden. Hier wird das Verhalten der Schmelze
bei Scherung und bei Dehnung mit den Voraussagen
der ,,rubberlike liquid“‘-Zustandsgleichung verglichen,
wobei eine speziell gewihlte Invariante Iyy der De-
formationsgeschwindigkeit verwendet wird (definiert in
[4.17). Der Vergleich zeigt Abweichungen von Theorie
und Experiment, die fitr Scher- und DehnflieBen etwa
gleich groB sind. Die Abweichungen liegen unter 109,
wenn for das Produkt aus Ity und der Deformations-
zeit ¢ der Wert J1yt = 3 nicht iberschritten wird.

References

1) Meipner, J., Rheol. Acta 10, 230 (1971).

2) Chang, Hut and A. S. Lodge, Rheol. Acta 11, 127
(1972).

3) Chang, Hui {to be submitted to Rheol. Acta).

4) Meissner, J., J. Appl. Polymer Sci. 16, 2877
(1972).

5)) Lodge, A. 8., Rheol. Acta 7, 379 (1968).



Lodge and Meissner, Comparison of network theory predictions with stress/time data in shear and elongaiion

47

6) Lodge, A. S., Rheol. Acta 11, 106 (1972); also
University of Wisconsin Mathematics Research Center
Technical Service Report 1092.

7) Lodge, 4. 8., Elastic Liquids (London and New
York 1964).

8) Astarita, Q. and L. Nicodemo, Chem. Eng. J. 1,
57 (1970).

9) Yamamoto, M., Trans. Soc. Rheol. 15 (2), 331
(1971).

10) Carreau, P. J., Trans. Soc. Rheol. 16 (1), 99
(1972).

11) Lodge, A. 8. and J. Meissner, Rheol. Acta 11,
351 (1972).

Authors’ addresses:

Professor 4. 8. Lodge
U. W. Rheology Research Center
1500 Johnson Drive
Madison
Wisconsin 53706
(US.A)

Dr. J. Meissner
Mess- und Priiflaboratorium
Badische Anilin und Soda Fabrik A.G.
6700 Ludwigshafen am Rhein
(Germany)



