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S~mmary 

A novel equation of state for bimodal networks with 
extremely short chains as solid intrusions is developed 
proceeding from the van der Waals theory of molecular 
networks. Stress-strain and thermoelastic measurements on 
bimodal end-linked polydimethylsiloxane model networks 
can satisfactorily be described. The physical reasons behind 
that representation will be discussed. 
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Introduction 

Bimodal networks comprised of very short 
and relatively long polydimethylsiloxane 
(PDMS) chains have been prepared and found to 
be usually tough elastomers (1-7). Of particular 
interest are systems with a short chain molecular 
weight which is sufficiently small as to let these 
chains behave like rigid elements. Understand- 
ing of the deformation behavior of these model 
systems is attractive from various reasons for 
example also related with the question to the 
origins behind reinforcement of networks by an 
active molecular filler (8, 9). 

A phenomenological description of the stress- 
strain behavior as well as of the thermo- 
mechanics of bimodal networks letting one of 
the components act as rigid intrusions is given in 
this study. Proceeding from the van der Waals 

*) Dedicated to Professor Dr. K. Ueberreiter on his 70th 
birthday. 

equation of state (10-14) we derive an adequate 
formulation of an equation of state for 
heterogeneous networks of this type. 

The van der Waals-equation of state 

In spite of having a system in a condensed 
state, it is appropriate to consider the network 
to be represented as a formelastic fluid letting 
the chains behave like "particles in a conforma- 
tional gas with weak interactions" (10-13). 
Equipartition of energy always present, the 
energy of deformation is simply obtained as the 
sum over the total number of chains each one 
contributing in the statistical average the same 
amount of energy. Hence we arrive at the stress- 
strain energy density 

W = nw  (T, L, ai) [1] 

where n is the number of chains per unit 
volume, w the average energy of deformation of 
a single chain which is uniquely defined in the 
coordinate system (T, L, oi) for uniaxial exten- 
sion experiments (12). oi are the principal stres- 
ses in perpendicular direction to the applied 
stress, invariant under constant pressure condi- 
tions. L is defining the actual length of the 
system in direction of the stress o which should 
be given by the mechanical equation of state 

N k T  <r2> 
o -  110 <~0> D [ B -  aD] [2] 

where k is Boltzmann's constant, Tthe absolute 
temperature, V0 = L~ the volume of the un- 
strained system. D is equal to 

Dm= 2 - 2 -2 . [3] 

K 360 
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With fm = Lmax/L0 assigned to the maximum 
strain of the system which is clearly related to 
the limited chain extensibility, we have 

Dm = fm -- f ~ 2  

such that 

B = Dm/(D m - D). 

we obtain 

f = v~/~ + (1 - v~/3)f R 

which may be cast into the form 
[4]  

f i r  = ( f -  V y ' ) / ( 1  - -  V ; / ' )  

= f 1 - v ; / ' / f  
[5] 1 - v;/' " 

[11] 

[10] 

The van der Waals parameter a is taking into 
consideration weak interactions between the 
chains affecting their conformational abilities. 
<r~>/<~0 > is the well known correction term 
which appears necessarily in actual networks 
with thermal expansion and non-isoenergetical 
rotational isomers (14-17). 

The bimodal network 

To begin with let the rigid components in the 
bimodal network be represented by spheres. 
Since the displacement components within the 
rigid inclusions are assumed to be zero, energy 
of deformation can only be stored within the 
long-chain parts of the network. 

With the short chain components being suffi- 
ciently small and homogeneously dispersed in 
the elastic matrix of the long-chain network, we 
may define the average length of the sample L 
by 

L = Lso + L R [6] 

We learn from these considerations that the 
intrinsic strain of the long-chain matrix is mar- 
kedly increased on bringing the volume fraction 
of the rigid chains to higher values. The assump- 
tions imply an apparent reinforcement of the 
bimodal network. This can easily be estimated 
for a Gaussian rubber matrix at higher strains. 
The macroscopic density of the chains should be 
reduced in the bimodal network in proportion 
to l-v,, thus, yielding for simple extension the 
asymptotic behavior 

a -  (1 - ~ ) &  
f (1 - %)/(1 - v ; / 3 ) .  [12]  

If we express the pure Gaussian network stress 
at high elongations by ag - f, we have therefore 

a/og ~ (1 - %)/(1 - v;/3) > 1; G < 1 [13] 

such that an overall reinforcement results on 
account of the extremely heterogeneous defor- 
mation in the bimodal network under discus- 
sion. 

where Lso and L R correspond to the contribu- 
tions of the solid and the rubber elastic compo- 
nent. With the length in the undeformed body 
written as 

g 0 = Lso + g R o  [7] 

we are led to the expression 

f = L/Lo - Lso/Lo + (LRo/Lo)•;  
f ,  = LR/LRo [8] 

thus, relating the average macroscopic strain f to 
the actual average strain in the rubber matrix fR. 
Denoting the volume fraction of the solid chains 
by 

The van der Waals approach 

Under the above circumstances the problem 
of finding an adequate description of the bimod- 
al networks is mainly solved if the equation of 
state of the rubber matrix can be expressed by 
means of equation [2]. Then we are immediately 
led to 

a = ( N R k T < r 2 > / < ~ o > / V o )  

D d B R  -- < a > D A .  [14] 

With the partial volume of the rubber matrix VR 
related to the total volume of the system, V0, we 
may rewrite equation [14] 

a = v R ( n R k T < ~ > / <  ~0>)" 

DR(BR - < a >  DR) Vs = ( t s o / L o )  3 [9] [lS] 
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where n R = N R / V  R is defining the density of the 
chains in the pure rubber matrix, vR = VR/Vo 
the volume fraction of this component. The 
indices should indicate that according to 

D R = 2 R - 2R -2. [16] 

2R as the intrinsic strain in the rubber matrix has 
to be used. Hence, cr/vR is formally identical 
with the equation of state of a homogeneous 
rubber having finite extensibility of its chains 
which is characterized by its belonging max- 
imum strain, 2 m. Yet, the interaction parameter 
in the bimodal system is allowed for taking 
values which are different from the values for 
pure rubber systems. This is indicated with the 
brackets in equation [15]. 

At this point, it appears profitable to check 
whether an adequate fit to experiments on 
bimodal model networks of Zhang and J. E. 
Mark (7) can be obtained with the aid of the 
above equation of state. 

First comparison with experiments 

For the pure tetrafunctional long-chain net- 
work of PDMS the "Mooney plot" (c¢:" = cx/ 
( 4 - 2  -2) against k -1) delivers a straight line in 

the medium range of elongations. This is shown 
in figure 1 giving the data published by Zhang 
and Mark (7). The bimodal networks have 
values of o* which increase after a linear decay 
at "high elongations", thus, giving unusually 
large values of the ultimate strength. Adopting 
the interpretation that the final upturn arises 
from the limited chain extensibility, it should be 
possible to determine 2m of the rubber matrix 
very accurately by fitting the data with the aid of 
equation [13]. 

The results of this fit are shown in figure 1 
with the solid lines. The typical shift of the 
characteristic upturn to smaller elongations with 
the number of the short chains increased, is 
satisfyingly be obtained with an invariant maxi- 
mum strain parameter of 2m = 5.8. This is 
justifying the basic assumption of having nearly 
invariant intrinsic properties of the rubber ma- 
trix in all the bimodal networks under discus- 
sion. A systematic decrease of the average 
interaction parameters < a >  with rising values 
of the short chains has been found to be 
necessary to arrive at the best fit of the data. The 
characteristics of the model networks as well as 
the parameter used are given in table 1. 

g- 
'E 
E 
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0.3 

Q2 

90 

60 

Fig. 1. Representative stress-strain isotherms for the bimod- 
al PDMS networks in elongation at 225 K according to 
Zhang and Mark (7). Each curve is labeled with the tool% of 
the much shorter chains. The open circles locate the results 
gotten using a series of increasing values of the elongation 2, 
and the filled circles the results obtained out of sequence to 
test the reversibility. The solid lines are giving the isotherms 
computed with the aid equation [15] using the set of 
parameters listed in table 1 (or = f/A, A initial cross-section) 

Table 1 : 

(I) The number-average of the molecular weights (7) 

M, (long-chains) 
M n (short-chains 

= 18 500 g mo1-1 
= 200 g mo1-1 

(II) The composition of the bimodal samples in mol% and 
Wt% of the short chains ~) and the belonging <a>exp 

Sample mol% Wt% <a>ex p 

(1) 60 1.75 0.36 
(2) 75 3.44 0.34 
(3) 85 6.31 0.31 
(4) 90 9.67 0.28 

a) the sample with 80 mol% is not considered here because 
of its unusual stress strain behavior 

(III) The parameters of the van der Waals approach 

NRkT<~->/<~> = 0.25 Nmm-2;  ;~m = 5.8 

n = 0.3; rn = 5 

Pure PDMS-system: a = .39; others see the fourth column 
in the table 
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The  s h o r t - c h a i n  c o n t r i b u t i o n s  

A straight forward improvement of the above 
considerations can be installed by taking into 
consideration a certain form-anisotropy of the 
short chains. Having rigid rods instead of 
spheres, orientation contributions of the short 
chains necessarily appear essentially at small 
elongations. 

In the simplest model it is assumed that all 
rigid rods the largest principal axis of which are 
fully oriented in direction of the macroscopic 
force, will act as active rigid molecular inclu- 
sions. The complementary fraction should be- 
have as a type of an "active plastic filler" the 
behavior of which will be defined now. We learn 
from the scetch in figure 2 that the length of the 
projection of the two-dimensional representa- 
tion of a rod is given by 

lsi = lso(~ s i n  ¢ i  ' b  COS ¢i)  [17] 

with ~/is the angle between the large principal 
axis Iso and the direction of the force. ~ = rso/l~o 
is adequately defining the form anisotropy of 
the rods. We thus find that the fraction of rods 
initially oriented in direction of 4~i delivers a 
maximum relative transformation of the projec- 
tion under discussion given by 

= 4Ao 
= (~ esin Oi + cos ~i) -l.  [18] 

Using now the simple condition 

iti = it [19] 

~ ' [ $ O  

~[so sin¢~i tso COS~i 
• SR 

Fig. 2. Illustration of the two-dimensional cross-sectional 
area of a rod occupying the angle ~Pl with the axis of 
symmetry which is considered to be determined by direction 
of the uniaxial stress (rso 7 ¢lso) 

that fraction of rods which is not yet fully 
oriented is obtained from 

at/2 
r/(it) = J" sin ~pdq5 [20]  

~,(~) 

provided that the rods have initially been ran- 
domly oriented. What is available for fitting is 
the form anisotropy parameter s e. It is seen from 
table 2 that having s e, equal to 0.5, a certain 
fraction of all the rods should only deliver 
relevant contributions in direction of L that 
means to the average elongation of the sample in 
direction of the force. This is indicated with the 
arrow in the third column in table 2 A. 

For the sake of simplicity it is introduced now 
that the fraction/7 (it) behave like an ideal plastic 
filler storing no energy of deformation. The 
only effect of its existence is then that the 
intrinsic strain in the rubber matrix is reduced in 
definite dependence on the "effective relative 
volume fraction" of rigid rods, vs(it), given by 

Vs(it) = (1 - r/(it)) v,(it). [21] 

It is seen from table 2 B that the characteristics 
of vn (2) can analytically be represented by the 
empirical equation. 

Table 2. % (4) = ( 1 -  ~(2~) %o-~ ( 1 -  ~/2~)3%o 

A ,~i 1 - ~(~) 2,(8 = o.s) 

10 .015 .93 
20 .06 .9 
30 .13 .9 
40 .23 .92 
50 .36 .97 J 

60 .5 [ 1.07 
70 .66 [ 1.23 
80 .83 / 1.50 
90 1.0 + 2.0 

B (1 - n/2~) 3 2 1 - ~ (¢i) 

1.05 .44 .48 
1.15 .62 .55 
1.25 .73 .66 
1.35 .78 .71 
1.5 .88 .83 
2 1 1 

n = 0 . 3 ; m = 5  
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v , ( 2 )  = V,o (1 - nitT~2)3; 

0 < n < 1 [22] 

by a proper adjustment of the parameters n and 
m (n = 0.3, rn = 5). The correction due to the 
above processes are confined to the range of 
small elongations (it < 2). 

The shape and relative position of the load- 
deformation curves in the Mooney plot can now 
be fitted for the total set of binary networks no 
more having relevant discrepancies at small 
deformations. This can be seen by evidence 
from figure 3. The systematic deviations of the 
calculated upturn of o*(it) from the data ob- 
served for lower valued shortchain component 
networks may be originated by very small 
differences in the actual structure of the net- 
work. 
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Fig. 3. Fit to Zhang-Mark's stress-strain measurements 
(parts of them also given in fig. 1) substantiated by means of 
the equations [15] and [22] employing the parameters listed 
in table 1 and table 2. The calculated results are given by the 
solid lines 

General remarks 

First of all we learned from the preceeding 
treatments that molecular reinforcement in 
bimodal networks having chain-components 
one of them of extreme shortness, is simply 
produced by a definite increase of the intrinsic 
strain in the rubber matrix. Reinforcement is 
obtained in all cases in spite of the decreased 
overall density of the long chains. 

The basic autonomy of the chains in the 
rubber is fully maintained such that the intrinsic 
properties of the matrix are clearly determined 
by a network structure which turns out to be 
practically identical with that of the pure PDMS 
system. Only the interaction parameter is found 
to be dependent on the presence of the rigid 
short-chain elements. Energy stored in these 
short chains, this happens as in solids by exeed- 
ingly small strains. Contributions of these ori- 
gins can thus fairly well be neglected in describ- 
ing the elongation in such bimodal networks. A 
partial "softening" essentially at lowest elonga- 
tions is considered to be attributed to orienta- 
tional effects of the formanisotropic rigid ele- 
ments. 

The size of the statistical segments 

The question arises whether any relationship 
between the maximum strain value of itm = 6 
and the number-average of molecular weight of 
the long chains can be found. We want to 
demonstrate that we are in the position of giving 
such an estimate on the basis of the van der 
Waals approach. This explanation is deeply 
related to the fact that the entropy of conforma- 
tion of chains of finite length does depend on 
the size of the statistical segments. 

Let us define the average length of the chains 
by 

Y = nstyst [23] 

where y is the number of periodic units in the 
chain which is considered to be comprised of nst 
statistical segments of the length Yst. In the 
limited case of a freely jointed Gaussian chain 
the maximum strain should be given by (8, 13, 
14, 15). 

2m = ystnsffyst(nst) 1/2 = nit/2 [24] 
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such that we calculate from the experimental 
value of ;t m = 6 an average number of statistical 
segments in the chains of 

n~t = (2m) 2 = 36. [25] 

Hence, we see that we are led to an average 
molecular weight of the statistical segments in 
the long chains of 

Mst = Mff36 = 18500/36 = 514 g mo1-1 [26] 

where we have used the number-average of the 
molecular weight of the long PDMS-chains 
which has been reported by Zhang and Mark 
(7). We observe therefore that the length of the 
short chains having a molecular weight of Ms,oft 
= 220 g mo1-1 (7), is apparently only half as 
long as the statistical segments thus bringing 
about justification of the basic idea of treating 
the short chain segments as rigid molecular 
inclusions. Moreover, the size of the statistical 
segments computed from these considerations 
appears to be represented by a reasonable 
number, at least obtained by a straight forward 
analysis of the shape of the stress-strain curve in 
the mode of simple elongation (13). 

T h e  average  i n t e r a c t i o n  p a r a m e t e r  

Of substantial interest in now the systematic 
decrease of the average interaction parameter 
< a >  in the bimodal networks under discussion 
when the amount of the rigid short chains is 
steadily rised to higher values. This phenome- 
non is indicating that the dynamics in the 
network concerned with the local exchange of 
momentum mainly at the junctions (11), should 
be affected by the incorporation of very short 
chain segments acting as rigid segments. Hence, 
because of linking two junctions by a "rigid 
rod", the fluctuations of the junctions involved 
should be reduced such that the exchange of 
momentum at these junctions is corresponding- 
ly improved. This is in principle agreement with 
the asymptotic behavior in a Gaussian network 
where the perfect exchange of momentum is 
based on the absence of any autonomous fluctu- 
ations of the crosslinks (8, 14, 15). The interpre- 
tation seems to elucidate deeper origins of the 
"interaction parameter" a of the van der Waals 
equation of state by also relating this phen- 
omenological parameter to the fluctuations of 

the crosslinks the existence of which was first 
discussed by Guth (14) more recently con- 
sidered in the theory of phantom networks by 
Allegra (20) and Flory (18, 19). 

In a tetrafunctional bimodal network each of 
the long chains is linked at each end with three 
other chains such that for a statistically random 
distribution of the components four crosslinks 
of different chemical compositions appear (see 
the sketch in fig. 4). If differently composed 
crosslinks possess different fluctuations < 6 # > ,  
the total fluctuation may be expressed in terms 
of these individual contributions by 

< 6 ? >  = ( 1 -  Xs)3<6r 2> 
+ 3(1 - xs)2xs<6r~> 
+ 3(1 - #x <6r 
+ x~3< 6d> [27] 

where (1-Xs) and Xs are giving the ~t priori chances 
for choosing a long or a short chain. Thus, the 
probability of having a tetrafunctional junction 
comprised of long chains only, is defined by 
(1 - #3.  Replacing one of the long chains by a 
short segment, we consequently arrive at the 
probability factor 3 (1 - Xs)2Xs etc. Relating the 
total fluctuations to the fluctuation of the pure 
PDMS network < 6 # > ,  we are led to the 
following representation of the phenomenologi- 
cal interaction parameter 

< a >  = avDm [(1 -- # 3  
+ 3 (1 -- x~)2Xsrl2 
-11- 3 (1 - -  Xs)X2~3 "~ X~14 ] [28] 

(i) L 

(iil 
S / 

L 

~iii) 

C iiii) / s  
s 

Fig. 4. Scetch of various junctions which occur in tetra- 
functional bimodal networks 
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Table 3. r/2 = I/3 = 1; )/4 = 0.5; a = 0.39 

Vs <~>exp <a> 

0.0175 0.36 .354 
.0344 .342 .34 
.O454 .33 .33 
.0631 .312 .319 
.0967 .28 .299 

calculated with the aid of equation [28] 

The thermo-elasticity 

With the parameters listed in table 4 we arrive 
at the fit to the force-temperature data of the 
bimodal system with v s = 0.0344 reported by 
Zhang and Mark (7). In the calculations shown 
in figure 5, we used the constitutive equations 
[15] letting the ratio of the mean square roots be 

with //i = <6#>/<6#>'avDMS is assigned to 
the interaction parameter in the pure PDMS 
system. Using the set of//i's listed in table 3, the 
interaction parameter can apparently be calcu- 
lated in good accord with the experimental 
results (see also table 3). If the given representa- 
tion of letting the fluctuations of the crosslinks 
be determined upon its composition is reason- 
able, then, it turns out that such fluctuations 
should primarily be altered by junctions where 
all the additional segments are rigid chains 
(1/4 = 0.5 <//2 = 1/3 = 1). 

It is important to notice that in any case, 
having decreasing values of < a >  in bimodal 
networks with one of the chains being a solid 
short chain component, the thermomechanical 
stability of these systems is on principal im- 
proved (10-13). 

E E 
Z 

0.4 

0.3 

0,2 

15° ] 
o 0 ° 

_30 ° 
-52" 

' I ' ' 0.4 06 0.8 1.0 

Fig. 5. Typical results of stress-strain isotherms for net- 
works containing 75% of short chains at the temperatures 
indicated which each of the curves. The solid lines are 
computed with the aid of the equations [13] and [22] 
employing the parameters: ~'m = 6.3; < a >  = 0.342; 
n = 0.3; m = 5; N R k T  < V > / < ~ >  = 0.25 N m m  -2 at 
T = 225 K 

T/°C 

Table 4. f/fcalculated with the aid of equation [31]. 

8In < ~ >  _ 0.002 K -1, ,6 R = 3.104 K -1 , /~s  = 3 ' I 0 - 6  K - l ,  a = 0.39 

OT 

A vs/2 1.2 1.25 1.5 2 3 4 5 (9) 

0 0.805 0.406 0.277 0.208 0.173 0.195 0.237 0.39 
0.0175 0.585 0.292 0.198 0.127 0.142 0.190 0.37 
0.0344 0.535 0.270 0.185 0.143 0.148 0.192 0.34 
0.0967 0.431 0.222 0.158 0.129 0.150 0.29 

B vs/2R 2 3 4 5 1.5 1.1 

0 0.209 0.173 0.195 0.237 0.277 0.805 
0.0965 0.1522 0.128 0.136 0.158 0.213 0. 

v 0.72 0.74 0.70 0.67 0.77 0.73 

V = OCh/f)bimod/OCh/f)PDMS, Vs = 0.0967 
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independent upon temperature. By the excellent 
reproduction of the data the basic assumption of 
considering the rubber matrix as an thermo- 
mechanically autonomous part of the sample 
(with exception of the dependence of < a >  upon 
the fraction of short chains) is again fully 
verified. 

When taking relation [15] as the constitutive 
mechanical equation of state, its general mean- 
ing can be checked by considering the ther- 
moelastic properties of the bimodal network. 
Zhang and Mark (7) obtained a characteristical 
decrease of re~f for 2 = 2, T = 225 K in bimod- 
al networks employing thermoelastic relations 
in the Gaussian approach. The question arises 
whether an interpretation of this effect can be 
given proceeding from the new equation of state 
to the belonging thermo-elastic relations. 

From the equilibrium stress refered to the 
unstrained cross-section in the deformation 
mode of simple elongation 

a = (NKT/Vo)DR [BR - < a >  DR] [29] 

we will derive the ratio of the enthalpy compo- 
nent fh to the thermodynamically defined total 
force f employing the relation (10, 14) l) 

ohio - f # f  = - T ( f / T )  p, L .  

Thus, we arrive at 

[ aR - < >DR 
fb/f = T 13o DR BR = < a > DR 

- 2/3R + dlndT<~> ] 

with the definition 

cgDR _----DR = (1 + A~3)8,AR/BT 
3T 

where 92R/~gTis equal to 

C~R/cgT = (I -- V2/3) -I 

['V~/3(~ -- I) (A -- A) -- ASo]" [33] 

1) On defining the Gibbs-function by means of the 
adequate Legendre transformation (I) in the co-ordinate 
system (T, L, ~.) with a i = P0 = const., equation [30] has 
been shown to be correct for simple extension experiments 
(11). 

Having the linear thermal expansion coefficients 
of the rubber matrix and the rigid components 
given by 

fir = ,3 In LRo/ST; 
fl, = 81nLso/BT [34] 

we are led to the expansion coefficient of the 
bimodal network 

13o = 1/ Lo( SLo/ ST) 
= LoI[SLRo/ST + 8L,o/ST] 

LR° --~ 8, ISo- SR + 

= (1 - v?)N + v ? k .  [35] 

Hence,/~R becomes 

8 B R _  aR = 

1 { / )  m - D  /)m --Z)R 
Dm - DR mDm DR} 8AR/ST" [36] 

In addition we used the known relation (15) 

81n <r~>/ST = 28a. [37] 

[30] On deriving equation [30], independence of 
< a >  upon temperature has been assumed what 
is experimentally manifested in the approximate 
invariance found for the slope of the linear 
portions in the Mooney-Rivlin plots of bimodal 
networks at various temperatures drawn out in 
figure 5. 

[31] In order to fit the calculation with the value of 
re~) c = 0.20 + 0.05 which has been found for 
pure PDMS systems (21, 22), the values listed in 
table 4 have been assigned to the parameters as 
indicated. In good accordance with Zhang- 

[32] Mark's findings of having clearly depressed 
values of re~fin bimodal PDMS-networks (7) at 
2 = 2, we calculate correspondingly smaller 
ratios of/:h/fat the same elongation and temper- 
ature (see table 4 A).  The decrease is chiefly 
related to the dependence of the total expansion 
coefficient upon expansion of the rigid com- 
ponent which has been introduced in the 
above calculations. If we against that substitute 
/3, = fir we are led to fh/f-- .2097 for the 
bimodal network with a volume fraction of 
% = 0.0967 at T = 225 K for the elongation of 
2 = 2 what is indeed the same value as observed 
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for pure PDMS networks in contradiction to the 
findings of Mark et al. (7). 

Hence, there are clear evidences for having 
short chain segments with a kind of intrinsic 
solid state behavior as for example their "ther- 
mal expansion". Because of being localized 
within the "fluctuation-volume" of the cross- 
links, the short chains can apparently not behave 
like'longer chains with their liquid-like expan- 
sion which is produced on heating by the 
belonging increase of the concentration of 
"holes". Consequently the rigid elements 
should be found to reduce the fluctuations of 
the crosslinks. 

From the calculations listed in table 4 B it can 
readily be seen that an approximately invariant 
relationship of the (fh/J)bimoJ(fh/))PDMS is in- 

deed observed when these ratios are compared 
at the same values of ;t x, the intrinsic strain in 
the rubber. This is again manifesting the approx- 
imate autonomy of the rubber matrix in the 
short range properties on deformation. 

It should finally be mentioned that the value 
of 31n <~>/c)T = 2 • 10 -4 degree -1 is exceed- 
ingly smaller than other values reported in 
literature (23). No explanation can be given for 
this discrepancy. 

Final remarks 

For bimodal networks comprised of chains of 
different lengths with one of these being suffi- 
ciently short as to appear as rigid segments, the 
characterization of the deformation behavior 
can properly be based on the assumption of an 
"a priori autonomy" of all the chains. Their 
intrinsic properties are consequently independ- 
ently determined such that the chains in the 
networks may be considered as localized auto- 
nomous units like "molecules" (10). Adopt- 
ing this view it is no more strange that these 
"species" of the bimodal system may be disting- 
uished by a different number of internal free- 
doms, thus, having in our case in addition to the 
fluctuating long chains, solid molecular seg- 
ments without any "internal conformational 
abilities". Hence, when equipartition of energy 
is present even in the strained equilibrium states, 
no conformational energy of deformation will 
be stored if there are spheres as rigid intrusions. 
Deformational effects on the short chain seg- 
ments are then restricted to changings in the 
anharmonicity of the internal interaction poten- 

tials in the above treatments represented by 
solid-state expansion. Energy balance measure- 
ments are wanted for directly proving this 
interesting hypothesis. 

In the presence of approximately rigid short 
chains the intrinsic strain in the rubber matrix is 
accordingly increased at least producing an 
apparent macroscopic reinforcement of the 
bimodal network. Small modifications of this 
model come into play for form-anisotropic solid 
elements because of their defined solid body 
rotations within the rubber matrix. 

Yet, the autonomy of all the chains is not 
fully achieved as it is manifested by tt% existence 
as well as by the changes of the average interac- 
tion parameter in the bimodal networks under 
discussion. When understanding these van der 
Waals corrections as "weak interactions" be- 
tween the long chains in the bimodal network, a 
reduction of these interactions is observed by 
incorporating rigid molecular segments four- 
functionally crosslinked to their neighbours. 
This effect is probably due to the reduction of 
local fluctuations at the junctions which seems 
in the first place be originated by that crosslinks 
the long chain end of which is linked with three 
other rigid segments. Clearly the dynamics in 
the exchange of momentums at the junctions 
which is determining the macroscopic static 
stress, is improved in bimodal networks under 
discussion. 
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