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Introduction

The study of peristaltic transport of
fluids is found to be of great importance in
physiology. Particularly, the theoretical in-
vestigations on peristaltic motion by Burns
and Parkes (1), Fung and his group (2, 3),
Shapiro et al. (4), etc.l) have excited some
interest in recent years. However, these
studies are confined to only Newtonian fluids.
Since many of the biological fluids including
blood exhibit non-Newlonian behaviour [see
Whitmore (5)], we (6)?) made an attempt to
study the peristaltic motion of a power law
fluid in a tube with a sinusoidal wave of
small amplitude travelling down its wall.
The solution for the stream function is
obtained as a power series in terms of
Reynolds numbers and the effect of non
Newtonian parameter on the streamline pat-
tern is discussed in detail.

The aim of the present note is to extend
our previous analysis (6) to include the
discussions about the peristaltic motion for a
visco-elastic fluid taking the constitutive
equation of a simple fluid with fading
memory.

2. The fluid model

We choose as a model of visco-elastic fluid
a simple fluid with fading memory. Employ-
ing the sequence of co-rotational kinematic
tensors as described by Giesekus (7, 8), the
constitutive equation has the form

1) A detailed literature about the peristaltic motion
is presented in the first part of this paper.
2) (6) is referred as Part I in sequel.
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T=—pI+ 2u(f0 + y@f® 4 ya0f@2), [2.1]
where

O = 1 (v + vA) [2.2]

w =1 (v —vA) [2.3]

o — af S A g o0 0, [2.4]

mean respectively the usual rate of de-
formation tensor, the vorticity tensor and
the co-rotational kinematics tensor; 7, rep-
resenting the viscosity parameter, @ and
%'V having dimension of time characterising
the elasticity of the fluid.

3. Formulation of the problem

Consider the axisymmetric flow of a visco-
elastic fluid characterised by [2.1] to [2.4] in
a circular cylindrical tube with a sinusoidal
wave of small amplitude travelling down its
wall. The wall of the tube is taken as

R:a{l-}-seos%z(Zfot)]r 13.1]

} b
where a is the radius of the undisturbed tube, ace is
the amplitude of the wave, 1 is the wave length, ¢ is
the wave speed, R and Z are the cylindrical polar
coordinates with Z-axis measured along the axis of
the tube, R is the radius in the radial direction, 7 is
the time.

The equations of motion are,
oU U ow
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where Thrg ... arc the stress components given by
[2.1] to [2.4] (U, W) are the velocity components in the
direction of R and Z respectively.

The above equations are rendered di-
mensionless by introducing the dimensionless
variables 7, z, t, w, w with the help of char-
acteristic length @, characteristic velocity c.

The boundary conditions in terms of the
dimensionless variables are

u = £xsinx(z I)]

w o= 351

on r= 1+ eccosx(z - t),

2ma
where ~ = =5 .

Introducing the stream function ¥ in the
form

1 ov

T e

L or

T oor

[3.6]

the equation of continuity can be identically
satisfied.

4. Solution for the stream function

Assuming the amplitude of the wave ¢ to
be small, the solution for ¥ is taken as a
power series in terms of ¢ in the form

W Wy oW, 4 W+

Pp=1po+ep + p,+ ... [4.1]

Substituting [4.1] along with [3.6] in [3.3]
and [3.4], collecting the coefficients of
various powers of ¢, we obtain the differential
equations for ¥,, ¥,, ...

In the absence of peristaltic wave along
the boundary of the tube, we obtain the
usual Poiseuwslle flow of a viscoelastic fluid
in a cylindrical tube of circular cross section.
As the axial velocity in this case is only a
function of », we find that ¥ is a function

v, dYv,
of r only and —* = 5
The solution for ¥ is given by

= 0.

r4
=k (5 - ), [4.2]
fe 9p,  9py
8 dz ' oz
pressure gradient.

where k, = being the constant axial

It is observed that the stream function for
the viscoelastic fluid in the absence of
peristaltic wave coincides with that of the
Newtonian fluid. Such situations, namely the
primary flow of the non-Newtonian fluid
coinciding with that of Newlonian fluid, do
occur in many of the secondary flows of
non-Newtonian fluids [see Bhatnagar (9)].
On the other hand, the primary flow in the
case of power law fuids does not coincide
with that of Newtonian fluid [see (7)].

Similarly, the differential equation for ¥
is obtained by substituting [4.1] along with
[3.6] in {3.3] and [3.4], equating the co-
efficients of ¢ and eliminating p,. Thus the
equation for ¥, is
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where
0? 0* 1 )
2 o b y
! (azz 022 7 6/)' [4:4]
b} )
L (—fa—ft‘—l- w5 ), [4.5]
Re = nee Reynolds number,
Yo
Ko s R [4.6]

o oa?
% 9

and w, being the axial velocity in the absence
of peristaltic wave.
The boundary conditions on Y| are

W
aa‘:l = —dkycosx(z — 1)
atr = 1. [4.7]
M xsinaxfz - #)
oz o :

The differential eq. [4.3] suggests that the
solution for ¥ can be taken in the form
Wi(r.2)

e F(r) cosx(z ~ t) + G(r)sina(z — 1),

[4.8)
where F(r) and G(r) have to be determined from
[4.3] and [4.7]. Now, substituting for ¥, from [4.8]
in [4.3] and collecting the coefficients of cosx(z — ¢)

and sinx(z - t). we get the following equations for
F(r)yand G(r):

[4.9]
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(L, — o2 (g) —  Real, (é) [410]
where
@ 14 1
LI:(EF+T’¢17“F)’ [4.11]

Ly ={2ky(1— )+ 1}(L, — o?) — K [21%(1 )

4 ) e )
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The boundary conditions on F(r) and G (r)
are given by

F(l)y=1, F'(l) = —A4k,,
} [4.13]
G)=0, ¢’(1) =0
and
F(0) = F'(0) :0,} 1]
G(0) = 6" (0) = 0.

At it is very clearly seen that the dif-
ferential equations for F(r) and G(r) are
very complicated and it is not possible to
get a closed form solution even in Newtonian
case. Therefore, following Chow (10), we
introduce further simplification that the
Reynolds number is very small so that F(r)
and G (r) can be represented as power series
in terms of Re. Thus we take

F(ry=Fo(r)+ R Fy(r) + ... :

[4.15]
G(ry = Re Gy (r) + O(Re?).

Substituting {4.15] in [4.9] and [4.10] and
separating the various order terms we get
the following differential equations for F,,

15 o

(L, — oci’)“’(%) —o0, [4.16]
(Ly — o2y % — koL, (?) [4.17]
(L, — a3y _1:_2 ol (_C:i) . [4.18]

The corresponding boundary conditions on
Fy, Fy, ... can be deduced using [4.13] and
[4.14].

We notice that [4.16] coincides with the
equation given by Chow (10) for the Newtonian
fluids, the solution of which can be obtained

in closed form in terms of the modified Bessel
functions. The solution for the further
functions F,, G4,... in our analysis are
solved numerically. The important feature
of these two point boundary value problems
is that they have regular singular points at
the origin. The Runge-Kutta-Gill integration
procedure is employed and the values of these
functions are obtained on IBM 360/44 com-
puter, and some of the numerical values
are presented in the table. Since the numerical
values of higher order terms are relatively
small, they have not been recorded here.

Table 1
r ky=10 k, = 0.05 k, = 1.00
K=-02 K=-05 K=-02
§=06 §=06 S=0.6
0 0 0
0
0 0 0
0.07615 0.07979 0.14803
0.2
—0.00023 —0.00025 —0.00206
0.28633 0.29898 0.53855
0.4
—0.00074 —0.00083 —0.00680
0.86376 0.88616 1.31151
0.8 —0.00078 —0.00087 —0.00703
1.00 1.00 1.00
1.0
0.0 0.0 0.0

Table giving the values of #, and 6.
(The first and the second values in each column are
F, and G, respectively.)

5. Discussion

The velocity components can be evaluated
using the stream function. As in our previous
analysis (6), here also we notice many
interesting features in the streamline pattern
as we change the pressure gradient. The
streamlines for the low pressure gradient are
depicted in fig. 1, which shows that the
streamline form closed loops with z{=z — )
axis as a ¥ = 0 (separating) streamline, and
the further ¥ = 0 lines run approximately
perpendicular to the z-axis. This type of
behaviour was observed in Part I for power
law fluids. From the numerical calculations
we find that for a relatively high pressure
gradient, the streamline pattern changes
completely. In other words, the streamlines
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Fig. 1. Streamlines for the visco-elastic fluids
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form continuous lines running parallel to the
axis of the tube when considered near the
axis, while a considerable deformation is seen
when considered near the boundary. A
detailed physical explanation for such a
behaviour was provided in Part I (6).

Thus the critical value of the parameter
ko (= Re 0p,y/0 ) connected with the pressure
gradient for a set of parameters involved
have been obtained with much tedious
computational work. For example when
E =005 K= —0.2, § = 0.6, the critical
value of k, is 0.25. This explains that for
the values of k, less than k&, = 0.25, we
obtain the streamline pattern with closed
loops and separating ¥ = 0 lines, while for
ky > k,, we get continuous streamlines.
Hence k,, can be determined for given K
and S. In a broader sense we can conclude
that the determination of the critical values
of k, may serve as a diagnostic tool to
understand the peristaltic transport of visco-
elastic fluids.

A special feature of the present analysis
is that we can discuss the streamline pattern
for k, = 0, which was not possible in Part I.
However, in this case also the streamlines
form closed loops as described above. The
behaviour of the axial velocity profiles for
ko= 0 and k, = 1 is shown in fig. 2. We
notice that w takes positive values to negative
values as we pass from k, = 0 to k, = 1.
The critical value of k, which changes the

behaviour of w markedly, happens to be the
same k,, as described in the case of stream-
line pattern.
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