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Introduction 
The elastic moduli and morphology of block polymers 

and polyblends can be modified by changing the relative 
concentration of the components, by heat and solvent 
treatments, and by the intensity of mechanical mixing. In 
thesetwo-phasesystemsthedispersed phasecan bespheres, 
aggregated spheres, or cylindrical or plate-like in shape. 
Over certain composition ranges, both phases can be 
continuous, or the phases can become inverted- the dis- 
persed phase can become the continuous phase. These 
different morphologies have widely different moduli and 
other mechanical properties. It will be shown that if the 
morphology of a given block polymer or polyblend is 
known, then reasonable predictions of the elastic moduli 
can be made by using the theoretical equations developed 
for composite materials. 

Theory 

Earlier attempts to relate the concentration 
of the two components and the morphology of 
two phase systems such as polyblends and block 
polymers with their elastic moduli have been 
made by Takayanagi (1, 2) and by Kaelble (3, 4). 
These workers used series and parallel com- 
binations of the components in models which 
give the highest upper bound and the lowest 
lower bound to the modulus. It is very difficult 
to relate the modulus of such a model with the 
actual morphology of the real system, 

A better method which imposes much narrower 
limits on the moduli and which is capable of 
incorporating the morphology of the two-phase 
system in a less ambiguous manner is to use the 
recent theory of the moduli of composite mate- 
rials. Kerner (5) developed a theory in which 
either of the phases can be a dispersion of spheres 
in a matrix of the other component. More re- 
cently Halpin and Tsai (6, 7) have developed 
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equations which are general enough to cover 
the complete range of moduli from the lowest 
lower bound (series models) to the highest upper 
bound (parallel models). They also showed how 
the moduli can be calculated for many systems 
of widely different morphologies including 
dispersions of spheres, fiber-filled materials, etc. 
Nielsen (8) extended the Halpin-Tsai equations 
by using the concept of a generalized Einstein 
coefficient to cover still other morphologies, 
including dispersions of aggregated spheres and 
short fibers randomly oriented. Lewis and 
Nielsen (9, 10) were able to narrow the limits on 
the upper and lower bounds on the moduli by 
taking into account the maximum packing 
fraction of the filler phase. 

The highest upper bound of the modulus is 
given by the rule of mixtures: 

M = Mltpl + M2(P2 [1] 

where M is the modulus of the composite, M1 is 
the modulus of component 1, and ~Pl is the 
volume fraction of component 1. This equation 
holds for models in which the components are 
arranged parallel to one another so that an applied 
stress elongates each component the same 
amount. The lowest lower bound to the modulus 
is found in models in which the components are 
arranged in series with the applied stress; the 
equation for this case is: 

1 ~o1 ~o2 
+ [2] 

M M 1 M 2 " 

Curves numbered 1 and 2 of fig. 1 for the modulus 
of the composite divided by the modulus of the 
rubber correspond to eqs. [1] and [-2] for the 
case of M2/M1 = 1000. This modulus ratio is 
approximately the correct value for composites 
made up of a rigid polymer and an elastomer. 

594 



N ielsen, Morphology and the elastic modulus of block polymers and polyblends 87 

VOL. FACT. OF RIGID PHASE 
Fig. 1. Modulus ratio of composites. Curve 1: parallel 
element model; curve 2: series model; curve 3: Halpin- 
Tsai (or Kerner) shear modulus for elastomeric spheres 
dispersed in a rigid polymer; curve 4: rigid spheres dis- 
persed in elastomeric phase; curve 5: elastomeric spheres 
in rigid matrix for q;=0.64 (random packing); and 
curve 6: rigid spheres dispersed in an elastomeric matrix 
for %ù = 0.64 

The Halpin-Tsai equations are (6, 7): 

M 1 + ABq92 

M 1 -- 1 -- B~02 [-3] 

B _ M2/M~ - 1 [4] 
M 2 / M  1 + A 

where the subscripts 1 and 2 refer to the contin- 
uous phase and the dispersed phase, respec- 
tively. The constant A is determined by the 
morphology of the system; for dispersed spheres 
in an elastomeric matrix, A = 1.5, for instance. 
The extension of these equations is given by 
( 8 - 1 o ) :  

M 1 + AB¢p2 
- [53 

M 1 - -  B C q ~  2 

A = k - 1 [6] 

(1 - ~0ù,) 
- 1 + q ~ ~  ~P2 I-7] 

B i  - 

and 

where k is a generalized Einstein coefficient, and 
~b is a function which takes into account the 
maximum packing fraction ~o= of the dispersed 
phase. The maximum volumetric packing frac- 
tion ~p,ù is indirectly related to morphology, and 
it generally has a value between 0.5 and 0.9. It 
has a value of 1.0 in the original Halpin-Tsai 
equations. The constants A and k are strongly 
dependent upon the morphology of the com- 
posite. 

For  inverted systems in which the continuous 
phase is the more rigid one, it is convenient to 
rewrite equations 4-6 as 

Ma _ 1 + A~ßi~o2 [8] 
M l - -  B i l [ I q )  2 

M1/M2 - 1 
[9] 

M1/Mz + Ai 

1 
A, = Ä .  [10] 

In the inverted system, the subscript 2 still refers 
to the dispersed phase, which is now the low 
modulus phase. 

Curves 3 and 4 of fig. 1 illustrate the Halpin- 
Tsai equations for dispersed spheres. Curves 5 
and 6 of fig. 1 illustrate the modified eqs. [5]-[10] 
for dispersed spheres with ~0,ù = 0.64 (random 
close packing), a Poissons ratio of 0.5 for the 
elastomer phase, and a Poissons ratio of 0.35 for 
the rigid phase. The Halpin-Tsai equations and 
their modification put much narrower limits on 
the moduli than the series or parallel models 
used in the past. Morphologies other than 
dispersed spheres generally have similar spreads 
between the upper and lower modulus curves. 

In real systems of polyblends and block poly- 
mers, both phases may be continuous, or there 
may be an inversion of the phases as the composi- 
tion ratio is changed. In this situation the equa- 
tions giving the upper and lower bounds to the 
modulus must be combined in some manner. 
Empirically it has been known for a long time, 
and recent calculations on crystalline polymers 
(11) indicate, that a combination of the two 
equations is approximately given by 

logM = q~ù logM,, + q~L 1OgML. [11] 

Mù and ML are the upper and lower bounds to 
the modulus, respectively, at a given composi- 
tion. In this equation ~o u is the fraction of the low 
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modulus material that is in a continuous phase 
in the overlap region where both phases are 
essentially continuous, while q~L is the fraction 
of the rigid material that is in the overlap region 
(10). 

ô 

0 0 - # k  I ÷, 

V O /  FRACT. OF RIGID PHASE 
Fig. 2. Notation used in calculation of modulus when 
there are two continuous phases over part of the com- 
position range 

Fig. 2 may illustrate the point more clearly 
for some chosen over-all composition tp«. 

tp« - (1 - tp~,) 
cPL = cpm - (1 - ~Om) [12] 

= Cpù, - -  Cp« [ 1 3 ]  

~O~, is the packing fraction of the low modulus 
material in the inverted system. For  the unmodi- 
fied Halpin-Tsai equations, cpL is the volume 
fraction of the rigid phase, and cp~ is the volume 
fraction of the elastomeric phase for any value 
of ~o«. 

The Einstein coefficient k (or A), which is very 
sensitive to the morphology of the system, is 
proport ional  to the initial slope of the modulus- 
concentration curve near ~0 = 0 and tp = 1 for 
dispersed systems in which both phases are not 
continuous. Einstein coefficients have been 
published for many systems (6, 12, 13). Some of 
these are listed in table 1. The listed values of k 
[or of (A + 1)] are for rigid particles in a matrix 
of lower modulus. The values for inverted sys- 
tems, in which the matrix has a higher modulus 
than the dispersed phase, can be determined 
from eqs. [6] and [10]. If Poissons ratio of the 
matrix is not 0.5, a correction should be applied 
to the Einstein coefficient (8). 

Table 1. Einstein coefficients for composites 

Filler phase Mod- Einstein coefficient k 
ulus 

Spheres G 1 + (7 - 5 v0/(8 - 10v0 
Large aggregates 

of spheres G 2.50flpa 
Aggregates 

of 2 spheres G 2.58 + 
Rods-axial ratio 4 G 3.08 
Rods-axial ratio 6 G 3.84 
Rods-axial ratio 8 G 4.80 
Rods-axial ratio 10 G 5.93 
Rods-axial ratio 15 G 9.4 
Uniaxial fiber-filled EL 1 + 2 L/D 
Uniaxial fiber-filled ET 1.5 
Uniaxial fiber-filled GLT 2.0 
Uniaxial fiber-filled G T 1.5 
Ribbon-filled (w/t)~ov EL oB 
Ribbon-filled E T 1 + 2w/t 
Ribbon-filled ETT 1.0 
Ribbon-filled GLT I + (w/t) (13) 
Ribbon-filled (w/t)~oo GLT, 1.0 
Ribbon-filled (w/t)--*~ GTT 1.0 
M=MI~pl +M2q~2 M 
1 qJl iP2 

- + M 1.0 
M M1 M2 

vl Poissons ratio of matrix 
~o« Packing fraction of spheres in aggregate 
L Length of rod 
D Diameter of rod 
w Width of ribbon 
t Thickness of ribbon 
T Transverse to fibers or ribbons 
Subscript L Longitudinal direction 

The values of the Einstein coefficient or of A 
do not uniquely define the morphology of a 
system; more than one kind of morphology can 
have the same Einstein coefficient. For instance, 
aggregates of spheres can have the same values 
as short fibers or rods. In addition, some phases 
may appear to be continuous when they actually 
are not. For  instance, verylong, but discontinuous, 
fibers, ribbons, and oriented flakes may give high 
moduli characteristic of a continuous phase. 
Thus, if one or more of the dimensions of a par- 
ticle are very large compared to the other di- 
mensions, such fillers appear to the matrix phase 
to be continuous. Therefore, moduli do not 
completely describe a system; additional mor- 
phological information is required. However, 
on the other hand, if the morphology of a system 
is known, in principle the moduli can be accurately 
calculated. In the overlap region where both 
phases are essentially continuous, the exact 
morphology does not appear to be important.  
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The important factor is then how much of each 
phase is present, and this is determined by q~m 
and ~o'. Changes in morphology which occur 
as the concentration changes are also largely 
compensated for by the values of ~Pm and ~0~ 
since they depend upon the packing and morpho- 
logy at high concentrations while the value of the 
Einstein coefficient is determined by the morpho- 
logy at very low concentrations. 

Experimental  

Four examples from the literature will be used 
to illustrate the use of the theory. The first ex- 
ample is "a series of styrene-butadiene-styrene 
block polymers reported by Holden et al. (14) 
and discussed by Kaelble (3, 4). Fig. 3 shows the 
experimental data for Youngs modulus and a 
calculated curve which fits the data quite weil. 

, , 

I I i i~VDI[  D IM[ IdT I I t  I 

values somewhat, but these illustrate the point.) 
Unfortunately, the morphology of these samples 
has not been published, but the above values 
strongly suggest the following changes in morpho- 
logy as the concentration of polystyrene in- 
creases: At low concentrations of polystyrene, 
the polystyrene appears to be either aggregates 
of about six spheres (13) or rods with an aspect 
ratio of about 6 to 1.0 (12). Already at about 15% 
polystyrene, both phases tend to be continuous. 
The region of phase inversion where both phases 
are more or less continuous covers the range from 
15-80% polystyrene. From 80-100% poly- 
styrene, the polybutadiene is dispersed as spheres 
in the polystyrene. This type of information would 
be hard to deduce from series or parallel models, 
the limits of which are also shown in fig. 3. How- 
ever, as pointed out by Kaelble, such models do 
also predict phase inversion for this series of 
block polymers. 

0 EXPERIMENT 
l-I CALCULATED 

£ 

P, 

o ».  

30O 

10C 

'vo Q2 0.4 06 0.8 1.0 

VOLUME FRACTION OF POLYSTYRENE 

Fig. 3. Modulus of S-BD-S block polyrners as a function 
of composition. Center curve calculated using A = 3.0, 
~o~ = 0.80, vl -- 0.5, Ai = 0.86, tp~, = 0.85, vl = 0.35 

The calculated curve results from two curves 
using the following values: 1. Polystyrene dis- 
persed in polybutadiene with A =3.0 and 
¢Pm = 0.8. 2. Polybutadiene dispersed in poly- 
styrene with Ai = 0.86, ~0~, = 0.85, and a poly- 
styrene Poissons ratio of 0.35. (A better fit to the 
data might be obtained by changing these 

'0 .2 .4 .« .8 1.0 

VOLUME FRACTION OF POLYSTYRENE 
Fig. 4. Modulus of polyblends of polystyrene and SBR 

A second example is a series of polyblends of 
polystyrene in styrene-butadiene rubber as 
reported by Kraus et al. (15). Fig. 4 shows the ex- 
perimental values along with calculated values 
using the following constants: A =  1.5, ~0m 
= 0.64, Ai = 0.86, tp~, = 1.0, and Poissons ratios 
of 0.5 and 0.35 for the rubber and the polystyrene, 
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2" 
E 

O 

respectively. Again, the detailed morphology 
of these materials has not been published, but 
the above constants suggest the following 
behavior on addition of polystyrene to rubber: 
Almost immediately at very low concentrations 
of polystyrene, it tends to become a continuous 
phase, possibly by forming fibrous strings with 
an aspect ratio of about 15 to 1.0. The region of 
two continuous phases continues until a volume 
fraction of about 0.64 is reached. At higher con- 
centrations of polystyrene, the rubber appears 
to be dispersed as spheres, although there are no 
experimental points except the point for pure 
polystyrene to really make this conclusion valid. 
In any case, the morphology is such as to make 
the experimental curve unsymmetrical about the 
mid composition point of ~0 = 0.5. On the other 
hand, the block polymer case is nearly sym- 
metrical about ~o = 0.5. 

J I i 

• CALCULATED 

AVERAGE EXPERIMENTAL 

- - - -  KERNER EQUATION 

I ' I 

\ 

, , \  

PERCENT DISPERSED PHASED 

Fig. 5. Modulus of polystyrene containing a dispersed 
elastomeric phase. The solid line is the average experimen- 
tal modulus line of C/gna. The points were calculated using 
A/= 0.86 (spheres), ~0~ n = 0.55, and vl = 0.35 

The third example is a series of polystyrene- 
elastomer blends studied by Cigna (16). Electron 
microscopy showed these materials to be essen- 
tially spheres of the elastomers in a polystyrene 
matrix with little, if any, tendency for phase in- 
version to occur at concentrations of elastomers 

below 30%. Many polyblends were studied, 
undoubtedly with small changes in morphology, 
so at a given concentration of elastomer there 
was some scatter in the values of the shear moduli. 
An average experimental curve was drawn by 
Cigna through the experimental points as shown 
in fig. 5. The Kerner equation (or the Halpin- 
Tsai equation for spheres) gave values consider- 
ably higher than the experimental values. How- 
ever, the modified equations using tp~n = 0.55 
and Ai = 0.86 gave good agreement with the 
experimental values. A value of Ai = 0.86 is the 
expected value for spheres in a matrix of Poissons 
ratio 0.35. A value of ~0~n = 0.55 is between the 
values for random loose packing (0.60) and 
simple cubic packing (0.524) of spheres. Thus, in 
this case the behavior predicted from the morpho- 
logy is in very good agreement with the actually 
observed experimental results. 

An example where the discontinuous phase 
does not appear to be dispersed spheres at either 
end of the composition range is the series of poly- 
blends of polybutadiene and styrene-butadiene 
(SBR) rubber reported by Fujimoto et al. (17). 
The SBR copolymer contained 57.3% styrene. 
A comparison of the experimental data at 25 °C 
and the calculated results are given in fig. 6. An 

ô 

¢n 

I I 

• EXPERIMENTAL 
X CALCULATED 

I I 

VOLUME FRACTION OF SBR 

Fig. 6. Modulus of polybutadiene - SBR rubber blends 
at - 25 °C 
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excellent  ma tch  of  the exper imenta l  results is 
achieved by  using the values:  A = 4.35, B = 0.92, 
~0,, = 0.60, Ai = 0.3, Bi = 0.97, q)m = 0.70. The 
Einstein coefficients (or A values) indicate  that  
the d ispersed  phases  near  ~o -~ 0 and  q~ ~- 1 are 
no t  d ispersed spheres but  are  ei ther fibers with 
an average aspect  ra t io  of a b o u t  8 to 1 or  very 
large aggregates.  This  system also has a very 
na r row  range of  compos i t ions  in which two 
con t inuous  phases  s imul taneous ly  exist;  phase  
invers ion is comple te  between a vo lume fraction 
of  0.3-0.6 o f  SBR copolymer .  

Where  the necessary morpho log i ca l  informa-  
t ion is ava i lab le  in the four examples  discussed,  
there  is agreement  between the exper imenta l  
and  the ca lcula ted  results.  In the o ther  cases, 
r easonab le  morpho log ie s  have been deduced  by 
fitting the theoret ica l  equa t ions  to the experi-  
menta l  data .  However ,  add i t iona l  in format ion  
on the m o r p h o l o g y  is needed to test the comple te  
val id i ty  of  this approach .  
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Appendix 

Justification for the logarithmic rule of mixtures in the 
overlap region 

Empirically, it has been known that the logarithmic 
rule of mixtures (eq. [11]) is useful for predicting the 
modulus of crystalline polymers as a function of the 
degree of crystallinity or for predicting the modulus of 
polyblends in the region of phase inversion. Very little 
theoretical justification for its use has been presented, 
however. There are two intuitive arguments for its use: 

1. There are two general equations which are capable 
of coveting all values of the moduli M of composite sys- 
tems from the lowest lower bound to the greatest upper 
bound. These are the Halpin-Tsai equations (eqs. [3]-[5]), 
and 

M n = M~tpl  + M~tp2; - 1  _< n < + 1. [a] 
The logarithmic rule of mixtures is the limiting case of 
eq. [a] as n ~ 0 .  The Halpin-Tsai equations and eq. [a] 
are symmetrical with respect to all upper and lower 
bounds when logM is plotted as a function of (P2. They 
are not symmetrical on a M versus ~02 plot. 

2. The second argument involves giving equal relative 
weighting factors to both low and high moduli. When 
the upper and lower limits to the moduli are greatly differ- 
ent, equal weighting is achieved on a logarithmic scale 
but not on a linear scale. 

The most important argument for using a logarithmic 
rule of mixtures can be visualized by writing eq. [11] in 
exponential form 

M = M v  ~ " ML ~ [b]  

where subscripts U and L refer to equations for the upper 
and lower bounds of the moduli. The quantities q~L and q~v 
refer to the relative amount of each phase participating 
as a continuous phase- not the total amount of each phase 
present. Thus, q~z can be considered the "connectivity" 
of the rigid phase. If~0 L = 0, none of the rigid phase is con- 
tinuous, while if~0L = 1, all of the rigid phase is continuous 
in the region of overlap between (1 - q¢) and q~, (see 
fig. 2). Likewise, ~0 v can be considered the "connectivity" 
of the low modulus component in the overlap region. 
The concept of connectivity can be illustrated by the overly 
simplified sketches in fig. 7. In fig. 7A and 7 C, the rubber 
phase is dispersed (its connectivity is zero), and the modulus 
of the composite is high. In fig. 7 B and 7 D the connect- 
ivity q)v has increased, and the modulus of the composite 
decreases even though the quantity of rubber has not 
changed and the appearance of the rubber phase is nearly 
the same. A similar, but inverse situation, holds if G1 > G2 
so that the connectivity q)L of the rigid component in- 
creases in going from fig. 7A to 7B. As the connectivity 
of one phase increases, the connectivity of the other phase 
decreases in accordance with the equation 

~0L + ~0v = 1. [C] 

A B 

C O 

ff 62 ~'G~, GA ~'6t,~ G¢ • Go 

Fig. 7. Schematic diagrams illustrating the concept of 
connectivity of phases. Phase 1 has zero connectivity in 
A and C 

In the overlap region where phase inversion is taking place, 
the connectivities q~L and q~v change more rapidly than 
the volume fractions of the components qh and (P2. 

The connectivity must be random in nature for the 
logarithmic rule of mixtures to hold. If the connectivity 
of the particles becomes oriented primarily in one direc- 
tion, anisotropy develops. In the extreme case of orien- 
tation parallel to the direction of stress, a parallel type of 
model holds in which the ordinary rule of mixtures is 
obeyed: 

M = MI(O 1 + M2(,o 2 . [d]  

The other extreme is orientation perpendicular to the 
direction of applied tensile stress; in this case a series type 
of model system develops in which the inverse rule of 
mixtures holds: 

1 tpl go2 
+ - -  [ e ]  

M M1 M2 
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On a logM versus ~02 plot, eqs. [d] and [e] are symmet- 
rical about the line for the logarithmic rule of mixtures. 
Rotation of such plots 180 ° corresponds to rotating the 
specimen 90 °. 

Summary 
The theory of the elastic moduli of composite materials 

in which an inversion of the phases can occur is reviewed. 
The morphology of the system and the packing fraction 
of the dispersed phase are important in determining the 
moduli. The applicability of the theoretical equations is 
illustrated for four systems of block polymers and poly- 
blends. In three of the systems, phase inversion occurs. 
Agreement between theory and experiment is good, and 
where the morphology of the composites is known, the 
moduli agree with the values expected for that morphology. 

Zusammenfassung 
Die Elastizitätsmodul-Theorie der zusammengesetz- 

ten Stoffe, in welchen eine Phaseninversion vorkommen 
kann, wird untersucht. Die Systemmorphologie und die 
Packungsfraktion der dispersen Phase sind für die Mo- 
dulbestimmung wichtig. Die Anwendbarkeit der theo- 
retischen Gleichungen ist für vier Systeme von Block- 
polymeren und Polygemischen veranschaulicht. Eine 
Phaseninversion kommt in drei von den S~¢.stemen vor. 
Die Theorie und Praxis sind in einer guten Ubereinstim- 
mung, und da, wo die Morphologie der zusammen- 
gesetzten Stoffe bekannt ist, stimmen die Moduli mit den 
für die Morphologie erwarteten Werten überein. 
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