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1. Introduction 
In a previous paper (1), a non-newtonian 

viscosity equation has been obtained using a 
semi-phenomenological approach. Volume con- 
centration q~ and shear rate ~ dependences are 
found in the form 

~, = (a - ½k4) -2 [1.1] 

where 

= ko + kB ?)~ [1.2] 
+},~ 

is a generalized (shear dependent) intrinsic 
viscosity. If ko > kB, shear-thinning is found, 
whereas shear-thickening corresponds to 
ko < k~o. 

The functional form of [1.2] is derived from 
a phenomenologica kinetic model, except 
the exponent p of ~;', = ~)/~Ro, = kTT/8r~qva 3, 
that has to be empirically determined. Never- 
theless, this p value is thought coming from the 
type of shear dependence of the effective diffu- 
sion coefficient Dar of particles. Since non- 
spherical particles rotate in the shear rate ~;' 
with angular velocities which can be very dif- 
ferent from ~/2, mainly near the wall, it was 
argued in (1) that Der f = ~Rotg()) r ) ,  where g(}'~) 
is an non-dimensional function of ~~. The same 
type of dependence in }', has been found yet for 
enhanced diffusion of small solute molecules by 
shear induced rotation of larger particles (2). A 
good agreement has been observed between this 
theoretical approach for platelet transport in- 
duced by Red Blood Cell (RBC) rotation (3) 
and experiments using labelled platelets (4)~ 
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Returning to [1.2], reasonable assumptions on 
Deff lead to limit p to values such as 0 < p < i. 

For various systems of rod- or disc-shaped 
particles, empirical values of p were found 
roughly between 0.4 and 0.6z). Taking for 
simplicity p = 0.5 in [1.2], gives the viscosity 
equation 

( 1 ko+kB?'~/2 ) -2 
t / , =  1 -  ~ 1 + ~  • " [1.3] 

In the following sections, high shear and low 
shear rate limits will be discussed (Chap. 2 and 3, 
respectively). Pseudoplastic behaviour will be 
found with [J.3] when ?;' covers a large domain, 
including ?;'«. Checkings of experimental verifi- 
cation of [1.3] shows a fairly good agreement in 
several cases (Chap. 4), therefore backing up 
[1.3] as a relation having a rather large domain 
of applicability for systems of non-spherical 
particles (discs and rods, and in particular, 
RBC and rouleaux). 

Nevertheless, for systems of spherical particles, 
the same approach leads to g() r )= 1, i.e. 
p = 1. Data for such a system is analysed and 
allows accurate particle size determinations 
(Chap. 5). 

Rheological parameters for characterization of 
concentrated disperse systems: For shear-thin- 
hing behaviour (i.e. if ko < kB), eq. [I.3.28] 3) 
-- and more generally eq. [I.3.12] - contains 
explicit variations with both concentration q~ 

2) If data for an "individual" experiment are used. 
On the contrary a broader distribution of p (0.2 < 
p < 0.8) was found using data based on mean values 
(for qv, ~b, t/), leading to a situation in some respect 
similar to polydispersity. 

3) In the following eqs. [a.b] in paper (1) are referred 
to as [La.bi. 
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and shear rate ~, depending on three Rheological 
Parameters (RP), ko, k~ and ~«. However, each 
of these depends on concentration (as it was met 
with already in newtonian case, Chap. 1 of (1)) 
and this leads to complicate data analysis of 
measurements of q~ = ~,(4))vs. 4) at constant 
shea'r rate. On the contrary, if 4) is fixed, Ó = 4)2, 
[I.3.28] - i.e. [1.3] - becomes a function of }' 
only, and a fit on experimental data taust give 
the values of RP, which can be considered as a 
set of values characterizing the structure of the 
system at this fixed concentration 4)1. Several 
examples will be given in the following. 

2. High shear rate limit, y >~ y« (5) eomparison 
with Casson's law 

Using the shear stress a = ~~, [1.3] can be 
rewritten as 

0-1/2 = qF¢ '1/2 
1 - ½ re4) [2.1] 

where 

= /Co + k~ ()V)?«) 1/2 [2.1 a] 
1 + (~/~«)~/2 

If ~ ,> )«, expansion into a serie in (~/~:«)1/2 gives 

a 1/2 = ~è/2 ~1/z 
1 - ½ k ~ 4 )  

( q ~ ) ~ ) 1 / 2 ~  ko - koo + 
2 (1-½k®4))2 

+ (9 [(?)/??«)- 1/2]. [2.2] 

As would be expected, since [2.2] holds for 
suspensions of rod-like particles, this reproduces 
Casson's relation [I.3.23], i.e. 

ax/z = K1/2)1/2 + a~/2 [2.3] 

with a Casson viscosity K and a yield shear stress 
ao such as 

K = ~« (1 - ½ k ~  4))-  ~ = ù (~, --, ~ )  _-- ù ~ ,  [ 2 . 4 ]  

1 4)2 
«o  = ~ - ~ ~ ~ « ( k o  - k ~ )  ~ (1 - ½ k ~ 4 ) )  ~ " [ 2 . 5 ]  

These expressions are comparable with those 
calculated by Casson (6) using an orientation 
parameter a (related to initial distribution of 
rod orientation, when flow begins) and two 
shape parameters fll and fl, yet introduced at 

the end of Chap. 3.5 (1). Putting for convenience 
q = aß1 - 1, Casson theory gives 

K C . . . . .  =-- qF(l - 4))-«, [2.6] 

Co cas'°n = [(1 - 4))-«/2 _ 112 [2.7] 

where the concentration dependence, as (1 - 4)) 
- which implies a packing concentration equal 
to 1 - was found by Casson when he used the 
Brinkman-Roscoe method to extend his theory 
for moderately dilute suspensions to highly 
concentrated ones. Discarding the latter, [2.6] 
and [2.7] become, after linearization in ~b 

K c .. . . .  = r/F (1 + q 4)), [2.6 a] 

o-Casson 1 2 2 = ~(aß)  4) , [2.7a] 

which are very similar to the corresponding 
eqs. [2.4] and [2.5], in the same (dilute) limit, 
particularly with respect to a yield stress pro- 
portional to 4)2: 

K = qv (1 + k~ 4)), [2.4a] 

a o  = ¼ t ] F ~ ) « ( k o  - -  k m ) 2 4 )  2 . [2.5a] 

Eqs.[2.6] and [2.7] apply to concentrated 
suspensions or deformable particles, like RBC 
suspensions of Blood whose packing concen- 
tration is close to ÓM= 1. These systems have 
been shown to verify with high accuracy the 
Casson equation up to ?? ~ 100sec -1 for a 
1arge range of concentrations, see Brooks et al. 
(7). Earlier, studying the action of fibrinogen, 
that initiated the RBC rouleaux formation. 
Merrill et al. (8) performed such a verification 
of [2.3], and determined the parameters fll 
and fl in [2.6] and [2.7] from Couette visco- 
metry data. The analysis of several samples of 
normal blood [table 1 in (8)] gives values of q/2 
close to unity, with an average value q = 1.97, 
which agrees with the exponent 2 in [2.4], in 
spite of large variations in fibrinogen concen- 
tration Cv. Variations of aò/z vs. 4) for different 
values of CF observed by Merrill et al. (8) are 
shown on figure 1, and are compared to (2.5) 
with RP Values for normal blood deduced from 
other data (4)= 0.419, ko = 4.68, k~o = 1.80, 
))« = 2.0). The agreement is rather satisfying. 
Nevertheiess, the existence of so high yield 
stresses is questionable in RBC systems, and 
many studies have found negligeable values of 
ao as ~ ~ 0. 
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3. L o w  shear limit ]? < 2)« 

If  ?;'~ < 1, eq. [1.3] becomes  

' 1 /2  F . 1/2 (¢) ",1/2"~ ù~,2 ù,o LI (ko k~) = _ _ , , r o T e r  ) 

+ e(#) [3.1] 
where ~~0 is the zero-shear  relative viscosity 

t/r o = (1 - ½ ko qS)- 2. [3.2] 

F r o m  [3.1] 

« = ~U~ro~ + e(Y2/2)  

which does not  exhibit  any  yield stress at }, = 0. 
On  the contrary ,  as 9 ~ 0, newtonian  behaviour  
is recovered.  Nevertheless,  in highly concen-  
t ra ted media,  one can p resume that  particles 

Fig. 1. Pseudo-yield stress rro. 
Data of Merrill et al. (8) 

Sample Fibrinogen 
concentration 
[g/100 ml] 

K 6802 0.21 A 
K 4782 0.24 ©, • 
K 2380 0.27 V 
K 5834 0.35 A 
K 4370 0.46 V 

, , ¢ 
0.8 

Curves (eq. [2.5]) 

tb ko k® 9« 
(cP) sec 1 

2.0 3 .06 1.80 9.¤8 
. . . . . .  1.7 3.24 1.80 4.00 

1.2 4.68 ¤.80 2.04 

and /or  aggregates  can form a three-dimensional  
ne twork  at rest, i.e. a geMike structure, having 
some yield stress. In  [3.1], the absence of the 
latter at ~3 = 0 comes  f rom tha t  such effects are 
not  t aken  into account  in the present  model.  
However ,  such a model  will be correct  if the 
yields stress has an extremely small magni tude,  
due to the smallness of cohesive forces between 
particles. This is wha t  happens  with no rma l  
blood,  where  the network,  formed at rest by 
rouleaux,  is very easy to disrupt  in individual  
rouleaux.  

Relaxation time: Fur the rmore ,  squar ing [3.1] 
yields 

t]r ~ro [1  (k 0 1/2 '1 /2  = - - k ~ ) ù ~ o  47 ,  ] 

+ (9 (~;¥). [3.3] 
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This variation in function of ?)r ~/2 can be sup- 
ported by a more rigorous theory in this low 
shear limit. Bueche (9) calculated the viseosity 
of high polymers in dilute and concentrated 
solutions. He has considered the polymer coil 
as an array of elastically coupled segments, 
each of them subject to shear stresses and 
thermal agitation depending on its surrounding. 
For a free draining coil, at very high dilution, 
variation with ))2 is recovered. With high molec- 
ular weights, taken into account solvent immo- 
bilization within the coil, Bueche introduced a 
shielding factor  which reduces the shear rate 
inside of the coil. In dilute solutions, at very 
low 9, the resulting viseosity t/is obtained (9) as 

t/ - -  ?/r = (t/0 - -  t /F) [1  - -  (TB))) 1 /2]  -~- (0(~)) [3.4] 

where qo = t/0~ = 0), and rB is a relaxation 
time, given by 

(mmo) 1/2 
~» = 3.72 (t/ - tle) [3.5] 

k T c  

c being the weight concentration of solute, and 
mo, m, the masses of a segment and of a mole- 
cule, respectively. Bueche pointed out that [3.4] 
"fits the available experimental data surprisingly 
well". This good agreement is obtained "without 
the use of arbitrary parameters, although the 
data were taken on different polymers, at 
various temperatures, in various solvents, by 
independent investigators". For concentrated 
solutions and bulk polymers, Bueche approxi- 
mated his free draining solution taking the 
suspending fluid viscosity negligeable in com- 
parison with ~v. If we apply this approximation 
to his "shielding" results [3.4], assuming that 
it holds for concentrated solutions, we obtain 

'/q = /1/0 [1  - -  ('CB~)) 1/2]  [ 3 . 4 a ]  

where 

(mmo) 1/2 
vB = 3.72 t/ [3.5a] 

k T c  

Eq. [3.3] has the same form as [3.4a], with a 
relaxation time 

vR = (ko - kot) 2 t/to q~2/f,« [3.6] 

which can be compared to [3.5a]. This leads 
to define a critical shear rate ?;,«, as in [I.3.16], by 

k T  
)« = - -  [3.7] 

flptll~ R 3 

where tip depends on ko - k~, on N, the number 
of segments in a molecule (having an effective 
radius R) and on ««, the molecular expansion 
factor. 

Pseudo-yield stress: At high concentration, 
and more especially if ~b is near the packing 
value ~b~t = 2/ko, the viscosity t/,o, defined by 
eq. [3.2], is yery large. As t/, o is the slope of the 
curve at ~' ~ 0, the variation of a against ??, 
which results from [2.1], is very close to that 
the Casson equation gives. Then ao appears 
as a pseudo-yield stress. (Note that the same 
approximation would be obtained with a Bing- 
ham material.) 

4. Pseudo-plastie behaviour. Method of 
characterization 

If a given media is studied using a given 
viscometer, its rheological behaviour will depend 
on the value of ~:'« compared to the range of shear 
rate values the viscometer allows, from 91 to ))» 
If }'« < ~;'1, the high shear limit [2.2] will be 
observed, i.e. the Casson equation will be veri- 
fied, with a newtonian behaviour at very high 
shear rates. Since 9« ~ a-3 such a behaviour is 
met with in suspensions of particles large in 
size, as ordinary suspensions (a » 1 gm). On 
the contrary, for 9« > ))2, one will see the tow 
shear limit behaviour [3.1], as is exhibited by 
solutions of ordinary solutes or very low molec- 
ular weight polymer (a ~ 10 .2 gm). Complete 
pseudo-plastic behaviour requires ~~ < ))« < ~2 
to be observed, i.e. systems like suspensions of 
colloidal particles, like very high molecular 
weight polymers in poor solvents, or like micro- 
emulsions, with 10 .2 < a < 1 gm. Non-rigid- 
particles suspensions, high polymers in good 
solvents or emulsions, can show more complex 
behaviour, although analogous. 

Fitting the general eq. [1.3] on experimental 
data enable the RP values, ko, ko~ and ))«, to be 
determined. It can be expected that ko, which 
dominate the zero-shear rate behaviour, mainly 
depicts aggregation properties of the system, 
while k~ describes the high shear rate (newton- 
ian) limit, and, through deviations from Einstein 
value for spheres, depends on size, thus on orien- 
tation and deformation of particles and hence, 
on suspending fluid viscosity. Finally, ?;'« is sen- 
sitive to effective volume of particles and, whether 
particles are deformable, to their mechanical 
properties (elasticity, "internal" viscosity, etc.). 
Some examples will be given now. 
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Fig. 2. Non-newtonian behaviour 
of flexible particle suspension: C) 
Saeks' and Tickner's data (10), 
- -  theoretical variations ac- 
cording [1.3] with ko = 5.134, 
k~ = 2.117, ~« = 1.84 sec -1. 
a) High shear rate variations, 
showing shear thinning behaviour; 
b) including very low shear rate, 
showing "generalized newtonian 
fluid" properties 

4.1. Suspensions of flexible particles in highly 
viscous fluid 

Figure  2 shows var ia t ions  of ~I,'(7r), measured  
by Tickner and Sacks (10) on a concent ra ted  
suspension (Ó = 0.40) of  flexible discs (dia- 
meter  = 5.55 m m ,  thickness -- 1.3 mm)  made  
with po lyacry lamide  gel, suspended in a high 
viscosity newtonian  fluid (t/v = 4.88 P.). If  [1.3] 
is fitted to the cor responding  data,  RP-values  
are found to be 

ko = 5.134, k~ = 2.117, 

}'« = 1.84 sec-  1 [,,4.1] 

The ~-range studied is too restricted to give 
precise values of RP  at very low shear rate, but  
value of k~, smaller  than  the Einstein one, taust  
be related to or ienta t ion effects. Moreover ,  
~)« ~ 2 sec - I  cannot  be related to [-I.3.16] since 
such large particles have a very low "ro ta t iona l  
'R~~ 7« , (from [,I.3.16], with f i =  8re. ~R~--2. 10 -»  

sec- l ) .  On  the other  hand,  taking 2sec  -1 as 
the value of the "elastic critical shear rate", 
given in [I.3.18] and using the measured  elastic 
modulus ,  E = 5 - 1 0  -~  dynes /cm 2, yields a very 
high viseosity (t h - 3 - 1 0 4  Poises), which is a 
plausible value for such an acrylamide  gel. - 
The  value of t/i is not  given in rel. (10). 

4.2. Blood and RBC suspensions 

Blood and RBC suspensions exhibit very 
s t rong non-newton ian  effects if );' becomes  smal-  

ler than  abou t  10 sec -  i. As has been yet stressed 
on, these effects are domina ted  at low )? by ag- 
gregat ion-disaggregat ion equil ibrium, while at  
high ,+ they are governed by orientat ion-dis-  
or ienta t ion equil ibrium, and eventual ly (with 
non rigid particles) by de fo rmat ion-undefo rma-  
tion equil ibrium. 

Checked  modif icat ion of these factors, ag- 
gregabil i ty and  deformabil i ty ,  can be reached 
considering a b n o r m a l  (either pathologica!  or  
artificial) situations. This p romote s  develop- 
ment  of  rheological  studies on b lood  and RBC 
suspensions 4). Some illustrative results will be 
shown in the following. 

4) Although Blood and RBC suspensions appear as 
very complex systems they present under normal condi- 
tions many advantages for the study of non-newtonian 
behaviour. Indeed, the particles they contain have 
precise properties (in the sense of small deviations from 
mean values) and are suspended in a fluid (the plasma) 
having weil defined physicochemical state. The most 
important features are the following: (i) The size of 
RBC corresponds to a very narrow calibration. (il) Their 
extreme deformability (however associated to a large 
resistance to area changes), allows strong orientation 
effects by flow, discarding too high )~ values for avoid 
of any inertial effect or hemolysis. (iii) Aggregates of 
RBC possess a characteristic shape, the so-called 
ù rouleau-shape", and the aggregation mechanism does 
not seem to depend on the number of RBC in the 
rouleau, but mainly an RBC-RBC interaction, the latter 
varying with physicoehemical properties of suspending 
fluid. (iv) Relaxation times associated w_ith Brownian 
rotation are very large and the observed time is the one 
associated with deformation (and the resulting orien- 
tation) of the order of 0.1 - 1 sec. 
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1) Figure 3 shows variations of 0 "1/2 = f ( } , l / 2 )  

according to eq. [2.2] fitted on data of Merrill 
et al. (8), for whole Blood and RBC in defibri- 
nated plasma: pseudo-yield stress is clearly 
shown for the former, but does not exist for the 
latter. 

1 

Œ~ (dynes/cm 2) 
0.5 / 

.Y 
.o2/ ~ < 

0.4. 

0.3- 

0.2 

0.1 
1 1 

q~ sec-7 
I , • , ] I I 

0 0.1 0.5 1 2 

Fig. 3. Non newtonian behaviour of blood ([7) and red 
cells in defibrinated plasma (mm): Data from Merrill 
et al. (8); theoretical variations, according [1.3] with 

IP] sec- 1 

Blood 0.012 1.8 4.68 0.69 0.419 
RCinFract. IV 0.014 1.8 3.96 1.23 0.406 

2) Measurements by S. Chien (11) on three 
suspensions [(i) N P  = Normal  RBC in plasma, 
(ii) NA = Normal  RBC in 11% albumin-Ringer, 
(iii) HA = Hardened RBC in 11% albumin 
Ringer] having the same volume concentration 
(q5 = 0.45) and the same suspending fluid vis- 
cosity (qF = 1.2cP), have been performed to 
separate the effects that RBC aggregation and 
RBC deformation exert on viscosity and espe- 
cially on its variations with respect to shear 
rate. Fitting [1.3] to this data leads to RP-values 
shown in table 1. 

Table 1. Rheological parameters for non-newtonian 
behaviour of RBC suspensions q5 = 0.45, flF = 1.2 cP 

km ko ~2« sec- 1 q5 M 

NP 1.78 4.20 5.0 0.476 
NA 1.78 3.29 25.0 0.608 
HA 3.62 - - 0.552 

Such values call for the following comments:  
(i) koo = 1.78 both for N P  and NA: This 

agrees with the same deformation of normal 
RBC (expected, since both concentration q5 and 
average viscosity flF are the same). Furthermore,  
this value is very close to that other samples of 
normal  blood gare (5, 12). Note that in this 
very high shear limit ?) » ?)«, at high concen- 
tration, one can expect a particle alignment 
with flow, very close to its maximum level. 

(ii) Aggregation effects appear in k NP = 4.20, 
for NP, in comparison with k NA = 3.29, for NA, 
since the latter, in which plasma proteins (fi- 
brinogens and globulins) responsible of RBC 
aggregation are absent, does not present such 
effects. Moreover,  for NA, packing concentra- 
tion q~M = 2/k NA (defined as in [1.1.4] but, 
evidently, using rest value k NA) is q5 NA = 0.607, 
close to the value ~bM = 0.61 _+ 0.01 drawn from 
centrifugation measurements using labelled plas- 
ma (13) and agrees with q)M = 0.59 obtained for 
close packing of discoids (14) modeling unde- 
formed RBC s). 

(iii) In NP, ?;'« = 5.0 sec-1 agrees surprisingly 
well with the value given in [1.3.19] from the 
data of Skalak for shear elasticity and viscosity 
of RBC membrane.  As RBC aggregation mech- 
anism seems to have to be explained by bridging 
of partially absorbed macromolecules onto RBC 
surfaces, as Chien et al. (15) pointed out, one can 
conclude that RBC membrane  properties domi- 
nate the effective mechanical properties of a 
rouleau. Nevertheless, using E~ ~ a -3 as in 
polymer chains, see Chap. 3.4.b in (1), one could 
expect a lowered shear elasticity but associated 
with a lowered "internal viscosity',  the latter 
mainly resulting from polymer bridges. More- 
over, the enhanced value ~;'« = 25 sec -1 found 
in NA suggests to associate modifications of 
effective "membrane"  properties with changes 
in both ion and protein content of plasma, such 
changes inducing well-known modifications of 
the RBC aggregation level. On one hand, it 
will be possible that, in Ringer, ionic adsorption 
onto RBC surfaces leads to an increase in Ei, 
hence in ~«/. On the other hand, taking again 
E~ a -  3 the ratio ",NA!-.NP ),« /y« = 5 could be related 
(21) to an approximate  number  n of RBC per 

5) Then, higher packing for deformable RBC could 
be associated to some deformation effect by crowding: 
at Ó = 0.45, this gives a reduction of @M (PM)(1 -- tpM) = 
5 % of the void volume between particles. 
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Table 2. Comparison of observed and (from [1.3]) calculated viscosities 

Normal blood 
(17) 

Sickle cell anemia 
(18) 

B ~F km cP 

0.40 1.2 1.84 
0.45 1.2 2.07 

40 1.4 2.83 

0.88 1.2 1.83 

ko ?'« sec- 1 

4.65 2.23 
4.33 1.88 

4.63 4.94 

2.26 2.16 
Packed cells 
(19) 

apparent viscosity (cP) 
obs. (20) calc. obs. (20) 

at ~;' = 0.1 sec- 
42.6 _+ 11.6 35.3 
67.3 _+ 12.3 68.2 

at }' = 0.1 sec- 1 
68 _+ 19 70.8 

calc. 

at ;) = 230 sec- 1 
3.6 + 0.3 3.0 
4.1 _+ 0.5 4.1 

at ?;' = 230 sec- 1 
5.1 _+ 0.6 6.64 

apparent fluidity (Poise- 1) 
at~=2.30sec-1 [ "]'-230sec i 
0.61 0.86 ~.51 2.64 I 

(observed at q5 = 0.95)*) 

*) In the third case, RP-values are not known at ~ß = 0.95, used in observations. Then, calculated values of 
fluidity, for q~ = 0.88, are somewhat higher than the observed ones. 

rouleau about n = 15, in accordance with ob- 
servations (n -~ 10 - 15). 

(iv) Finally, k~ A = 3.62 for HA agrees with 
findings in flowing suspensions of rigid particles, 
i.e. it corresponds to packing concentration 
allowing slip of adjacent layers of particles. 
- Recall, for instance, qSM = 0.525, k = 3.81, 
for cubic packing of hard spheres (25). - Here, 
a discoid packing (~bM = 0.55) is obtained, as 
evidence, denser than the sphere packing. Fur- 
thermore, dilatancy is observed at low shear 
rates for HA. - Note in measurements by 
Chien (11) the fall in relative viscosity as ?) 
decreases below 0.I sec -1. Similar finding has 
been observed more recently by Schmid-Schön- 
bein (16): for hardened RBC, RP-parameters 
take the following values/Co = 3.23, koo = 3.97. 
Again, dilatancy is clearly observed with high 
shear packing value ~bM~ = 0.504 weaker than 
the low shear one qSMo = 0.619. Moreover, the 
latter is close to that obtained for NA, NA ~M0 
0.61, i.e., for undeformed and very weakly- 
aggregated particles, then indistinguishable from 
hardened cells. 

Other RP-determinations, using various data, 
have led to very coherent findings (12). To 
illustrate this, table 2 gives, on one hand, RP- 
determinations for different systems: 

(i) Normal  blood, at ~b = 0.40 and 0.45 (from 
data of Schmid-Schõnbein et al. (17)). 

(ii) Sickle cells, i.e. RBC having abnormal 
Hemoglobin, hardened when desoxygenated, 
but which recovers some flexibility when oxy- 
genated (from data of Schmid-Schönbein and 
Wells (18)). 

(iii) Packed cells, at Ó = 0.88 (from data of 
Usami et al. (19)). 

On the other hand, comparison between t/ 
(or 1/~/) calculated from these RP-values, and 
those directly observed by Schmid-Schönbein et 
al. (20) is shown. 

As expected, RP-values appear as concen- 
tration dependent. Nevertheless, working at 
fixed volume concentration, their determination 
has been proposed as an attempt to system 
characterization (21, 23). 

Finally, figure 4 displays another preliminary 
finding, using [1.3], related to electroviscous 
effects, which emphasizes aggregation effects. 
Brooks et al. (22) performed viscosity measure-j 
ments on saline suspensions of human RBC to 
which high molecular weight Dextran has been 
added, at variable concentration CDx. These 
authors studied the conditions under which 
RBC were aggregated, with the help ofa  viscosity 
ratio R defined by 

(C»x, C,ù) ~ (Saline) 
R -  

t/ r/f 

Such a ratio compares viscosity measured 6 at 
a fixed shear rate ~;' and hematocrit H, in presence 
of Dextran and at variable ionic strength Cm, to 
corresponding viscosity at the same ) and H, 
but in saline. For  H = 50 and ?? = 0.17 sec-1 
Brooks et al. gave variations of R vs. CDx and 
C,ù, shown in figure 4a. At fixed C»x = 3 gr/ 
100ml, RP-values have been determined at 
ionic molar concentrations Cm used in (22). 
Corresponding ko values are given in table 3. 

ó) More precisely, values of t/ obtained after fitting 
[I.3.21 a] on viscosity data. 
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tage of using A instead of R stays in that the 
former is by definition independent on shear 
while the latter is strongly shear dependent; see 
figure 3 in (22). The points which correspond to 
these values of C»x and Cm are located on 
figure 4a, inside different area for which light 
microscopy has shown different levels of RBC 
aggregation: these locations are in good agree- 
ment with corresponding A-values. Nevertheless, 
further analysis will be necessary for more pre- 
cise interpretations of such an "aggregation 
index' .  
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Fig. 4. Electroviscous effects and aggregation of Red 
Blood Cells. 
a) Curves R = Const. (in Dx T 70 concentration and 
ionic strength Cm coordinates) and associated ~- 
potential (from Brook's data, fig. 5 in (22), using light 
microscopy observations). • Limit R = 1. From 
viscosity data (22): • experiments at C»x7o = 3g/ 
100 ml. ( * Control in saline) 
b) Variations of RBC "aggregation index A", calcutated 
by fitting [1.3] on viscosity data (22), compared with 
corresponding R variations (from fig. 6 in (22)). [] = A 
values, • = R values 

Table 3. RBC aggregation index A 

C»x 0.03 0.00 

Cm 0.030 0.060 0.100 0.145 0.100 

ko 2.85 3.01 3.94 3.78 2.94 = k ° 

A = ko/k ° 0.97 1.02 1.34 1.29 1.00 

Taking k ° = 2.94 (for C»x = 0) as reference, 
one can roughly define a RBC aggregation 
index by A = ko/k °, values of which are given 
in table 3. Variations of A, shown on figure 4b, 
appear close to R-variations. The main advan- 

5. Dispersions of uniform colloidal spheres in 
non-aqueous media: 
An example of a system of class p = 1 

Papir and Krieger (24) have measured non- 
newtonian viscosities of monodisperse spheres 
of polystyrene latexes (0.15 < a < 0.43 pm) sus- 
pended in benzylalcohol or in m-cresol. For  
constant concentration, they used eq. [I.3.22] to 
fit their experimental data by the method of 
least squares. After reduction of various data 
to a single one by using the reduced shear stress 
a~ = « a3/k T, Papir and Krieger obtained limit- 
ing ~iscosities t/r1 and t/~2 as functions of volume 
concentration Ó, satisfying the newtonian rela- 
tions [I.3.2] or [I.3.3]. 

A test of [1.3] has been performed using data 
for a suspension of spheres having a diameter 
2a  = 0.J55t.tm, immersed in benzyl-alcohol 
(t;e = 4.89 cP) at ¢ = 0.50. The RP-determina- 
tion gives (see figure 5) 

ko = 3.288, k~o = 2.707, 

)« = 61.65 sec -1 . [5.1] 

The corresponding values for the limiting vis- 
cosities are 

t/, o = 31.56, qr~ = 9.57 [5.2] 

which are not in good agreement neither with 
measured values (qro = 24.0; t/,= = 11.0) nor 
predicted ones (qro = 24.7; t/ro~ = 11.17), see 
table 1 in (24). Moreover,  the calculated curve, 
using [5.1], clearly appears (fig. 5) as a rather 
bad fitting. Indeed, such a discrepancy is not 
very surprising since dispersions considered 
here contain spherical particles, that could lead 
to p @ ½. As in Chap. 3.6 of (1), the best linear 
fit of [ 1 . 1 ] -  [1.2] on the data of (24) gives the 
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Fig. 5. Pseudo-plastic behaviour of monodisperse suspensions (polystyrene spheres in non-aqueous media) data 
from (24)(Ó = 0.50; t/v = 4.89 cP), curves (best fitted - - - ) ,  using [1.1]-[1.2] with 0 = (~/~;'«)P: 

p ko = K«0 k~ = Ke~ ~)c sec -1 

(i.e. with [1.3]) 0.5 3.288 2.707 69.65 
1 3.180 2.797 88.10 

best p value and cor responding  RP-values.  The  
results are 

p = 0.986, ko = 3.180, ko~ = 2.793, 

},« = 88.49 sec-  1 [5.3] 

which call for the following remarks :  
(i) As has been stressed in Chap.  3.6 of  (1), 

several effects influence the p-value, a m o n g  
them can be found, as we have yet suggested, 
the deviat ion between vort ici ty of  the suspending 
fluid and angular  velocity of  particles, when 
they are non-spher ica l  ones. Nevertheless,  such 
a deviat ion canno t  exist for rigid spheres, lead- 
ing to p = 1, according to [5.3]. 

(ii) Using k0- and  koo-values [5.3], one can 
calculate the cor responding  values tly o and  qù= as 

qro = 23.79, qr= = 10.98 [5.4] 

in bet ter  agreement  with the measured  values 
than  [5.2]. 

(iii) Since we are analysing proper t ies  o f m o n o -  
disperse suspensions of  rigid spheres, one can 
est imate f rom [I.3.16] effective particle d iameter  
2aeff taking ~;'« = ~ R o l  = kT/8ntlFa3eff or ~;'« = 
B T r / a e 2 f  - =  k T/6 ~ 11F a~ff. One finds 

2 Ro, = 0.1449 #m 2aeT) 0.1595 g m  [5.5] aeff ~ 

in fairly good  agreement  to the true value 
2a  = 0.155 gm. 

Similar analysis for o ther  suspensions leads 
to results in accordance  with [ 5 . 3 ] -  [5.5]. Fo r  
example,  with same particles of  d iameter  2 a = 
0.155 g m  but  suspended in m-cresol (tlF = 17.38 
cP), one obtains  

p = 1.048, ko = 3.159, k~ = 2.821, 

?)« = 24.62 sec-  1 

hence 

2 Ro, = 0.1455 g m  and 2aeT} = 0 .1601gm aeff 
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in very good  agreement  with [-5.5]. Fo r  particles 
having ano the r  d iameter  (2a = 0 .220gm) in 
benzyl-alcohol ,  one finds 

p = 1.177, k0 = 3.124, k~ = 2.802, 

)« = 37.61 sec -  1 

leading again  to good  agreement  between ef- 
fective diameters  

2Rot  = 0.193 g m ;  2ae~) = 0.212 g m  aeff 

and  the true ones. 
Such results al low to expect that,  in mono-  

disperse systems of well-defined spherical  par-  
ticles, but  with unknown  radius, as micro-  
emulsions,  it might  be possible  to obta in  size 
es t imat ions  f rom "cri t ical-shear rate"  determi-  
nat ions  based on da ta  processing of  steady 
viscosity measurements .  

6. Conclusion 
The present  s tudy seems to produce  two 

general  results: 
(i) C o m p a r e d  with the use of  values of  vis- 

cosity, even at very low shear rate, the p roposed  
method,  based on RP-de te rmina t ion ,  could 
present  some  advantages ,  the mos t  impor tan t ,  
after taking into account  concent ra t ion  depend-  
ence, being to separa te  aggregat ion and  orienta-  
t ion-deformat ion  of-part ic les .  Indeed,  such a 
separat ion,  a l though very crude - since using 
only three pa ramete r s  - is possible because at 
7r ~ l, particle deformat ion  disappears ,  as par-  
ticle aggregat ion does at "infinite" shear rate, 
~r ~> 1, and thus, calculated values of  ko and koo 

roughly  reveal these effects, respectively. In 
contras t  to this, for any finite value of ~, meas-  
ured values of viscosity take into account  bo th  
these effects, mixed in variable parts,  added  to 
undefined concent ra t ion  effects. 

Moreover ,  if some reference "s tate"  exists (from 
which one can define "reference RP-values"  at 
each concentrat ion),  it will be possible f fom 
actual  RP-values ,  to distinguish a viscosity in- 
crease associated with increasing of vo lume 
concentra t ion,  f rom ano the r  viscosity increase 
resulting f rom intensified RBC aggregat ion or 
f rom hardening.  

(il) Associated with the overall  re laxat ion t ime 
of the system, the shear dependence  as function 
of )P of intrinsic viscosity has al lowed to define 
several classes in highly concent ra ted  disperse 
systems. Such classes appea r  closely related to 

the p-value. As soon as p is determined,  one can 
gain some informat ion  abou t  the micros t ruc ture  
of the system (as precise size of particles, for 
instance), a l though start ing f rom measurements  
of  macros t ruc tu ra l  characteristics. 

A fairly good  agreement  with da ta  has been 
observed.  Nevertheless,  further investigations 
are needed to back  up these pre l iminary  results. 
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Summary 

A non-newtonian viscosity equation J/, = (1 ~½.  
k~b) -2 where ~b is the volume concentration and k = 
(k o + k~ }'~v)/(l + ?;'~) is an intrinsic viscosity, function 
of a relative shear rate }'r = ~;'/)«, ko, k~o and ~« being 
structural parameters, has been proposed in a previous 
paper (1). From empirical grounds, the value p = J/2 
holds for a large class of systems, like suspensions ofrod- 
and disc-shaped particles. In the high shear rate limit, a 
Casson law-type is recovered and discussed, especially 
the concentration dependence of the yield stress. How- 
erer, the latter disappears in the low shear limit, and 
must be considered as a pseudo-yield stress. Good 
agreement is found in this low shear limit with some 
theoretical results of Bueche for polymers. More gener- 
ally, the viscosity equation displays pseudo-plastic be- 
haviour and fitting it on experimental data allows tlfe de- 
termination of the structural parameters. Some exam- 
ples (especially Red Blood Cell suspensions and Blood) 
are studied and support the model. Nevertheless, for 
spherical particle suspensions, the best fitting is 
reached for p = 1. Accurate values of particle diameters 
can be deduced from the structural parameter pc, in 
this case. 

Zusammenfassung 

In einer vorangegangenen Arbeit (1) wurde eine 
Viskositätsgleichung für eine nicht-newtonsche Flüssig- 
keit von der Form tlr = (1 -½/~~b) 2 vorgeschlagen, 
worin Ó die Volumenkonzentration und k = (ko + 
k~ ~~)/(1 + ~~) eine Grenzviskosität bedeutet; die letz- 
tere stellt eine Funktion der relativen Schergeschwin- 
digkeit ~, = ~'/)~« dar, die Konstanten ko, kB und ,2« 
bezeichnen Strukturparameter. Empirisch wird ge- 
funden, daß für eine große Klasse von Systemen, wie 
z. B. stäbchen- und scheibchenförmigen Teilchen, p = 
1/2 gilt. In der Grenze hoher Schergeschwindigkeiten 
wird ein Verlauf gemäß einer Casson-Gleichung ge- 
funden und diskutiert, insbesondere bezüglich der 
Konzentrationsabhängigkeit der Fließspannung. Aller- 
dings verschwindet diese in der Grenze niedriger Scher- 
geschwindigkeiten und muß daher als Pseudo-Fließ- 
spannung .betrachtet werden. In diesem Grenzfall wird 
eine gute Ubereinstimmung mit theoretischen Voraus- 
sagen von Bueche an Polymeren gefunden. Ganz all- 
gemein beschreibt die obige Viskositätsgleichung ein 
pseudoplastisches Verhalten, und ihre Anpassung an 
experimentelle Werte erlaubt die Bestimmung der 
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Strukturparameter. Einige Beispiele, insbesondere Sus- 
pensionen von roten Blutkörperchen und Blut, werden 
untersucht und bestätigen das Modell. Allerdings er- 
hält man bei Suspensionen kugelförmiger Teilchen die 
beste Anpassung für p = 1. In diesem Fall kann man 
mit Hilfe des Strukturparameters ?~« genaue Werte der 
Teilchendurchmesser bestimmen. 
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