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1.  I n t r o d u c t i o n  

One of the aims in polymer theology is to 
discover simple constitutive relationships which, 
from the results of a limited set of experiments, 
can be used to calculate stress with tolerable 
accuracy for a wide variety of deformation 
histories. Methods for measuring linear visco- 
elastic properties and steady state stress in 
steady uniaxial shear flows are fairly well 
established (1,2). Certain asymptotic relation- 
ships between material functions for these two 
classes are expected on rather general grounds 
(3) and have been confirmed (see ref. 4, for 
example). Several constitutive equations, though 
based on different hypotheses, appear to be 
more or less equivalent in their ability to fit 
experimental behavior in both classes. However, 
their predictions differ markedly for other flow 
histories. Recently it has become possible to 
test some of these hypotheses directly, using 
data on the growth of stress to steady state after 
the sudden start-up of steady uniaxial shear 
flow and the relaxation of stress from steady 
state after its sudden cessation. The purpose of 
this paper is to describe such tests with data 
obtained with a specially stiffened Weissenberg 
Rheogoniometer. Three solutions of polystyrene 
were used, ranging in zero shear viscosity from 
890 poise to 67,000 poise. 

The steady state components of shear stress a 
and first normal stress difference N1 in steady 
shear flow are related to shear rate ~, by 

N,(~) = ~'(~) ~)~, [2] 

in which q()',) is the viscosity of the material 
and ~u(~)) is the first normal stress coefficient. 
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Both t/and ku are positive for all ";, and approach 
constant values, qo and 7%, at sufficiently small 
shear rates. The time and shear rate dependence 
of the stress components following start-up 
( ? = 0  for t < 0 ; " , ; = c o n s t a n t  for t > 0 )  will 
be indicated by ~('), t) a n d  ,~[1(~;, t), while those 
following cessation (~; = constant for t < 0, 7 = 0 
for t > 0) will be indicated by ~(~;, t) and ,~rl (7, t). 
Clearly, 

at;', ~ )  -- ~(j', 0) = ,~(~;')7, [3] 

1~, (~;, ~ )  = ,~, (~,, 0) = ~(:;) z; ~ , [4] 

a(~, o) = 6-(z;, , ~ ) =  ,~,(z;,o) = ~,(-;', o r )=  o. [5] 

Linear viscoelastic properties are governed 
by the relaxation time distribution or relaxation 
spectrum H(z). In uniaxial shear flows the 
shear stress from sufficiently slow or sufficiently 
small deformations is given by (5) 

a(t) = i m(t - t') [?(t) - ?(t')] dt' [6] 
- oo  

in which ?(t) is the shear deformation at time t 
measured from some arbitary reference shape 
and 

dG ~ H(z) -~  
- -  - e ~ d In z [ 7 ]  m(0 = d~ _,~ z 

in which G(~) is the shear stress relaxation 
modulus. In the same limit, the first normal 
stress difference also depends on m(¢) alone 
and hence H(r)(5): 

Nl (t) = i m(t -- t') [?(t) - -  )'(t')] 2 dt'. [8] 
- o c  

The following relationships connect the steady 
state and linear viscoelastic functions (3) 
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qo = j" zH(z)dln~ = lira r/(~,), [9] 
-oo ~~0  

oo 

S "rZH(r) d ln'c 
jo = ~o I lim ~(~;) 

zH(z) d ln~ [10] 

in which qo is the zero shear viscosity and jo is 
the steady state recoverable shear compliance. 
Likewise, for ~ sufficiently small the shear and 
normal stress during start-up and relaxation 
from steady state depend on H(z) through the 
following monotonic functions of ,~' and t (from 
eqs. [6]-[8]) :  

~ ( ~ , t ) = 9  ~ z H ( z ) [ 1 - e - ' / ~ ] d l n z ,  [11] 
- - o 0  

~1(~/ ' ,  t )  = 2 5  ;2 ~ z2H(v)[1 - (1 ++)e-'/~]dlnz, 
- - c O  

[12] 

.6(~),t) = 9 ~ rH(z)e  - ' / ~d lnz ,  [13] 

N~(5;,t) = 2"/'2 ~ zZH(z )e - ' /~d lnz .  [14] 
- - c O  

These limiting forms should be applicable to 
a very broad class of viscoelastic fluids for all 
times at sufficiently small )', and, in the case of 
eqs . [ l l ]  and [12], for sufficiently short times 
at any 9. 

We will restrict the discussion to single 
integral constitutive equations, of which the 
Lodge eq. [6] is a basic form: 

p ( t )=  i M ( t - t ' ) C - ' ( t , t ' ) d t ' - P o l .  [15] 
- - o O  

Here p(t) is the total stress at time t, C-~(t  ', t) 
the Finger strain tensor, M ( t -  t') the memory 
function of the fluid, Po an arbitrary pressure 
and I the unit tensor. The stress at current time t 
is thus the sum of contributions from strains at 
all past times t' relative to the current configura- 
tion, each weighted by a function which depends 
only on the elapsed time t -  t'. The Lodge 
equation reduces directly to eqs. [14]-[16] for 
start-up and relaxation at all shear rates. 

Other single integral equations involve flow 
related modifications of the memory function. 
In one group the contributions of past strains 
depend on the strain rate (7) or the relative 
strain (8) at t'. For a und N1 in uniaxial shear 

flows the memory function in eq. [15] can be 
expressed as 

M(19(t')l, t - t') 

and 

M(7(t) - ?(t'), t - t') 

(strain rate models) 

(relative strain models). 

Note that the memory function in such cases 
depends on the state of the system at no other 
times than t and t'. 

In another group of equations the memory 
function depends on the motion at all intervening 
times between t and t' (9, 10). For a and N1 in 
uniaxial shear flows these memory functions 
can be expressed as 

M(l~(t')l s ,  , ~(t, t), t - t') (averaged rate models), 

in which ~T(t', t) is an average shear rate over the 
interval between t' and t. The method of averag- 
ing varies from one formulation to another. 

Marrucci and coworkers (11)have recently 
proposed an equation in which the memory 
function depends on a structural parameter 
whose values are in turn a function of the entire 
history of the motion. That is, the contribution 
of strain at past time t' depends not just on 
elapsed time t -  t' and events between t' and t 
but also on events prior to t'. The model is cast 
in a specific form such that the structural 
parameter depends on both the past motion 
and past values of the stress. In a rough way we 
can express this memory function for uniaxial 
shear flows as 

M(x(t', t), t - t') (structural model), 

remembering that the structural parameter 
x(t',t) is governed separately by the motion 
before t' as well. This list of memory function 
modifications is by no means exhaustive. Others 
have been proposed, such as those listed in 
table 6.4 (1) of reference (5). 

Both the strain rate and relative strain models 
can be tested for consistency with start-up 
behavior without determining the memory func- 
tion. Van Es and Christensen have shown that 
6 and N1 for fluids described by strain rate 
models must obey the following relation (12): 

~ z 2 H ( T ) [ 1 - ( l + ~ ) e - ' / ~ ] d l n r  

R, (-;,, t) r(~, t) 
- ~,2 [ 1 6 ]  
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in which 

t 

rI~;, t) = t~(~, t) - ]~ ~}(~;, ~.)d;~. [17] 
0 

The left side of eq. [16] is independent of shear 
rate and increases monotonically with time. 
The combination on the right side, involving 
the experimental start-up functions, must then 
behave likewise. 

Yamamoto (7) has developed a second con- 
sistency relation for rate models governing 
stress during relaxation from steady stale. In 
integral form (13): 

~ (:;, t) = 2;~ J ~(~,~, ~) ~b~. [18]  
t 

Kearsley and Zapas (13, 14) have developed 
consistency tests for relative strain models. In 
this case the shear stress start-up curves can be 
used to predict normal stress start-up: 

~,(,;,t) = ""[F(~:',t) + i ~ d ~  [19] 

in which F(,;', t) is given by eq. [17]. Similarly, 
~(,:, t) can be predicted from ~-~ ("{,, t) data: 

~(~",t) =-iT[A(7, t ) -  i @ d ~  ] [20] 

in which 

- -  + ¢ ;2 d2. [21] 
t 0 

Note that in order to apply these relations it is 
necessary to integrate experimental data on 6 
and ~9~ from ",; = 0 to the shear rate of interest. 
It is therefore useful to have data extending to 
low enough shear rates that the limiting forms, 
given by eqs. [11] and [12], are reached. 
Extension to zero can then be accomplished by 
appropriate use of those functions. 

Kearsley and Zapas have also developed a 
consistency relation for stress during relaxation 
from steady state in relative strain models: 

t 

There appears to be no consistency test 
available for the averaged rate and structural 
models in uniaxial shear flows, neither in 
general nor for the various special forms 
proposed. A form for the memory function must 

be selected; judgement of a model thus rests 
on its ability to fit the individual flow functions. 

It seems to us that one should first insist that 
linear viscoelastic data be fitted well, since all 
models must reduce to linear viscoelastic behav- 
ior in the limit. Thus, H(z) should be obtained 
as precisely as possible from linear viscoelastic 
data such as the dynamic moduli G'((o) and 
G"(~)). The form of H(~) should not be restricted 
by the form of the model. Acceptability of H(r) 
should be judged not only by its ability to 
reproduce the G'(oJ) and G"(co) data but also 
by the agreement it produces between observed 
limiting start-up and relaxation functions and 
those calculated from eqs. [11]-[14-[. With 
H(r) determined, the steady state data, a(;;) 
and N1 (~'), should be accommodated by adjust- 
ment of a relatively few model parameters, the 
effect of which should vanish for both suf- 
ficiently slow or sufficiently small deformations. 
In principle there should be no adjustable 
parameters, but considering the experimental 
uncertainties and the necessarily limited range 
which can be covered, it it quite possible that 
two polymers could appear to be identical in 
linear viscoelastic properties and yet show 
significantly different behavior in other types 
of flow. Once these adjustments have been made 
the ability of the model to predict start-up and 
relaxation from steady state should be judged 
without further changes. 

2. Experimental 

The start-up and relaxation of ~ and N1 were 
measured over wide ranges of shear rate and time 
for cone-plate flow in a modified Weissenberg Rheo- 
goniometer (Model R 16). The axial force servo system 
was removed and the LVDT transducers replaced by 
piezoelectric crystals (15). These and other modi- 
fications, similar to those employed by Meissner (16), 
were made to increase axial and torsional stiffness and 
thereby diminish unwanted motion in the cone-plate 
assembly during transient stress measurements. The 
result was a total axial stiffness of approximately 
2 kg/micron and total torsional stiffness of approxi- 
mately 10 J" kg/-cm/rad (15). 

Measurements were made at 25 °C on three solutions 
of polystyrene in tri-cresyl phosphate. The solution 
designated A is a 8% by weight solution of equal 
weights of two narrow distribution samples from 
Pressure Chemical Company (Pc3a, M,,, = 440,000; 
Pc 14a, M,,. = 1,800,000) and has a zero shear viscosity 
of 890 poise at 25~C. Solution B is an 8% by weight 
solution of Pc 14a alone and has a zero shear viscosity 
of 3900 poise. Solution C is 12% by weight of Pc 14a 
alone and has a zero shear viscosity of 67,000 poise. 

20* 
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The viscosity of tri-cresyl phosphate at 25°C is 0.70 
poise. 

Values of a and N~ were calculated during start-up, 
at steady state, and during relaxation from the torque 
and total axial force: 

3T 
o-= 27zR 3 [23] 

N 1 =  2F 
rtR2 , [24] 

f2 
= t a n 0 '  [25] 

in which T is the torque, F is the axial force, O is the 
angular velocity, R is the platen radius, and 0 is the 
gap angle. Data were collected with several gap angles 
(0 = 1 °, 2 °, 4 °, and 8 °) and platen diameters (D = 2R = 
2.5 cm, 5.0 cm, and 7.5 cm). The steady state values of cr 
and N1 obtained with the different angles and diameters 
agreed within 3% (15). The shear stress transients in 
start-up and relaxation were similarly insensitive to 
gap angle and platen diameter. The apparent normal 
stress transients varied with gap angle and, to a lesser 
extent, with platen diameter, as was noted by Meissner 
(16). The dependence diminished with increasing gap 
angle, such that data at 4 ° and 8 ° were in quite good 
agreement for the lower viscosity solutions A and B. 
Some small but systematic differences between 4 ° 
and 8 ° remained for solution C. The data discussed 
here were obtained with a 4 ° gap angle and the 2.5 cm 
and 7.5 cm platens for solutions A and B, and with 
an 8 ° gap angle and the 2.5 cm and 5.0 cm platens for 
solution C. Each transient is the average of two or 
three high speed recorder traces with the instrument 
run in both the forward and reverse directions. Further 
details are given elsewhere (15, 17). 

The dynamic shear moduli G'(~) and G"(o~) were 
measured for solutions B and C in the Rheometrics 
Mechanical Spectrometer (RMS) at 25 °C. The eccentric 
parallel disc method was used, and corrections for 
instrument compliance were applied (18). Diameters 
of 2.5cm (plate separation > 1.2mm) and 7.2cm 
(plate separation > 3 ram) were used for solution C. 
Owing to a shortage of sample, only the 2.5 cm diameter 

was used for solution B. Steady state values of a and N 1 

for solution C were also measured with the RMS 
using the cone-plate geometry (platen diameter 2.5 cm; 
gap angle 2.29°). 

The values of ~/(o/') and N1 (7) from the two instruments 
agreed fairly well over their common range, but it was 
not possible to reach the qo limit with the Mechanical 
Spectrometer for solution C. The values of r/'(a)) at low 
frequencies leveled off at 67,000 poise, somewhat larger 
than the value, q0=58,000 poise, reported from 
Rheogoniometer data (15). We believe the apparent 
difference in qo is related to the rather long time required 
to reach steady state at low shear rates in solution C. 
Behavior at long times and low stresses is particularly 
difficult to measure in the modified Rheogoniometer 
due to drift in the piezoelectric signal baseline. The 
value of 67,000 poise from ~/'(co) in the Mechanical 
Spectrometer is believed to be correct for solution C. 

The dynamic and steady state data for solutions B 
and C are plotted in figures 1 and 2. Steady state data 
obtained on the Rheogoniometer alone for all three 
solutions are given elsewhere (15). 

The relaxation spectrum H(r) was obtained from 
G"(o)) as follows. An initial estimate was made with 
Tschoegrs second approximation formula (1): 

216,,(e,) 4 a~" 1 d2~ " ] 
H°( 'c )  = ~ , _  3 dln~o l- 3 d(ln~o~)2Jo,=s,,~,,," 

[26] 

Values of G"(og) were then calculated from Ho(r) for 
comparison with the observed G"(~o): 

d In r [27] 
O9 T 

G"(oJ) = Ho(z) I ~-O)2T 2 " 

The departures were then used to refine the spectrum: 

Hi (z) = H0(z) [[G"((D)]obs./[G"(o))]calc.]~o_ 1/z. [28] 

This procedure was repeated until the refined spectrum 
no longer changed significantly. The magnitude of 
H(z) at long times was still incorrect however, as 
judged by values of r/0 and j0 calculated from H(z) 
with eqs. [9] and [10] and those obtained directly 
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Fig. 1. Steady state and dynamic data 
for solution B. The solid lines are G' and 

moo ~l'(G"/co) calculated from the relaxation 
spectrum of solution B (fig. 3) 
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from the experimental data. The spectrum was then 
modified by successively removing the long time 
relaxations until agreement with qo and jo was obtained 
The final spectra for solutions B and C are shown 
in figure 3. Comparisons of qo and jo are given in 
table l. The solid lines drawn through the t/'(o)) and 

Table I. Comparison of viscoelastic parameters ob- 
tained by different. Instruments and methods for 
solutions B and C 

Solution B Solution C 
i8%) (12%) 

tto (WRG, t/) 3.9 x l03 poise 5.9 × 104 poise 
q0 (RMS, q) - 6.7 
~7o (RMS, q') 3.9 6.7 
qo (H(z)) 3.99 6.95 

J°(WRG, N1/2a 2) 4.3 x l0 4cm2/dyne 2.0 x t0-4cm2/dyne 
J°(RMS, G'/G "2) 4.5 2.1 
J°(H(z)) 6.08 2.46 

WRG = Weissenberg Rheogoniometer 
RMS = Rheometrics Mechanical Spectrometer 

10 2 

Fig. 3. Relaxation spectra calculated from 
G"(m) for solutions B and C 

G'(e~) data in figures I and 2 were calculated from 
these spectra. 

3. Results 

The start-up curves for shear stress and normal  
stress in solution B (°) >_ 0.107 sec-  1) are shown 
in figures 4 and 5. Da ta  were obtained at every 
other gearbox setting, so the shear rates are 
equally spaced on a logari thmic scale: j'i = 
1.585 7i-1. For  legibility only curves at every 
other shear rate are plotted. The data  are plotted 
as 6(~;,t)h', and ~l(~),t)/~ ",2 vs. t such that the 
limiting behavior  at low shear rates should lie 
along a single curve (19, 20). In each case the 
curves appear  to lie within a limiting envelope. 
The dashed lines are the limiting curves calcu- 
lated from H(~) using eqs. [11] and [12]. Agree- 
ment with the limiting envelope appears to be 
fairly good  for 6. Agreement  is also good  for 
, ~  except at long times where the experimental 
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Fig. 4. Start-up curves for shear stress in solution B. 
The dashed line is the limiting start-up curve calculated 
from H(z) using eq. [ l t ]  
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Fig. 5. Start-up curves for normal stress in solution B. 
The dashed line is the limiting start-up curve calculated 
from H(z) using eq. [12] 

values fall below the calculated curve. This 
could be caused by small errors in the long-time 
end of the spectrum or, more likely, by dif- 
ficulties in measuring small values of  N~ at 
long times, owing to baseline drift. Similar data 
were obtained with solution C for ~, > 0.0427 
s ec -L  In solution C neither 6 nor ~1 data 
reached the limiting curves at long times. 

The start-up data appear to follow the limiting 
curves for some period of time. They then depart 
at times which decrease with increasing shear 
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Fig. 6. Strain at the stress peaks in the start-up curves. 
The open symbols indicate shear stress peaks in 
solution A ([7), solution B(O) and solution C(A); 
the filled symbols indicate normal stress peaks in 
solution A (•) ,  solution B ( • )  and solution C ( • )  
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rate, pass through increasing prominent maxima, 
and finally approach steady state values of 
q(~,) and ¢()). The positions of the maxima 
correlate most directly with total strain, as 
many workers have noted previously. Figure 6 
shows strain at the stress peak as a function of 
shear rate. At low shear rates the ~ and ]Q1 
strains at peak tend to constant values which 
are practically the same for all three solutions. 
They then increase slowly with shear rate, The 
ratio of  peak strains (or ratio of times to peak) 
for ~ and I~1 is shown in figure 7 as a function 
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Fig. 7. Ratio of strain at normal stress peak to strain at 
shear stress peak in the start-up curves. The symbols 
indicate solution A (D), solution B (O) and Solution 
C(A) 

of shear rate. The peak strain ratio is similar 
for all three solutions, being approximately 2.3. 
There is no observable trend with shear rate. 

I 0  ~ 
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4. Strain rate models 

The two criteria of Van Es and Christensen 
for strain rate models were examined with 
start-up data from all three solutions. Neither 
was satisfied except at the limit of low shear 
rates. The right side of eq. [16], calculated from 
experimental data, was not independent of shear 
rate. It was also not always monotonic in time, 
since at high shear rates the curves passed through 
shallow but definite maxima. Figure 8 shows 
the behavior at selected shear rates for solution B. 
Others have noted similar failures for strain 
rate models (12, 21). Interestingly, the relaxation 
criterion for rate models appears to be satisfied, 
at least .judged by the values of N] Q"), calculated 
from eq. [18] for t = 0 

NI(Z;) = 2Z; S 6-(f', 2)d2 
0 

i 0  '~ 

[29] 

T 1 

Y =  

1 0 3  1.07 

S iO z 

IO7 

I01 ~ / / /  ~ I , 
i 0 - 2  IO - I  IO 0 IO I 

t (sec) 
Fig. 8, van Es-Christensen function at various shear 
rates for solution B. The ordinate V C(t) is the right 
side of eq. [16] in units of dyne-secZ/cm z 

For example, the calculated value of N~ is 
4800dyne/cm 2 at ~)=1.07sec -~ and 22000 
dyne/cm 2 at );= 10.7sec -~ for solution B, 
while values of 3800 and 22000dyne/cm 2 are 
observed experimentally. However, in view of 
the rate model failure in start-up we did not 
test the relaxation behavior in any detail. 

5. Relative strain models 

Consistency of start-up stress with relative 
strain models was examined using eqs. [19] 
and [20]. The numerical integrations over shear 
rate at constant time need careful handling, as 
pointed out by Kearsley and Zapas (14). For- 
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0 

~ , T ' T ' I ' F 

~ ~ ,  ,~o~ ~,~ 
,7  / /'~,~ ^ 

4 8 t 2  16  2 0  

t ( s e c )  

Fig. 9. Comparison of calculated and observed start-up 
curves for solution B at )"=0.107 sec -~. The dashed 
curves are calculated using the Kearsley consistency 
relations for relative strain models (eqs. [19] and [20]) 

tunately, data to define the limiting behavior 
(eqs. [11] and [/2])  for solutions B and C were 
available, so the integrals could be extended 
down to ~; = 0 quite easily. Figures 9, 10 and 11 
show the tests with start-up data for solution B 
at three shear rates. 

In Figure 9 the shear rate is very near the 
limiting region, there is no overshoot in ~ and 
~1,  and the agreement between observed and 
calculated values is acceptable. The experimental 
6 curve is close to that calculated from/V1, and 
if the NI curve calculated from ~ were scaled 
to give the same steady state value as the 
experimental l~j (an adjustment of about 12%), 
those two curves would practically coincide. 
On the other hand, since the data lie very near 
the limiting curve, such agreement constitutes 
not so much a test of relative strain models as a 
confirmation that such models reduce to the 
correct limiting forms at sufficiently low shear 
rates. 

In figure 10 the shear rate lies just beyond the 
knee of the viscosity curve; in figure 11 it is well 
into the power law region. Systematic dif- 
ferences now appear between the observed and 
calculated values of 1~1. In figure 11 the calcu- 
lated values of 1~1 actually become negative. 
Interestingly, the observed ~ and values calcu- 
lated from the l~r~ data do not show such 
extreme discrepancies. In both 6 and ~ 
the agreement with calculated values at short 
times (before the maxima) is fairly good. Similar 
results are found at other shear rates and for 
solutions A and C as well. 

Figures 12 and 13 show the consistency tests 
for relaxation behavior in solution B at the 
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shear rates used in figures 10 and 11. Large 
discrepancies were found at high shear rates 
(fig. 13); with decreasing shear rate the dis- 
crepancies diminished. As in the start-up data, 
the consistency relations for relative strain 
models are violated increasingly and systemat- 
ically as soon as one begins to move away from 
the limiting region. 

The computational procedures were confirmed 
in a variety of ways (17). The possibility that ~1 
calculated from 8 may be inordinately sensitive 
to the precision of ~ at long times (14) was also 
examined. Calculations of steady state values 
of N1 from ~(};, t) are indeed questionable for 
this reason. However, the discrepancies in 
figures 10 and 11 cannot be explained in this way. 
The calculated value of NI(;;, t) depends only 
on the behavior of ~ for shear rates and times 
less then ~', and t. In figure 11 (}~ = 10.7sec -1) 
a discrepancy appears after about 0.5 seconds, 
and the calculated values of ~ become negative 
and therefore clearly unsatisfactory beyond 
1.4 seconds. Figure 4 shows that, for shear rates 
less than 10.7sec -1 and times less than 1.4 
seconds, ~ is still changing rapidly and not yet 
approaching steady state. 

The possibility of systematic experimental 
errors in ~(7, t) must also be considered. Such 
errors seem unlikely however, since ~(};, t) is 
found to be independent of gap angle and 
platen diameter (15, 17). Measurements at the 
same shear rate with different gap angles 
provide data obtained at different angular 
velocities and therefore different levels of what- 
ever inertial contributions might be present. 
Measurements at the same shear rate with 

different platen diameters provide data obtained 
with different free surface/volume ratios and 
also at different magnitudes of torque and 
axial force. Although not impossible it would 
seem strange to find such potential sources of 
systematic error as inhomogeneous shearing, 
secondary flows and free surface shape disturb- 
ances to be independent of these variables. 

We therefore conclude that relative strain 
models are inconsistent with the transient 
behavior of these polymer solutions. Qualitively, 
such models appear unable to accommodate 
shear stress overshoot peaks which grow rapidly 
with shear rate without requiring unrealistic 
behavior (such as negative values) in the first 
normal stress difference. 

6. Examination of other models 

We have not attempted to fit the Carreau 
model B with these data. As presented that 
model appears to place undue restrictions on 
the form of the relaxation spectrum, and we 
have not tried to generalize the ideas behind it 
to allow any H(r) to be used. On the other 
hand, start-up and relaxation data from similar 
polystyrene solutions have been fitted fairly 
well by that model (10). 

The structural model of Marrucci et al. is 
cast in terms of an arbitrary relaxation spectrum. 
With H(T) given, the behavior of a() ;) and N1(3;) 
is governed by a single adjustable parameter a. 
Marrucci was indeed able to fit data on low 
density polyethylene melts with a single value 
of a, and went on to show rather good agreement 
between prediction and experiment in several 
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Fig. 14. Comparison of start-up curves 
for solution B with predictions based on 
the Marrucci model. The solid lines are 
experimental; the dashed lines are cal- 
culated with a = 0.5 for both shear rates 
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and a = 0.8 for t; = 42.7 sec- 

types of transient flows, including start-up (22). 
Unfortunately, we were unable to satisfy our 
steady state data with a single value of a. The 
values required ranged from 0.2 at ~ = 0.1 sec- 1 
to 0.5 at 1; = 100 sec-1 for solution B and from 
0.4 to 0.9 in the same range of shear rates for 
solution C. Nevertheless, in order to proceed 
with the start-up comparisons we used different 
values at each shear rate, choosing them to 
give the best compromise in fit between the 
steady state values of a and N1 at that shear rate. 

Typical examples of the start-up results are 
given in figures 14 and 15. The time to the 
overshoot peak in both ~" and ,91 is predicted 
fairly well. The predicted peak magnitude is 
consistently t o o  large in the case of N1. The 
major difference for ~ is that the predicted peak 
width is consistently larger than observed. In 
the Carreau model B the times to peak are also 
fairly well predicted, but the ,~  peak magnitude 
in that case is underestimated (see Ref. (10)). 
Without further comparisons it is not possible 
to say which model is better. We have not 
tested the Marruci model with relaxation data. 

7. Conclusions 
Both strain rate and relative strain models 

were found to be fundamentally inconsistent 
with the data reported here on start-up and 
relaxation of stress from steady state. Marrucci's 
structural model, with adjustment of the struc- 
tural parameter for each shear rate, was found 
to be in reasonable accord with such data. 
Some systematic inconsistencies are present, but 
they appear to be no more serious than those 
noted elsewhere in tests of the Carreau model B. 
Because the models must be tested on a some- 

what different basis, due to the manner in which 
they are formulated, it is still not clear which is 
preferable. 

Acknowledgements 

We are grateful to the National Science Foundation 
for sponsoring this work (GK 34362 and ENG 
75-15683). We are also grateful to the Plastics Institute 
of America for partial fellowship support to one of 
us (REC) during the period this work was performed. 

Summary 

Stress development at the onset of steady shear 
flow and stress relaxation from steady state were 
measured in a stiffened Weissenberg Rheogoniometer 
over wide ranges of shear rate for three polystyrene 
solutions. Time dependent shear stress a and first 
normal stress difference N1 were obtained from the 
torque and axial thrust. From extensive auxiliary 
tests we believe these data to be free of spurious effects 
associated with instrument compliance. The solutions 
have zero shear viscosities of 890, 3900 and 67 000 poise. 
Tests for consistency with strain rate constitutive 
models were made using the van Es-Christensen 
relation and with relative strain models using the 
Kearsley-Zapas relations. Substantial deviations were 
found in both cases. The Marrucci model was also 
examined. As in the Carreau model B, the predicted 
start-up curves from the Marrucci model are in general 
qualitative accord with observations, but some syste- 
matic quantitative discrepancies remain. 

Zusammenfassung 

Der Spannungsaufbau beim Anfahren einer station~i- 
ten Scherstr6mung und die Spannungsrelaxation nach 
dem Anhalten derselben werden in einem steifer ge- 
machten Weissenberg-Rheogoniometer fiir drei Poly- 
styrol-LOsungen fiber einem weiten Schergeschwindig- 
keitsbereich gemessen. Die zeitabh~ingige Schubspan- 
hung ~r und die erste Normalspannungsdifferenz N~ 
werden aus dem Drehmoment und der Axialverschie- 
bung bestimmt. Aus umfangreichen Nebenuntersu- 
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chungen kann man schliel3en, dab die Ergebnisse yon 
Verf~ilschungen durch instrumentelle Effekte weit- 
gehend frei sind. Die L6sungen haben Null-Viskosi- 
t~iten von 890, 3900 und 67000 Poise. Ftir eine Unter- 
suchung der Vertraglichkeit der Daten mit Stoffge- 
setzen vom "strain rate"-Typ wurde die van Es-Christen- 
sen-Gleichung zugrundegelegt, f'tir Stoffgesetze vom 
,,relative strain"-Typ entsprechend die Kearsley-Zapas- 
Gleichung. In beiden Fallen wurden wesentliche Ab- 
weichungen gefunden. Ebenso wurde das Modell von 
Marrucci geprfift. ~hnlich wie beim Carreau-Modell B 
sind die Voraussagen des Anlauf-Verhaltens durch 
dieses Modell durchg~ingig in qualitativer Oberein- 
stimmung mit den Beobaehtungen, aber einige syste- 
matische quantitative Unterschiede sind auch bier 
vorhanden. 
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