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Per i s ta l t i c  m o t i o n  o f  a n o n - N e w t o n i a n  f luid 

Part II. Visco-elastic fluid 

Introduction 

B y  K .  K a n a k a  R a j u  and  R a t h n a  D e v a n a t h a n  

With 2 figures and 1 table 

The  s tudy  of peris tal t ic  t r anspor t  of  
fluids is found to  be of  great  impor tance  in 
physiology.  Par t icu lar ly ,  the  theoret ical  in- 
vest igat ions on peris tal t ic  marion by  B u r n s  
and  P a r k e s  (1), F u n g  and  bis group (2, 3), 
S h a p i r o  et  al. (4), etc. 1) have  exci ted some 
interes t  in recent  years.  However ,  these 
studies are confined to  only N e w t o n i a n  fluids. 
Since m a n y  of  the  biological fluids including 
blood exhibi t  n o n - N e w t o n i a n  behaviour  [see 
W h i t m o r e  (5)], we (6) ~) made  an a t t e m p t  to  
s t u dy  the  peris tal t ic  mar ion  of  a power  law 
fluid in a tube  with a sinusoidal w a r e  of 
small ampl i tude  t ravel l ing down its wall. 
The  solution for the  s t ream funct ion is 
ob ta ined  as a power  series in t e rms  of 
Reyno lds  numbers  and  the effect of  nah 
N e w t o n i a n  pa rame te r  on the  s treamline par- 
t e rn  is discussed in detail.  

The  aim of  the  present  note  is to  ex tend  
our  previous analysis (6) to  include the  
discussions abou t  the  peristal t ic  mar ion  for a 
visco-elastic fluid taking the  const i tu t ive  
equa t ion  of  a simple fluid with fading 
memory .  

2. The fluid model 

We choose as a model  of  visco-elastic fluid 
a simple fluid with fading memory .  Employ-  
ing the  sequence of  co-rotat ional  k inemat ic  
tensors as described by  Gieselcus (7, 8), the  
const i tu t ive  equa t ion  has the  form 

~) A detailed literature about the peristaltic motion 
is presented in the first part of this paper. 

~) (6) is referred as Part I in sequel. 
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T p I  + 2~]0(/(1) + Z(2)/(2) + Z(11)1(1)2), [2.1] 

where 

/(1) 21 (At -'~ Yz~) [2.2] 

ca = I (Av -- vA) [2.3] 

/(2) 0/0) 
0t ~- y" ff]/(,) ~- (D" l (1) 1(1). ~0, [2.4] 

mean  respect ively  the usual  ra te  of  de- 
format ion  tensor,  the vor t ic i ty  tensor  and 
the co-rotat ional  kinemat ics  tensor ;  ~0 rep- 
resenting the viscosi ty paramete r ,  Z( 21 and 
Z(1) having dimension of t ime character is ing 
the  elast ici ty of the  fluid. 

3. Formulation of the problem 

Consider the  ax isymmetr ic  flow of  a visco- 
elastic fluid character ised by  [2.1] to [2.4] in 
a circular cylindrical  tube  wi th  a sinusoidal 
wave of  small ampl i tude  t ravel l ing down its 
wall. The  wall of  the tube  is t aken  as 

R : a  (1 + ~cos~ß(Z ~~)I' [3.1] 

where a is the radius of the undisturbed tube, ae is 
the amplitude of the ware, 2 is the ware length, c is 
the wave speed, R and Z are the cylindrieal polar 
coordinates with Z-axis measured along the axis of 
the tube, R is the radius in the radial direction, T is 
the time. 

The equat ions  of  mot ion are, 

OU U OW 
0 R  + -R + -0Z- = 0, [3.2] 

OU OU w OU OTRR 0 TRtt 
-ä~-+ UOR-+ - -O Z-=  äR + ~ T z z +  R ' 

[3.3] 
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where T R R . . .  a.re tlle stress componen t s  g iven  by  
[2.1] to  [2.4] (U, W) are the  veloeity eomponen t s  in the  
di rect ion of R and  Z respeetively.  

The above  equat ions  are rendered  di- 
mensionless b y  in t rodueing the  dimensionless 
v~riables r, z, t, u, w wi th  the  help of' char- 
acteris t ic  length a, character is t ic  veloci ty  c. 

The  b o u n d a r y  condit ions in t e rms  of the 
dimensionless  var iables  are 

u = e ~ s i n ~ ( z  t ) /  on 
w =: 0 t 

2 ~ ( t  
where ~ = ~ . 

A 

r = l + «cosa(z t), 

In t rodue ing  the  st.ream funet ion (t j in the  
form 

I OT 
F OZ 

] 3'F 

F OF 

the  equa t ion  of  eon t inu i ty  ean be identieal ly 
satisfied. 

4. So lu t ion  for t h e  s t r e a m  f u n c t l o n  

Assuming  the  ampl i tude  of the  wave  e to 
be small,  the  solution for T is t a k e n  as a 
power  series in t e rms  of s in the  form 

T = : ( t Q +  eYs l +  e 2ys2+ . . .  

P Po + ep~ + e2p2 + . . .  

Subs t i tu t ing  [4.1] along wi th  [3.6] in [3.3] 
and  [3.4], eolleeting the  eoeffieients of 
var ious  powers  of  e, we ob ta in  the differential  
equat ions  for To, T l ,  . . . 

I n  the  «bsenee of per is ta l t ie  w a r e  along 
the b o u n d a r y  of the  tube,  we obta in  the  
usual  Poiseu i l l e  flow of a viseoelast ic fluid 
in a cylindrical  tube  of cireular  cross section. 
As the  axial  ve loc i ty  in this ease is only  
funet ion of  r, we find t h a t  Ys 0 is a funet ion 

of r onlv  ~nd OTo aT'o 
Oz 3t --O. 

The solution for ~P0 is g iven b y  

,~+ »o(~ 4, 
Re äPo 

where ko 8 Oz ' 

pressure gradient .  

apo òz being  the  cons t an t  axial  

I t  is observed t h a t  the  st.team funct ion for 
' the viseoelastie fluid in the  absenee of 

1:1.411 peris ta[ t ie  wave  co]neides with t h a t  of  the  
N e w t o n i a n  fluid. Such s i tuat ions,  name ly  the 
p r i m a r v  flow of the n o n - N e w t o n i a n  fluid 
co]ne]ding with t h a t  of Newton ian  fluid, do 
oeeur  in m a n y  of the seeondary  flows of 
n o n - N e w t o n i a n  fluids [see Bhatnagar  (9)]. 
On the o ther  hand, the  p r i m a r y  flow in the  
ease of  power  [aw fluids does not  co]neide 
with t h a t  of  Newton ian  fluid [see (7)]. 

Similarly,  the  differentiM equa t ion  for (/il 
is ob ta ined  by  subs t i tu t ing  [4.1] along with 
[3.6] in [3.3] and  [3.4], equa t ing  the eo- 

[3.51 effieients of  « and el iminat ing Pl. Thus  the  
equat ion for  ~Pt is 

[ ( l e +  KL)D'-' L[ D"-T,+/( 

.'+ [ ).x l, ( 3 I)2 'Fl 5 "  ~2,ts Oz 2 [ " ~:, #s \ Of: l ' ) 

{4 O'~'ls' 2 [O,ts, 2 ¥- ' t  3 1#'t',] 
[3.ù] + 4,»,, a: o_--' + , ~~,- , ~ I  

l O'l 'P, ] 0 iß. O't', ~ 
+ - - w 0  4koSr = 0, [4.3] 

where 

(a  ~ a ~ I a ]  
l)2 :: ä,.7 + ä[2 ».  ä/ ] , 14.41 

( ICO 
Re ................ Rey'~~olds munber ,  

K ~]() Z(2) Iq .... ~]1) z(ll) " [4.61 
£)(t2 ' O«t2 ' 

[4.]] and w o being the axia] ve[oeity in the absenee 
of peristMtic ware. 

The boundary eonditions on VJl are 

O~/sl = 4kù cos ~ (: t)/ 

/ a t r :  1. [4.71 

3'F, ~, sin ~ (z t) 
Oz 

The differential  eq. [4.3] suggests t h a t  the 
solution for ~/t a ean be t a k e n  in the  form 

qt,(;'.z) F(r)  cos~x(z t) + G(,") slnŒ(z t), 
[ 4 . 8 )  

where F(r) and  G(r) have  to be de t e rmined  f rom 
[4.3] and  [4.7]. Now, subs t i t u t i ng  for T1 flora [4.8] 

[4.2] in [4.3] and collccting thc  coefficients of cos_~(z t) 
and  s i n a ( z  t). we get  the  following equa t ions  Ihr 
F ( r )  and  ( ; (r) :  

(~) ('/) (L, <x<-') ~ : : Re x L 2 - , [4.91 
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where 

<~~ +/=(~) ~~~~~(~), ~~,o~ 

( d  2 1 d 1) 
L ~ ~  ~ + r dr ~~ , [4.11] 

L2 ~ {2ko(1 -- r 2) + 1 } (L~ e¢ 2) -- K [2ko(1 r 2) 

+4k°  ~- r dr ~ + 2fi- 
--{(L1 a2) 2 ~ 1 1 d 

+ ~r-r (~ :-" (L1 a2))+ 2«2 ( r  dr 1)}]  

d l )  [4.12] --k°S( 1 dr 

The b o u n d a r y  condit ions on F (r) and  G (r) 
are given b y  

F(1) = 1, F'(1) = - -4»0 ,  ) 
[4.13] 

G(1) = o, G'(1) = o 

and  

F(o) = F'(o) = o, t 
[4.14] 

a(O)= G'(O) 0. f 

At  i t  is v e r y  clearly seen t h a t  the  dif- 
ferent ia l  equa t ions  for  F ( r )  and  G(r) are 
ve ry  compl iea ted  and  it  is no t  possible to 
get  a elosed fo rm solut ion even in N e w t o n i a n  
case. Therefore ,  following Chow (10), we 
in t roduee  fu r the r  simplifieation t h a t  the  
Reyno lds  n u m b e r  is v e r y  small  so t h a t  F (r) 
and  G (r) ean be represen ted  as power  series 
in t e rms  of  Re.  Thus  we t ake  

F(r) = Fo(r ) + Re~F2(r) + . . .  I 
[4.15] 

G(r) = Re Gl(r) + O(Re3). J 
Subs t i tu t ing  [4.15] in [4.9] and  [4.10] and  

separa t ing  the  var ious  order  t e rms  we ger 
the following differential  equa t ions  for F0, 
G ]  » * , . 

(L1 «2~ o, ko«L~(F°], [4.17] 
) ~ - - -  x r /  

(L' Œ')' F ~ = - - a L ~ ( ~ )  [4.18] 

The  corresponding b o u n d a r y  eondit ions on 
F o, F1,  . . . can be deduced using [4.13] and  
[4.14]. 

We  notice t h a t  [4.16] coincides wi th  the  
equa t ion  given b y  Chow (10) for the  N e w t o n i a n  
fluids, the  solut ion of  which can be ob ta ined  

in closed fo rm in t e rms  of the  modified Bessel  
functions.  The  solution for the  fu r the r  
funet ions  F1, G 1 . . . .  in our  analysis  are 
solved numerical ]v .  The i m p o r t a n t  fea ture  
of these two poin t  b o u n d a r y  value  p rob lems  
is t h a t  t h e y  have  regular  s ingular  points  a t  
the origin. The Runge -Ku t ta -Gi l l  in tegra t ion  
proeedure  is employed  and  the  values  of  these 
funct ions  are ob ta ined  on I B M  360/44 com- 
puter ,  and  some of the  numer ica l  values  
are presented  in the  table .  Since the  numer ica l  
values  of  higher order  t e rms  are re la t ively  
small,  t hey  have  no t  been recorded here. 

Tab•e 1 

r ko = 0 ko -- 0.05 ko = 1.00 
K =  0.2 K =  0.5 K ~ - - 0 . 2  
S - -  0.6 S - -  0.6 S = 0.6 

0 0 0 
0 

0 0 0 

0.2 
0.07615 0.07979 0.14803 

0.00023 --0.00025 --0.00206 

0.4 
0.28633 0.29898 0.53855 

---0.00074 --0.00083 --0.00680 

0.86376 0.88616 1.31151 
0.8 0.00078 0.00087 --0.00703 

1.0 
1.00 1.00 1.00 

0.0 0.0 0.0 

Table giving the values of Fo and Gx. 
(The first and the second values in each column are 

Fo and G1 respectively.) 

5. D i s c u s s i o n  

The  ve loc i ty  componen t s  can be eva lua ted  
using the  s t r e am funct ion.  As in our  previous  
analysis  (6), here also we not ice m a n y  
interes t ing fea tures  in the  s t reamline  p a t t e r n  
as we change the  pressure gradient .  The  
s t reamlines  for the  low pressure  gradient  are 
depieted in fig. 1, which shows t h a t  the  
s t reaml ine  fo rm elosed loops wi th  z ( =  z - -  t) 
axis as a T ~ 0 (separat ing)  s t reamline,  and  
the  fu r the r  T ~ 0 lines run  a p p r o x i m a t e l y  
perpendicu la r  to the  z-axis. This  t y p e  of 
behav iou r  was observed  in P a r t  I for power  
law fluids. F r o m  the  numer ica l  calculat ions 
we find t h a t  for a re la t ive ly  high pressure  
gradient ,  the  s t reaml ine  p a t t e r n  changes 
complete ly .  I n  o ther  words,  the  s t reamlines  
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f o r m  eon t inuous  lines r u n n i n g  paral le l  to  the  
axis  o f  the  t u b e  w h e n  eons idered  nea r  t he  
axis,  while a eons iderab le  d e f o r m a t i o n  is seen 
w h e n  cons idered  n e a r  t he  b o u n d a r y .  A 
de ta i led  phys iea l  e x p l a n a t i o n  for  such  a 
b e h a v i o u r  was  p r o v i d e d  in P a r t  I (6). 

T h u s  the  eri t ieal  va lue  o f  the  p a r a m e t e r  
k 0 ( =  Re Opo/O ) eonnee t ed  w i t h  the  pressure  
g r a d i e n t  for  a set  o f  p a r a m e t e r s  i n v o l v e d  
h a v e  been  o b t a i n e d  wi th  m u e h  t ed ious  
c o m p u t a t i o n a l  work .  F o r  e x a m p l e  w h e n  
E = 0.05, K = - - 0 . 2 ,  S = 0.6, t he  eri t ical  
va lue  o f  /c o is 0.25. This  expla ins  t h a t  for  
the  va lues  o f  lc o less t h a n  koc = 0.25, we 
o b t a i n  the  s t r eaml ine  p a t t e r n  wi th  elosed 
loops a n d  s epa ra t i ng  T = 0 lines, while  for  
]Co > Æoc we ger  e o n t i n u o u s  s t reaml ines .  
H e n e e  ko~ can  be d e t e r m i n e d  for  g iven  K 
a n d  S. I n  a b r o a d e r  sense we ean eone lude  
t h a t  the  d e t e r m i n a t i o n  o f  the  cr i t ical  va lues  
o f  lc o m a y  serve as a d iagnos t i c  too l  to  
u n d e r s t a n d  the  per is tMtie  t r a n s p o r t  o f  visco-  
elast ie fluids. 

A special  f e a t u r e  o f  t he  p re sen t  ana lys i s  
is t h a t  ,sTe can  discuss  t he  s t r eaml ine  p a t t e r n  
for  k 0 = 0, wh ieh  was  n o t  possible in P a r t  I .  
H o w e v e r ,  in  th is  case also the  s t r eaml ines  
f o r m  closed loops as deser ibed  above .  T h e  
b e h a v i o u r  o f  the  axia l  v e l o c i t y  profiles for  
lc o = 0 a n d  lc o = 1 is s h o w n  in fig. 2. W e  
not ice  t h a t  w t akes  pos i t ive  va lues  to  n e g a t i v e  
va lues  as we pass  f r o m  k o = 0 to  k o = 1. 
T h e  cri t icat  va lue  o f  ]c o which  ehanges  the  

b e h a v i o u r  o f  w m a r k e d l y ,  h a p p e n s  to  be the  
same  k0e as desc r ibed  in the  case o f  s t ream-  
line p a t t e r n .  
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