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1. Introduction 

This paper studies the flow around a steadily 
rotating sphere which is submerged in an 
infinite vat containing an incompressible, 
homogeneous simple fluid. While the problem 
has been studied previously, both analytically 
and experimentally, for several special non- 
Newtonian fluids (5, 6, 7, 16, 17, 18), there yet 
remains certain disagreements between the ex- 
isting theoretical predictions and the experi- 
mental observations; in particular, the shape of 
many observed secondary flow cells has neither 
been accurately predicted, nor even adequately 
approximated. This secondary flow region is of 
potential importance to the understanding of 
mixing, and, of course, the general question of 
the secondary flow of non-Newtonian fluids is 
clearly relevant to the processing of polymeric 
materials. 

The development of non-Newtonian fluid 
mechanics has been largely motivated by the 
observed curious behavior of polymeric materi- 
als. Many observed phenomena have been 
modeled and understood satisfactorily by ap- 
plying the principles of non-Newtonian fluid 
mechanics, and, conversely, the theory of non- 
650 

Newtonian fluid mechanics has been used to 
predict certain realistic and unusual flow 
behavior which had not previously been observ- 
ed. An example of this latter situation is the 
well-known secondary steady swirl flow phe- 
nomenon which takes place down straight pipes 
of non-circular cross section (1, 2, 3, 4) under a 
given pressure head. 

A general analysis of the secondary flow field 
around a steadily rotating submerged sphere is 
complicated by geometric considerations: this 
may be responsible for the fact that the works 
of Giesekus (5), Thomas and Walters (6) and 
Langlois (7) have been concerned with at most 
second order perturbation solutions, the pertur- 
bation parameter being the angular velocity. 
However, at this order the theoretical predic- 
tion of the shape of the cells of secondary flow 
apparently is not always confirmed by experi- 
ment1). Since the interesting secondary flow 
phenomenon in the flow down rectilinear pipes 
is first present at the fourth order perturbation 
solution (3) (the perturbation parameter here 
being pressure head), we are inclined to believe 

1) See, however, the work of Walters and Savins 
(16) and Giesekus (17). 
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that in the present problem the disagreement 
between certain observed secondary flow and 
the independent analytical predictions will be 
explained by carrying out the perturbation 
analysis to orders greater than two. We confirm 
this belief with our computations at fourth 
order. 

In this work we apply, essentially, the ap- 
proximation theory of Coleman and Noll  (8), 
and develop a perturbation scheme for the 
stress which takes as its central parameter the 
angular velocity, g2, of the sphere. For this 
purpose, we tacitly assume that the stress re- 
sponse functional of the simple fluid is 
sufficiently differentiable at the zero history in 
an appropriate function space of fading 
memories. Specifically, our approach follows 
that used by Joseph and Fosdick (9) in their 

s tudy  of the shape of the free surface of a 
simple fluid which is contained between con- 
centric rotating cylinders. 

After a brief preliminary discusion of some 
pertinent results from the theory of simple 
fluids in Section 2, we outline, in Section 3, the 
general problem of concern in this paper, intro- 
duce our series procedure for its approx~mate 
solution, and set up for study an ordered 
sequence or related but simpler problems, 
ordered according to integral powers of the 
angular velocity of the turning sphere. In 
Section 4, we develop the solutions to this 
ordered sequence of problems through the 
fourth order, and in Section 5 we give a brief 
summary and discussion of out results. In 
figures 2 - 8, we show, by way of some explicit 
computations, that at fourth order the cells 
of secondary flow take on the shape of an 
equatorial torus and/or  a polar cap-shape not 
unlike those which have been observed experi- 
mentally. Reference to these figures is included 
in our discussions in Section 5. While we make 
no claim that all of the material constants used 
in preforming the computations for the figures 
have any physical significance, nevertheless, we 
do believe that these figures support the view 
that many of the non-trivial secondary flow 
regions that are observed in the laboratory 
around immersed and rotating spheres (5, 17, 
18) are well within theoretical description. 

2. Preliminaries 
A simple fluid is defined (10) as a material 

with no preferred reference configuration 

whose stress response is determined by the past 
history of the relative deformation gradient. To 
formulare this concept, the relative fluid motion 
is first represented as a 3-dimensional (Eucli- 
dean) point valued function 

~ ( z ) = Z ( x , t ; r ) ,  - o o < r ~ < t ,  [2.1] 

where ~(z) denotes the location at time 3 of a 
typical fluid particle which occupies x at the 
present time t. For any given x and t, [2.1] 
describes the path of a typical particle. 

The relative deformation gradient is defined 
as the spatial gradient of ~(r) with respect to x, 
i.e., 

Fr(r) = F(x, t; 3) = grad~¢(x, t; 3). [2.2] 

In this paper, we are concerned with an incom- 
pressible fluid for which only isochoric motion 
is possible. Hence, Ft(r  ) satisfies 

detFt(3 ) = 1. [2.3] 

Let T = T(x, t) be the (symmetric) Cauchy 
stress tensor field for the fluid. In view of the 
assumption of incompressibility, T is then 
constitutively determined by the fluid motion 
up to an arbitrary added hydrostatic pressure p. 
It is therefore convenient to introduce the extra 
stress tensor 

S(x,  t) - T(x, t) + p(x,  t) 1, [2.4] 

and to normalize S(x, t) by the convention 

trS(x, t) = 0. [2.5] 

Thus, the constitutive assumption for an incom- 
pressible simple fluid requires that the extra 
stress S at (x, t) be determined by the time 
history of the relative deformation gradient 
Fr(3 ). Mathematically, this idea is expressed by 

T = t  

S = W(F«(O), [2.6] 
T =  - - o o  

where W is a mapping from the space of 
(proper) unimodular tensor valued functions on 
( -  0% t] to the vector space of traceless, sym- 
metric second order tensors. The principle of 
material frame indifference then allows [2.6] to 
be written in the f o r m  

S(t)  = J ( C  t -  1), [2.7a] 

where the extra stress response functional J i s  
symmetric and satisfies the invariance condition 

~ = t  T = t  

Q J ( C t -  1) QT = j (QCt(3)QT _ 1) [2.7b] 
~ =  - c o  r =  - c o  
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for all fixed orthogonal tensors Q, and where 
Ct(r) is the relative right Cauchy-Green strain 
tensor defined by 

Ct(z ) - F]  (z)Ft(z ) . [2.81 

Now, for slow steady motions and with cer- 
tain technical smoothness assumptions on the 
response functional J at the zero history when 
defined on a Banach space of fading memories, 
the retardation approximation theorem of 
Coleman and Noll  (8) may be applied to yield 
the following approximate formula complete up 
to and including the fourth order in the velocity 
magnitude, cf. (11, p. 494): 

4 

S :  ~Si ,  
i = 1  

where 

$1 = / z A l ,  

$2 = alA2 + a2 A2, 

$3 = fllA3 +/ff2(A2Aa + AIA2) 
+/~3 (trA 2) A 1, [2.9] 

5 4 : -  71A4 + }'2(A3A1 + A1A3) + 73A 2 

+ 74(A2 A2 + A2A2) + 75(trA2)A2 

+ 76(trA2)A 2 + 77(trA3)Al 

+ 78(trA2AOAI,  

and where Ag is the k-th Rivlin-Ericksen tensor 
defined by 

dk Ct(r) r=t Ak=--d~-rg , k  >~ l ,  
[2.10] 

Ao = Ct(t) = 1. 

In these formulae , /z  > 0 is the viscosity, and 
aa, a2, fll . . . . .  78 are material constants. In 
addition, it should be remarked that a constant 
multiple of 1 would have to be included in the 
first of  [2.9] in order to satisfy the convention 
[2.5]. We have absorbed this spherical stress 
into the constitutively indeterminate pressure 
- p l  of T. 

For steady motion, the present velocity 

u(x) - d~(r )  depends solely on the spatial lo- 
d r  

cation x and it follows that the Rivlin-Ericksen 
tensors must satisfy the recursion relation 

Ak+ 1 = (gradAk)u + Akgradu  +(Akgradu)  T, 

A 0 = 1. [2.11] 

In addition, the incompressibility condition 
[2.3] requires that 

divu(x)  = 0,  [2.12] 

and the balance of  linear momentum has the 
form 

p(gradu)u = - g r a d p  + d ivS,  [2.13] 

where p is the (constant) density of the fluid, 
and where body force has been neglected. 
Clearly, a conservative body force field could 
be included as part of the pressure field p .  

3. Problem statement and governing equations 

The physical problem which we shall consider 
is to determine the steady flow field and pos- 
sible secondary flow cells in a large vat of  in- 
compressible simple fluid; the motion being 
caused solely by the steady rotation about a dia- 
meter of a submerged rigid sphere. As an ideali- 
zation, the container of the fluid will be assum- 
ed to be infinite in extent. 

The prescribed constant angular velocity of 
the sphere, O, and the related steady motion 
internal to the fluid will be assumed to be small 
enough that the approximate constitutive rela- 
tion [2.9] applies, at least to within order ~2 4 ac- 
curacy. Of course, at the surface of  the sphere 
the conventional no-slip boundary condition 
will be employed. 

Naturally, it is convenient to adopt a right- 
handed spherical coordinate system (I", 0, q)) 
with the origin of  the coordinates located at the 
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Fig. 1. Positive quadrant of the rotating sphere r = a 
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center of the sphere, and to take the polar axis 
from which 0 is measured as the axis about 
which the sphere is rotating (cf., fig. 1). The 
geometric symmetry of the problem implies that 
the longitudinal plane q~ = 0 can be chosen ar- 
bitrarily. If  we let (er, e0, eo) be the natural 
orthonormal basis of  the coordinate system at 
any spatial point x in the fluid domain, then the 
position vector r from the origin 0 to x is given 
by r = rer ,  where r is the associated radial 
distance. 

If  u ( r )  denotes the velocity field in the fluid 
domain, then the no-slip boundary condition 
and the condition that the fluid be at rest at 
infinity requires that 

~ f 2 a s i n O e ~  on r = a,  
u = [3.1] 

(o(1) as r ~ 0% 

where a is the radius of  the sphere, and o(1) 
denotes the conventional "small order" func- 
tion. We shall assume that the velocity field and 
the induced pressure field in the fluid domain 
are of  the form 

u = u ( r ;  g-2), [3.2] 
p = p ( r ; g 2 ) ,  

and, moreover, that these functions are suf- 
ficiently differentiable with respect to g2 to war- 
rent the series expansions 

u = u ( k ) O  k + o ( D n ) ,  
k = l k !  

[3.3] 

P= k2=o ~-~. p(k)s~k + °(t~")' 

Ok ~=0 where ()~k) = ~ () , and where u ~k) and 

p~k) are functions of  position. Because of  sym- 
metry about the axis of rotation of the sphere it 
follows that 

u (k) = u~k)(r, O)e r + u~k)(r, O)e o + u~k)(r, O)e~,  

and t h a t p  (k) = p~k)(r, 0).  Of course, [3.3] tacit- 
ly assumes that when g2 = 0, then u = 0 and 
p = p~0), where p~0) is the uniform static pres- 
sure field of the fluid, which could be set to zero 
without loss of  generality. 

The governing differential equations for u (k) 
and ptk) now follow from [2.12] and [2.13], 
with the aid of  [2.9], [2.11] and [3.3]. Thus, we 
obtain 

p [(grad u) u ] (k) = _ gradp (k) + div S (k), r > a ,  
[3.4] 

and 

divu (k) = 0, r > a,  [3.5] 

where for S (k) we must call upon [2.9] and 
[2.11]. We note that by introducing a stream- 
function ~u(~)(r, 0) such that 

u Ck) = - c u r l  \ ~  ~ß + u~k)(r, O)e~ ,  [3.61 

then [3.5] is satisfied identically. 
From [3.3] and [3.1], the boundary condi- 

tions for u <k) have the form 

u (1) = asin 0e~, 

u Ck) = 0, (k > 1), o n r =  a,  

u <k) = o(1), (k t> 1 ) , a s r ~  0% 

which, with the aid of [3.6], may be stated as 
follows: 

u~ ) = asinqL u~ k) = 0, (k > 1) , - ]  

~u~k ) _ c(k) ' 0q/(k) ~ on r = a ,  
- õr  o, (k/> 1 ) , ]  [3.7] 

u( f  ) = 0(1), 9/(k) = o(r2), 

ô ~(k) 
- -  - o ( r ) , ( k  >i l ) , a s r - ,  0% 

Or 

where c (k) is a constant. 

4. Perturbation solution 

We now seek to solve, at each order k = 1, 2, 
3 and 4, the sequence of  problems outlined in 
Section 3, and to thereby generate the series 
solution [3.3]. Specifically, we shall use [3.6], 
[2.9], [2.11] and [3.4] to develop, for each k, the 
fundamental field equations for p(k),  q/(k) and 
u~ k), and to determine these fields subject to the 
boundary conditions [3.7]. Since [2.9] already 
represents a 4th order retardation approxima- 
tion of  the response function of a simple fluid, 
the analysis given here cannot be extended 
beyond k = 4. Fortunately, the solution which 
we develop at order ~r'24 exhibits the presence of 
bulging equatorial and /o f  polar circulating 
cells, and this agrees favorably with the interest- 
ing photographs of  G i e s e k u s  (5, p. 260) con- 
cerning this phenomenon. These equatorial and 
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polar cells are not predicted at orders less than 
fou r .  

4.1. First order problem 

Hefe, the problem basically is the same as 
that for Newtonian fluids without inertial ef- 
fects. Even so, we shall carry out the discussion 
of this first order problem fairly completely 
since the higher order problems will require 
similar operations. 

For k = 1, [3.4] has the form 

- g r a d p  0) + divS (1) = 0, r > a ,  [4.1] 

where S (1) is obtained from [2.9] by essentially 
differentiating once with respect to D and then 
setting D = 0. Specifically, with the aid of 
[3.3]1, [2.11] and [2.9], it follows that 

A t  1) = g radu  0) + (gradu 0)) , 
[4.21 

A ! a ) = 0 ,  i~>2,  

and that 

s (~) = s t  ~) + s(2" + s~» + s~ ~), 

St 1) = / r A  I 1), [4.3] 

S! 1 ) = 0 , i ~ > 2 .  

Of course, for u (~) we have the representation 
[3.6] in terms of the streamfunction gt (1) and 
~t(~ ) . 

It is now straightforward to see, by substitut- 
ing [4.2] and [4.3] into [4.1], that the q~-com- 
ponent of [4.1] reduces to 

r 2 sin 2 0 u(~) = 0, [4.41 

where A denotes the  Laplacian operator, and 
where we have taken pO), ~,0) and u(~ ) inde- 
pendent of ~, as noted earlier. Thus, since ~ > 
0, the boundary conditions on u(~ ) in [3.7] imply 
that 
u(~)-  a 3 . 

B sm 0. [4.5] 

The remaining r- and 0-components of [4.1] 
are, of course, generated in a similar fashion, 
and it follows that the equation governing them 
can be reduced to the form 

gradp (1) +/2A u r l ,  . ~  o - ,  = 0. [4.61 
\ r s m 0  / J  

By applying the curl operation to this equation 
in order to eliminate p(1), we readily obtain 

B21//(1) = 0 ,  [4.7] 

where 5( is a second order linear differential 
operator defined by 

Ô2 1 Ô2 cot 0 Ô 
5 p - - -  + - -  - - -  [4.81 

ô r  2 r 2 Ô0 2 r 2 ô 0  

Thus, by applying the boundary conditions for 
~(1) as given in [3.7], we see that q/(1) ___ c(i) for 
all r I> a, and consequently from [4.6] it follows 
that p(1) _= constant. Whence, at first order we 
conclude that 

g3 . 
u O) - -~-smOe¢,  

[4.9] 
p(1) = constant.  

4.2. Second order problem 

For k = 2, the governing equations, i.e., 
[3.3], [3.4], [2.9], and [2.11], yield 

- g r a d p  (2) + divS (2) = 2p(graduO))u  (1), 
[4.10] 

where 

A (12) = grad u (2) q_ (grad u (2))T, 

A (2 2) • (gradA t I)) u (i) + A t l) grad u (1) 

+ (A ~1) grad u (1))T, 

A! 2) = 0, i /> 3, [4.11l 

with A ~1) given by [4.211 and [4.9], and where 

S (2) = S~ 21 + S(22) + S f  ) + S(42), [4.12] 

with 

s~ 2) = ~ A  12), 

8(22) = «1A(22) + 20t2(Atl)) 2, [4.13] 

S~ 2)= 0, i~>3 .  

From [4.131 and [4.11] it is clear that S(22) is 
determined solely by u(1) and, hence, the field 
u (2) enters S (2) only through St 2) in [4.1311. 
Therefore, with the representation [3.6] for k = 
2, and u O) as given in [4.9], [4.10] may be reduc- 
ed to a set of linear partial differential equa- 
tions of the form 
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- g r a d p  (2) +/~A [ - c u r l  / I//(2) e '~ ] \r~--~n0 ~/+ ua, e0j 

a6 a6 1 = 18(8cq + 5a2)- -~- -  2p--~- sin20er 

I ~~ ~61 + 18a2-- 7 -  - 2p--~- sin0cos0e0.  
[4.141 

Note that since p(2), tff(2) and u o) are independ- 
ent of ~0 then the q~-component of [4.14] is 
identical in form with [4.4] with p(1) and u(~ ) 
replaced by p(2) and u(~ ). Since the boundary 
conditions for u(~ ) in [3.7] are zero, both at r = 
a and as r ~ 0% it follows that uÓ ) = 0 for all r 
~>a. 

If  we now take the curl operation on the 
remaining part of [4.14] we reach 

B 7 -  247-  , + a z  

• sin2 0cos 0, r > a,  [4•15] 

where S is given by [4.8]. Thus, using the 
boundary conditions for q/z) as given in [3.7], it 
follows that, aside from an added constant c (2), 
q/(2) has the form 

q,,(2) = F(r )  sin 2 0cos 0, 

F(r )  - - -  - (~1 + az) + 2 

.(~_~)~. ~4.~6~ 

The pressure field p(Z~ now can be found by 
integrating [4.141 with ~,(2) given by [4.16]. 
Since p (2) does not have an explicit contribution 
in the higher order problems which we shall 
consider, it is not necessary to record this result. 

We have found that at second order, 

B I//(2) e "~ 
u (2) = - c u r l  \ ~  OB, [4.17] 

where q/(2) is given in [4.16]. The problem at this 
order has been considered previously by Lang-  
lois (7), Giesekus  (5), and Thomas  and Walters 
(6). We believe that one of their most interesting 

conclusion concerns the existence of an "inertial 
radius", i.e., a spherical surface of radius r* > 
a concentric with the solid turning sphere r = a 
and inside of which the same fluid particles 
always remain while circulating both longitudi- 
nally and from poles to equator and back again. 
The existence of this "secondary flow" and 
enveloping spherical surface is guaranteed if the 
material constants p, a»  and a2, and the given 
spherical radius r = a satisfy 

pa  2 
4 < - -  < 12, [4.)8] 

« 1 + « 2  

which, in effect, shows that there is a spherical 
level surface q/z) = 0 of [4.16] at r = r* > a in 
the fluid domain. In this case, the secondary 
flow in the domain a < r < r* is dominated by 
normal stress effects, while that outside r > r* 
is influenced more heavily by centrifugal force• 
If pa2 / (a l  + az) > 12, then centrifugal force 
dominates everywhere, while if pa2 / (a l  + az) 
< 4, the normal stress effects will dominate in 
the whole fluid domain. 

Motivated by the experimental observations 
of Giesekus (5), which illustrate that the secon- 
dary flow domain generally is not housed within 
a whole spherical envelope but is rather more 
concentrated in an equatorial torus or perhaps 
in polar caps, we shall go now to investigate the 
effects of higher order in t-2, and show that, 
indeed, a tor0idal and /of  polar domain emerges 
at order 0 4 . 

4.3. Third order p rob l em  

For k = 3, the governing equations, i.e., 
[3.3], [3.4], [2.91, and [2.11], yield 

- gradp O) + divS 0) = 3p [(gradu(2))u 0) 

+ (grad u (1)) u (2)], 
[4.19] 

where 

A t  3) = 

A ~33 = 

A~ 3) = 

A !3) = 

gradu O) + (gradu(3)) v, 

(gradA t 2)) u (1) + A l 2) grad u (a) 

+ (A ~2) grad u (l))v, 

(gradA (22)) u (1) + A (22)gradu 0) 

+ (A(2Z)gradu(l))v + (gradA~l))u (2) 

+ A (21) grad u (2) + (A (21) grad u (2))v, 

0, i /> 4, [4.20] 
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with A ~1), A ~2), A (22), u (1) and U (2) given by 
[4.211, [4.111, [4.91, [4.171 and [4.16], and 
where 

S (3) • S~ 3) -}- S (3) -[- S~ 3) -{- 8(4 3), [4.21] 

with 

s?> = uA ?), 
S(23) = alA (23) + a2(3A I2)A t 1) + 3A tl)A t2)), 

S~ 3) = ~?lA t 3) +/72(3A (22)A t 1) + 3A tl)A (22)) 

+ 3/? 3 (trA (2LA (1) 

S! 3) = 0, i >~ 4. [4.22] 

It can be seen, analogous to earlier orders, 
that the field u (3) enters S (3) only through St 3) in 
[4.2211. Therefore, with the representation [3-.6] 
for k = 3, and u (1) and u (2~ as given in [4.9], 
[4.17] and [4.16], the system [4.19] may be 
reduced to the form 

= - 3 p a  - 7  + 9(~1 + a2)a3 

_ _ a 9 ]  
. 4 F ' )  1944(/72 q- /?3) 7 \ r» r6/ 

• sinO+ [3pa3(2 F'-7-+ 3 F )  

~ F  rr 
+ 9(al  + az)a3 \ ~ T -  

°9] 
+ 1944 (/?2 + /?3) -76- 

+ - - +  12 4 /.6 

sin Ocos 2 01 e0~, 
J 

[4.23] 

where F '  and F "  denotes differentiations of F 
given in [4.16]. 

We shall first concentrate on the 0-com- 
ponent of [4.23]. Since p(3), ~u(3) and u(~ ) are 
independent of q~, this component of [4.23] con- 
tains the single unknown field u ó ) which, be- 
cause of the right hand side of [4.23], we as- 
sume to be of the form 

u(~ ) = H(r) sin 0 + K(r) sin 0cos20, [4.241 

where H(r) and K(r) are to be determined. It is 

clear from [3.7] that the boundary conditions 
for H(r) and K(r) are, 

H(a) = K(a) = O, 

H(r) = K(r) = o(1), asr --* oo. [4.25] 

In addition, upon substituting [4.24] into the q)- 
component of [4.23] we find that 

(H, ,  + 2 H  , 2 H 2 K )  r - -~- + -~- sin 0 

+ " + 2 - 12 sin0cos20 
F 

F /(F'___~' 4_~T = -3pa3-~3-+ 9(cq + a2)a 3 - 

- 1944(/72 + /?3)-~-õ- sin0 

+ 3 + 9(al + a2)a 3 

«~,7 ~ ÷) + 4-~-  + 12 

r~~°9J + 1944(/72 + / 7 3 ) ~  sin0cos20, [4.261 

which clearly yields two linear ordinary differ- 
ential equations for H(r) and K(r), whose solu- 
tions are subject to the boundary conditions 
[4.25]. Since one of the equations is indepen- 
dent of H(r), it can be integrated first to yield 
K(r) and then H(r) can be integrated from the 
second equation. Upon integration and satisfac- 
tion of the boundary conditions [4.25], we find 
that K(r) and H(r) have the following forms: 

K(r) = + l n - - ,  
i a 

H ( r ) =  =~2 F ~ '  q- h~ in r_[_, 
i -~- a 

[4.27] 

where the constants ki, hi, k~ and h~ are given 
by 

2 ¢t 2 0fl -- C2 , 
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k 4 _  15 p2a9 pa 7 
32 /`/2 3 7(a1 + a2) + 

207 a » 
22 ,//2 

(Œ1 d- 0~2) 2 486 a 5 • q~2 +/~3),  
11 // 

k5 = 3 a 6 * 32 /`/2 [ p a 2 -  12(a l  + az)] 2, 

k6 - 3 pa 9 
2 /`/2 (Œ1 q- 0'2), 

3 a 8 
k 7 - 

4 /`/2 
(t~ 1 -b •2)[P az + 12(al  + a2)],  

54 a 9 Fo - (/h +/~3) («1 + «2)2 k8 
Ii // L" // 

3 p2a9 
k~- - - ,  

14 /`/2 

p2a7 3 pa 5 4 a a 
h 2 -  - - +  //2 (/21 + {22) 1/2 200/./2 70 5 

144 a 3 
" (Œ1 + /22) 2 + - -  (f12 + f13), 

5 // 

h 3 = 0 ,  

h 4 -  21 __p2a9 3 pa 7 207 
80---Ö 1./2 q- 5 /`/2 (al + a2) - - - 1 1 0  

a 5 486 a 5 

B2 («1 + a2): + --55 - - / / ( &  +/~3),  

h5 = 1 p2a l °  3 pa 8 
32 /.12 4 /`/2 (6~1 -b Œ2) 

3 a 6 
+ 2 ~ - T ( a l +  az) 2, 

h6 = 9 pa 9 
14 f12 (al  -{- (~2), 

h7 3 pa 1° a s 
- _ _  9 / / 2  4 /`/2 (Œ1 -b «2) q- - - ( a  1 d- a2) 2, 

86 a 9 414 a 9 
h8 = (al  + a2) 2 

11 /`/2 11 // 

• (& +/~3),  
3 p2a9 

h ~ =  
70 /`/2 

[4.28] 

Now,  the r- and 0-components  of  [4.23] lead 
to an equat ion of  the same form as [4.6] with 
p(1) and ~0)  replaced by p(3) and q/(3), respec- 
tively. Thus,  since the problems governing (p 0), 
~0)) and (p(3), q/(3)) are the same, we see by  
analogy that  q/(3) _ c(3) andp(3) = constant  for  
all r ~> a,  where c (3) was int roduced in [3.7]. 
Therefore,  at third order  the complete  solution 
for u (3) is 

u(3) = (H(r)  sin 0 + K(r)  sin 0 cos 2 0) e~, [4.29] 

with H and K given by  [4.27] and [4.28]. 
It follows f rom [4.29] that  u (3) has no contri- 

but ion to the secondary f low cell found  at 
second order,  but  rather provides for an adjust-  
ment  in the tangential O-directional flow. It is 
clear, therefore,  that  at least a four th  order 
problem must  be considered in order to s tudy 
the equatorial  toroidal  and polar  cap secondary 
f low that Giesekus observed.  

4.4. Fourth order problem 

For k = 4, the governing equations,  i.e., 
[3.3], [3.4], [2.91, and [2.11], yield 

- g r a d p  (4) + d ivS  (4) = p [4 (grad u (3))u (1) 

+ 4 (grad u (1)) u (3) 

+ 6 (grad u (2)) u (2)], 

[4.3Ol 

grad u (4) + (grad u (4))T, 

4 (gradA t 3)) u (1) + 4 [A (13) grad u (1) 

+ (A ~3)gradu0))T] + 6 (g radA t2))u (2) 

+ 6 [A t 2) grad u (2) + (A t 2) grad u (2))v] 

+ 4 (gradA t 1)) u (3) + 4 [A t l) grad u (3) 

+ (A ~l) grad u (3))s], 

A (34) = 4 (gradA (23)) u (1) + 4 [A (23) grad u 0) 

+ (A (23) grad u 0))v] + 6 (grad A (22)) u (2) 

+ 6 [A (22)gradu(2) + (A (22)gradu(2))v], 

A(44) = 4(gradAt3))u  0) + 4[At3)gradu  0) 

+ (A t 3) grad u (1))v], [4.31] 

with A t 1), A !2) (i = 1, 2), A !3) (i = 1 ,2 ,  3), u 0), 
u (2), and u (3) given by  [4.2] 1, [4.11], [4.20], 
[4.9], [4.17], [4.16], [4.29], [4.271 and [4.28], 
and where 

S (4) -- S~ 4) q- 5(24) -F S~ 4) + 8(44) , [4.32] 

where 

A~4)= 

A (24) - 
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with 

S~ 4) =/.rA t 4) , 

8(2 4) = (2lA (2 4) ..}_ C~2(4A ~3) A ~1) + 6A t2)A t 2) 

+ 4A tl)A t3)), 

S~4) = ]~IA (34) + fl2(4 A (23) A ~1) + 4A ~I)A (23) 
+ 6A (2)A (2) + 6A (2)A (2)X 2 Zal  1 za2  1 

+ f13 [4(trA (23))A t l) + 6 (trA (22))A t2)], 

S (4) = ?,A (44) + 72(.'4 ~3)A ~1) + A tl)A (33)) 

+ 673A(22)A(22) + 24 y4A(22)Atl)At 1) 

+ 6 Y5 (trA (22))A (22) 

+ 12 y6(trA (22))A tl)A t l) • [4.33] 

If we now follow the procedure outlined at 
the first three orders, and introduce the repre- 
sentation [3.6] for k = 4 and the results already 
found for u 0), u (2), and u °) in [4.9], [4.17] and 
[4.16], and [4.29], [4.27] and [4.28] into the 
system of equations [4.30 - 33], we will obtain a 

linear system of partial differential equations 
for p(4), i//(4) and u(~ ) similar to that given in 
[4.23] at third order but with a right hand side 
having only r- and 0-components. Since the 
generation of this system requires a fair amount  
of computational  effort and time, we shall not 
record the intermediate details here. It does fol- 
low, however, since p (4), i,//(4), and u ~) are inde- 
pendent of q~, that  the q~-component of the 
generated system contains only u ó ) and is 
identical in form to [4.4]. Thus, with the homo- 
geneous boundary conditions for u~  ) given in 
[3.7], it follows that  u~  ) - 0 for all r />  a. 

Again, following a procedure outlined ear- 
lier, if we now eliminate p(4) from the generated 
system by applying the curl operator to it, we 
shall obtain the following partial differential 
equation f o r  I//(4): 

B ~.c#2q/(4) = gl(r)sinOcosO 
r sin 0 

+ g2(r) sin 0cos 3 0, [4.34] 

where ga (r) and g2(r) are given by 

9 1 ( r ) = p  - 8 a  3 - ~ - +  7 + 6 ~  ~T r 3 
F F  " F 2 \ 7 

2 - - 7 v -  + - 7 - JJ 
a 13 

+ [311040(73 + 74 "[- 75) q'- 217728 Y6] ----fr- -- 
( K "  H "  

24a3al  - 2 - - 7 -  + 24 + 4 7 -  ~6 

~8~) ( ~  ~ ~6 ~ ~ ~6) - 8 ~ - +  7 - 24a3a2 - ~ T -  + 2 - - ~ - +  10 + 3--r- T - -  1 0 - 7 - +  10 

B F F  v F 'F  iv F F  iv F ' F  . . . .  " F F "  FF '  
- 6al  \ r3 r3 4 r--  W-  - 4---7T-- + 12 F r -~F  3 ' + 96 r----- W -  - 288 r-----y- 

F2 ) ( FFiV 
+ 1 4 4 7 U  - 6a2 - 2  7 

F ' F ' "  F F ' "  F F "  F'  2 
- - -  4-----7--- + 1 2 - -  + 24 + 2 4 - - ~ _  

r 5 - - ~  r ~ r 6 

FF '  
- 1 6 8 - -  

r 7 

) (3 f~iv «, , ,  F 2 F "  F '  78F-----'~- 216a6f12 - 12 + 1 4 4 - 7  + 216a6pl 7 - 42- ;  Tö- + r 1 ' / /  \ - - f -  

F "  F ' )  /(.F iv F . . . . .  
+ 40--7-y- + 52-7]- ö- - 216a6f13 \ - - ~ - -  1 2 - 7  + 40 F''r9 + 52 -fiö- + 60 , 

[4.35a] 
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92(r ) = P a3 _ K 7+6  7 - 6  75 r3 6 r4 
1 2  F F '  F 2 ~~ 

- 7 - +  72--7  

~~ (~~r ~r, ~6) . . . . .  }'4 16 [311040(}'3 + + }'5) + 217728 }'6] 48a3al ---7 4 

B K"  K' K )  (3 FFV F'Fiv F " F ' "  F F  iv 
- 48a 3 az ~( --7- - 6 -  7 -  - 4--~- + 60q - - ~  + r----- T -  + 4 r ~  12 r - -  W -  

--  2 0  m 
F ' F ' "  F ''2 F ' F "  F F "  

r4 8 7 -- 4---73--- + 3 3 6 ~ -  
F'2 1 1 5 2  F F '  F z 

+ 144-73--- - - 7 - +  720 7 / 

( 2 F ' F  iv F " F ' "  F F  iv F'F'" F ''2 F F ' "  F ' F "  
+6az~  ( ---75--+4 r ~  6 - - 7 - +  20 r------ T -  8 - - 7 - +  36 r ~  16 r---3--- 

>6 ~,~ ~ ~~) ~~ ~ ~)  + 120 + 168-7g- - 792 + 720-7g- - 216a6fll ~,3--~- - 9076- + 342 

{ F  iv '" F"  F '  -~Tn) 
+ 216a6/~2~k-~q-- 1 2 @ -  + 38--77 + 132~5 õ - 252 

{ F  iv 12 F ' ' '  36 F ' '  F' F ~  
- - -  + + 132-77 ö- - 60 rn  j , + 216a6/g3 ~ 7 -  r s r9 [4.35b] 

where F, H and K are given by [4.16], [4.27], and [4.28]. 
Due to the particular structure of the right hand side of [4.34] we shall assume that the solution 

g,,(4) has the form 

~(4) = M(r)sin20cos3 0 + N ( r )  sin2Ocos 0 + const., [4.36] 

where M ( r )  and N ( r )  are yet to be determined. While the boundary conditions [3.7] for ~u (4) require 
M(r )  and N(r )  to satisfy 

M(a)  = M ' ( a )  = N(a )  = N ' (a )  = O, M ( r )  = N ( r )  = o(r2), as r-+ 0% [4.371 

and the added constant term in [4.36] to be taken as e ~4), we also find, by substituting [4.36] into 
[4.34] and making use of [4.8], that M ( r )  and N ( r )  must satisfy the following ordinary differential 
equations: 

40 . , 80 M'  280 M Miv --~-M -÷ + = r92(r) 
- - 7  - 7 -  ' 

N "  N'  M'  
N iv - 12 7 -  + 24-7g- + 12M'r~- - 24-75- - 120 = r91(r). [4.381 

Thus, since F, H and K are known functions of r, then so too are gl and 92, and it is a straight- 
forward, albeit lengthy, matter to construct M ( r )  and N ( r )  which meet  [4.38] and [4.37]. We 
obtain 

9m (~r)~m~ 
M ( r )  = Y. ri + n r-----Z-, 

i=1 i=2 

[4.39] 9ni (, r)~ù~ 
N ( r )  = Y~ + n . ,  

i=0 7 /=2 r I 
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where the constants m i, m[, n i and n[ are given by 

3 p3al°  3 p2a8 pa  6 
ml - - -  +- - - ( Œ l  "+- 0(2) -- 3 (Œ1 "+- Œ2) 2 

16 p3 2 //3 7 -  ' 

2043 p3112 21 p2al° 
m3 - - - ( 0 " 1  + 0"2) + - -  

1120 f13 8 //3 

486 pa  8 
+ - -  (02 + 03) 

11 / /2 

342 pa  8 a 6 
-{- 52) 3 11 //a (51+ 52) 2 -  54 //3 (al 

m 5 - 
4 p2a12 307 p2a12 

(51 + a Z )  + - -  
5 p3 70 //3 

3888 a 8 
+ - - - - ( 0 2  + fl3)(al + az) + - -  

11 //2 

360 a 8 
" + -  - - ( £ / 1  + Œ2)2Œ2, 

11 //3 

pa  l° 4016 a 8 
- -  % + 42---v-(0"1 + Œ2)51 3 (Œ1 + Œ2)2Œ1 

11 // 

517 p2a12 pa  1° 
70 / / ~  0"2 + 6 7 -  (51 + 52) 52 

m 6 - 
3 p2113 36 pa  11 

- -  ( a l  + 52) - -  (Œ1 + Œ2) 2 
13 //3 13 //3 

• (51 + Œ2)/9/1 + 
3186 a 9 

11 //3 

1350 a 9 
+ - -  ( a  I + 0"2)20"2 

13 //3 

6804 a 9 
+ --143 / /2 (0"1 + 52)02 

1479 p2113 

1144 f13 a1 

3015 p a n  

143 p3 

p a n  
- - ( 5 1  + Œ2)0"2 

_ _ ( a l  + 12)211 2793 p2a13 7902 
1144 //3 12 143 /l ~ 

4617 pa  11 9234 a 9 
286 //2 fll + 143 f12 (0~1 + 0"2)01 

405 pa  11 1620 a 9 
143 •2 03 + 143 /./2 (Œ1 + 0"2)03, 

1701 pa  11 

143 //2 
m 0 2  

m 7 - _ _  

312 pa  12 
- -  (Œ1 + Œ2) 2 + - -  

385 /.13 55 / /2 

216 a 1° 12 pa  12 
+ - -  (0"1 + 0"2)20"1 + 

7 //3 7 //3 

144 p a  12 
+ - -  Æ3 35 //2 ' 

108 p a  12 3 pZa14 278 p a  12 
- - ( 0 2  + 03) + - -  Œl "}- - - ( Œ l  "b 0(2)/71 

14 //a 35 //3 

657 pa  12 318 pa  12 
- -  (Œ1 + Œ2) (2 '2  + - -  - -  f l l  + - -  - - f 1 2  

35 ,/12 35 / /2 

m 8 - 
282 paaß  684 a lj 30 p a  13 360 
13 //3 (0"1 "-k /72) 171 -'k - -  - -  (O' 1 -{- Œ2)2Œ1 q- - -  - - ( O '  1 -1- Œ2) 52 + _ _  

13 //3 13 //3 13 

.(51 + 0"2)252 81 pa  13 972 a u 27 pa  13 324 a 11 
13 p2 '81 13 [12 ~l(Œ1 -]- 0"2) -{- - -  - - 0 2  -J- 2 13 //2 13 // 

45 pa  13 540 a n 
• 02(Œ1 q'- 0(2) q- - -  - - f 1 3  + fl3(Œ1 "+- Œ2) 

52 //2 13 //2 ' 

a 11 

p3 
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I_y9.1944 972 7 a 12 71496 a 12 169128 a 12 
m9 = - (Y3 + ~4 + ~5) + - ~ - ~ 6  f13 (0"1 + 0"2)2Œ1 + 

2695 2695 f12 

16848 a 12 137052 a 12 8748 a 12 
• 0"1(fl2 + 83) 2695 p3 (Œ1 + Œ2)2Œ2 - -  0"2(82 + 83) + - -  2695 p2 245 f12 

11988 a 12 14256 a 12 
• (Œ1 + 0"2)81 -- 24---7- f12 (Œ1 + 0"2)fl2 245 f12 (0"1 + Œ2)83, 

15 p 3 a l l  15 p 2 a 9  
m ~ -  - - ( 0 " 1  + az) ,  

28 f13 7 pa  

3 p3a12 

14 p3 

41 p3a13 25 p 2 a l i  18 p a  9 p 2 a l l  

m~ = 264 /.t 3 11 - - , / / 3  (0"1 + 0"2) + --11 ,/./3 (Œ1 -1- 0"2) 2 q- 7 - - 7  0"1 

308 p a  9 40 p Z a l l  160 p a  9 

11 ]./3 (0"1 + 0"2)0"1 + 11 p3 az 11 //3 0"2(0"1 + 0"2), 

12 p2a12 
m~ = - - ( 0 " 1  + 0"2), 

7 p3 

3 ' m ~  m a + mä m '  m5 - m~ m 6 3 m 7 ms 5 m 9 
m2 = _ _ _ m a a  4 ~_ + + - -  - -  + 2 + - -  - -  

2 2 2a  2a  2 2a  3 - 7  2 a 5 -ä6- 2 a T '  

l mla3  -4- l m2a2 m 3 -  m 3 m4 m 5 -  3m 5 m 6 5 m 7 m 8 7 m 9 = a +  + 2 3 m4 Y 5 2 2 2a  a z 2 a 3 a 4 2 a 5 ' 

19 p3a l °  102 p2a8  22 p a  6 
nl = - 3ml  - -  + - -  - - ( Œ 1  + Œ2) - - -  f13 

50 p3 35 p3 5 

288 p a  6 

5 f12 (f12 + 83) ,  

1 2 493 
n 3 = -- __ m 3' _ 

3 ~ 3 ma 5600 
+ 

2187 p a  8 

220 ,//2 (f12 q- 83) 

• (0"1 q- 0"2)2Œ1 1152 a 6 

5 

p3a12 17 p2a l °  
- -  + - -  - - ( 0 " 1  + 0"2) 

B3 20 f13 

83 p 2 a l °  101 

200 p3 0"1 + --35 

267 
(82 + 83)0"1 

17500 

(Œ1 -'F- 0"2) 2 

186 p a  8 
55 p3 (0'1 + 0"2)2 

p a  8 2 a 6 

B3 (Œ1 q- Œ2) 0"1 q- --5 --/../3 

p2a l °  8 p a  8 

/./3 a2 105 /./a 
- - ( 0 " 1  + 0"2)0"2 

156 a 6 
-b - - ( 0 " 1  q- 0"2)2Œ2 

875 p3 

33 3 
//4 -- - -  m~ - 196 --7 - m 4  

1728 a 6 
125 ,/./2 (82 "-k 83) 0"2, 

11 p3aa3 1 p2a11 

672 p3 4 /.t 3 
- - ( 0 " 1  q- Œ2) "[- - -  

23 p 2 a l l  
+ - -  - -  0"1 

28 p3 

23 p a  9 3 p 2 a l i  

7 /.t3 0"l(al + az) + 7 p3 m a 2  

3 p a  9 

14 p3 (a l  + a2)2 

12 p a  9 

7 /.13 ([21 -k Œ2) Œ2, 



Fosdick and Kao, Steady flow of a simple fluid around a rotating sphere 687 

/ / 5 - -  
39 3 1 

- -  m ~  - - -  m 5 
400 10 7 

• 612 a 8 
+ - -  (Œ1 + 0(2)20(1 -- 

55 p3 

414 a s 
• 0(2(0(1 + Œ2) + 

55 ,tl 3 

p2a12 53 p2a12 33 pa 1° 

/.,/3 (0(1 + 0(z) -- 175 p3 "Œ1 - - ( Œ l  + aZ) a1 25 p3 

13608 a s 227 p2a12 12 pa 1° 
55 ~2 0(~(B2 + / / 3 )  + - -  - -  0(2 1400 /.t 3 5 p3 

_ _  Œ2(0(1 + Œ2)2 1944 a80(2 
55 u2 (/h + & ) ,  

2 13 p2a13 50 pa ll 10 a 9 29 
t't 6 = - _ _ m  6 + - -  - - 0 (  1 + - -  _ _  (0( 1 + 0(2)0( 1 + - -  - - ( 0 (  1 + 0(2)20(1 + - -  

9 88 ,u 3 33 ,u 3 11 p3 264 

p2al3 27 pa li 50 a 9 39 pa u 
- - 0 ( 2  + - -  - -  0(2(Œ1 + 0(2) - -0( '2 (0(1  + 0(2) 2 + - -  - - f l l  

f13 11 p3 11 p3 22 /./2 

78 a 9 46 pa la 184 a 9 
f12 f13 + fl3(0(1 + 0(2), 11 ,/./2 fl1(0(1 + az) - 11 i l  l/2 

6 536 pa 12 2304 p a i  2 426 pa 12 
n7 - - -  m7 - - ( 0 ( 1  + 0(Z) 2 f12 (f12 + f13) + - -  

35 1925 /~3 1925 175 p3 

24 pa 12 5 6 7  pa 12 558 pa 12 828 pa 12 
q- - -  (0(1 + Œ2) Œ2 ,l/2 f l l  -'l- - -  - - / ~ 2  "]'- - -  - - Æ 3 ,  25 p3 175 175 pz 175 ,/./2 

- - 0 ( ~  (aa + 0(2) 

3 
n 8 = m 8 

22 

387 p a l  3 2322 a ll 126 pa 13 
286 p3 Œ1(0(1 + Œ2) 143 /./3 (0(1 + Œ 2 ) 2 Œ 1  - - 0 ( 2 ( 0 ( 1  + 0(2) 143 p3 

.1512 aal 405 pa 13 2430 a 11 612 pa 13 
+ - -  0(2(Œ1 + Œ2) 2 + - -  - - ~ 1  + - -  - -  ~1(0(1 + 0'2) ,//2 ~2 

143 p3 286 p2 143 /./2 143 

7344 a ll 1359 pa 13 8154 a 11 
143 /12 fl2(ai + a2) 286 p2 f13 143 p2 (al + a2)f13, 

/ / 9 -  
• F1440 ( + 74 + 75) + 144 ] _ _ + _ _ a  12 5008 m~9 + L -  ~ Y3 ----~ Y6 

9 J p 539 

3688 a 12 18288 a 12 
• Œl(fl2 + f13) + - -  - - ( Œ 1  + Œ2)2Œ2 + - -  - -  Œ2(f12 + f13) 

539 p3 539 f12 

936 a 12 2928 a 12 
• (Œ1 + Œ2)~1 + - -  ~2(Œ1 + Œ2) + - -  - - ( Œ 1  + Œ2)~3  

49 p 2  49  f12 , 

a 12 23040 a 12 
~3 a l (a l  + «2) 2 + - -  

539 p2 

480 a 12 

49 ,/,/2 

6 9 p3all  9 p2a9 
nj = - - - m ~  + - -  

5 28 p3 7 p3 

2 3 p3a12 
n~ = - - -m~ - - ,  

3 70 /13 

3 
n~ = - - - m ~ ,  

7 

nj 3 m~ + 6 p2al2 
- -  - -  - -  - - ( 0 ( 1  q'- a Z ) ,  

10 35 ,u 3 

- - ( a ~  + a2), 
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nl nj + /73 - n~ + 2n 4 - n~ + 3n5 - n~ + 2 n 6  + 5 n 7 /78 7n 9 
/70 = - -  - -  2a 2a 2 2a 3 2a 4 2a 5 a ó 2 -äT + 3 ä f  + - -  2a 9 ' 

an 1 nj 3n 3 - n~ 4n 4 - n,[ 5n5 -- /'/5 /16 7n7 n8 9n9 
n 2 -- - -  + - -  -- 3 4 

2 2 2a 2a 2 2a 3 a 4 2a 5 a 6 2a 7 " 

[4.40] 

Finally, by returning to the representation [3.6] for k = 4, we have shown that at fourth order 
the complete solution for u (4) is 

// I//(4) e '~ U (4)= - c u r l  \ ~  ¢ / ,  [4.411 

where g/(4) is given in [4.36], [4.39] and [4.40]. We shall not give the computation o f p  (4) here. 

5. Discussion 

In the special theory of steady viscometric 
flows of incompressible simple fluids it is well 
known, see p. 495 of (11), that the fourteen 
material constants which appear in the fourth 
order approximation [2.9] can occur only in the 
six comhinations p, 2 «~ + az, a »  f12 + f13, Y3 
+ Y4 + Y5 + 21- Y6, and Y6. Thus, experiments 
concerning viscometric flows can at best 
determine these six material properties among 
the fourteen possibilities. Since our solution for 
u (4) exhibits a dependence on material constants 
outside of this set, it may be possible to appraise 
the significance of the non-viscometric material 
constants in an experimental program by com- 
paring certain characteristics of the computed 
flow field, assuming that all non-viscometric 
material constants are zero, to the flow field 
which actually is observed. In particular, we 
shall consider here only one feature of the flow 
field; the shape of the cells of secondary flow. 
As mentioned earlier, Giesekus (5) has shown 
convincing experimental evidence that when the 
cells are present they have the shape of an 
equatoriat torus or perhaps polar caps, possibly 
attached to the turning sphere. 

Recalling [3.311 and [3.6], we have shown that 

' (2) 
U = Qu(1)e~-  1 Q 2 c u r l ( g / z )  e~~ 

2 \rsinO / 

+ LQ3u(3)e  ¢ 1 £24cur1(I[/(4) e "~ 
6 - 2---4- \ ~  OB 

-'}- 0 (~e'24) , [5.1] 
u (1) where u ~-)~3 is given in [4.9], 1fr(Z) is given in 

[4.16], is given in [4.29], [4.27], and [4.28], 

and where q/(4) is given in [4.36], [4,39] and 
[4.40]. Thus, it is clear that the r- and 0- 
components of the fluid motion, i.e., those 
components which associate with the possible 
cells of secondary flow, are solely dependent 
upon the stream function 

1 ~2(i//(2) + 1 ~2l//(4)) 
~u= 2 12 

which, by [4.16] and [4.36], may be written as 

g/=-~-(22 I F ( r ) + - 1 2  

• sin 2 0cos 0 + O(~C~4) . 

+ 0(04) ,  [5.21 

1 Q2(N(r  ) + M(r)  c0s20)] 

[5.31 

Thus, if we set q/ - 0 in [5.3] and neglect the 
higher order terms 0(04), we then obtain an 
approximation to the boundary of the possible 
secondary flow cell (of cells), i.e., 

F(r) + N(r) ~_22 + M(r) ~Q2cos20 = 0. [5.4] 
12 12 

Clearly, since F(a) = M(a) = N(a) = 0, this 
relation is satisfied for all 0 at r = a, i.e., at the 
boundary of the turning sphere. Also, for M(r) 
:/: 0 and f2 prescribed, whenever O(r; £2) exists 
it is given by 

12F(r) + £22N(r) t 
COS20 = -- Q g22M(r) , [5.5] 

where for existence we must have 

(.~ 12F(r).~2Ä//.~5+ (22N(r) 1 0 ~< - ,- ~< 1. [5.6] 
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In this case we see that the boundary of the 
region of secondary flow is symmetric with 
respect to the equatorial plane of the turning 
sphere (i.e., 0 = ~) and, depending upon the 
functions F, N and M, and the angular velocity 
t2, can even take on a form similar to that 
reported by Giesekus (5, cf., fig. 9 and 18, cf., 
fig. 13). 

Because of our rather complicated expres- 
sions for M and N in [4.39] and [4.40], we shall 
not here attempt to extract any explicit general 
information concerning, for example, the apo- 

gee or perigee of the boundary of the secondary 
flow region. This information would, however, 
be of interest and we believe it would even be of 
practical significance if the solution which has 
been generated were to be used in combination 
with an experimental program which is directed 
toward determining information concerning the 
material constants. Instead, we give, in figures 
2 - 8 ,  some results of a few specific numerical 
computations. Since there is a fairly large set of 
material constants to specify for the purpose of 
computation, we shall for the most part assume 

Z 
3a 

2a 

Z 

2c 

p = 1 gm/cm 3 

\ ~ = 180 gin/cm-sec 

~l = -a2 = 2 gin/cm 

~ ~ISB2sO, ~3=~.ig ..... /cm 

/ T3 Y4 Y5 Y6 g 

./ 

\ 

a 2a 6a 4'o X 
Fig. 2a 

X Fig. 2b 
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7 
3o 

/cm 

a Zo õa 4a X 

Fig. 2 a -  c. Level curves of q//f2 z 
from [5.3] for K2 = 110 rpm and 
three values of al > 0 with 
al + ct2 = 0 

that the fluid is essentially a fluid of  grade 3, 
cf., (11, p. 494) or (12), and choose the material 
constants such that the thermodynamical  con- 
straints of  Fosdick and Rajagopal (12) are safts- 
fied. Thus, in the computat ions leading to 
figures 2 -  4 we consider particular examples in 
which the following conditions are met: 2) 

B ~ O, a1 ~ O, fll = f12 = O, f13 ~ O, 

[0~1 q- ~21~  2 4 B ~ 3 ~  ~3 = )"4 = ~'5 = ~6 = 0 .  
[5.7] 

Since the fourth order material constants 71, ~2, 
77 and Ys do not enter our formulas for F, N and 
M, we need not make a specific commitment  on 
these. For figure 5, we assume, for some 
variety, that Y3 :~ 0, but we continue to satisfy 
the remaining conditions in [5.7]. In all of  the 
above computat ions we have taken a = 4.8 cm, 
and f2 = 110 rpm. 

In several of  our example computations we 
have taken a~ + az = 0 which, if we applied 
our result [4.18] at second order, should cor- 
respond to  a flow without a secondary flow 

2) Actually, only the material constants p, aa, az, 
,81, f12 and f13 enter the constitutive assumption of an 
incompressible fluid of grade 3, and just those 
conditions in [5.7] which relate to these coefficients 
are shown in (12) to have a thermodynamical 
significance. It should be emphasized that these 
conditions necessarily are based on the premise that 
the material is exactly a fluid of grade 3. Therefore, 
they need not hold if the fluid is more complex. 

region. However,  it will be noted f rom our 
figures that  in all cases a secondary flow region 
was found to be present. Thus, at second order 
the result [4.18] concerning the existence of  an 
"inertial radius" must be considered, at best, 
suggestive, and should be applied cautiously, if 
at all, in drawing conclusions regarding the 
second order material constants al and az. It  is 
of  interest to observe f rom figures 2 -  5 that the 
secondary flow in the toroidal cells appears to 
be dominated by normal  stress effects while the 
flow outside the cells is more strongly influenc- 
ed by the effects of  inertia. 

In figure 6 we show the pattern of  secondary 
flow at £2 = 300 rpm for the same choice of  
material constants and spherical radius as was 
used for figure 2a where ~ = 110 rpm. Clearly, 
the effect of  increasing the angular velocity is to 
cause the equatorial toroidal cell to grow and to 
eventually enclose the spinning sphere. A 
computat ion made at Y2 = 1450 rpm shows that 
this trend continues as f2 increases. 

In figures 7 and 8 we show the pattern of  the 
secondary flow for choices of  material con- 
stants that correspond roughly to those that 
could be appropriate  for STP motor  oil (fig. 7) 
and TL 227 oil (fig. 8). While the values for the 
viscosity p and the normal  stress coefficients «1 
and a2 for these figures are based upon the 
sources (13, 14, 15), there are no rheological 
measurements to guide us in the choice of  fll, 
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Z 
3a 

2a 

2a 

(b) a = 4.8 cm 

= ii0 rpm 

p = 1 gm/cm 3 

= 180 gm/cm-sec 

~i = - a2 = 2 gm/cm 

Bl = ~2 = O, 83 = 0.15 gm-sec/cm 

7 3 = y 4 = y 5 = y 6 = 0 

\ 

\ 

a 2o 3a 4a X 

Fig. 3. Level curves of q//t2 z 
from [5.3] for O = 110 rpm and 
two values of ,83 with az + a2 = 
0 and a 1 > 0 

B ,  ,83, Y3, Y4, Y5 and }'6; we set all of  these to 
zero except for f13. 

Figure 7a shows the same characteristics for 
the pattern of  flow as was noted in figures 2 - 6. 
Since the quantity pa2/(al + a2), cf. [4.18], is 
large ( >  12) for STP motor  oll, we expect the 
flow to be dominated by centrifugal force far 
away f rom the spherical surface and this is the 
case everywhere outside the equatorial cell. In 
figure 7b we show the effect of  increasing the 

angular velocity f rom £2 = 110 rpm to £2 = 
1450 rpm. The equatorial toroidal cell, in which 
the flow is effected strongly by normal  stresses, 
has now become large and is enveloped by an 
ellipsoidal shaped surface outside of  which the 
flow is dominated by inertial effects. This 
ellipsoidal shaped surface is not shown in figure 
7b because in the scale of  the figure it is too far 
away f rom the turning sphere. It  should be 
noted that an additional secondary flow in 

46 
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Z Õc~| (a) a = 4.8 em 

~ = i l O  rpm 

B = 1 gin/cm 3 

= 180 g i n / cm-see  

~i = 1.8 gm/cm, ~2 = - 2.0 gm/cm 

~l = ~2 = O, B 3 = 0.i gin-sec/cm 

~0 Y3 = Y4 = Y5 = Y6 = O, 
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\ 
0 

a ~'a õa 4~X 

Z (b) a = 4.8 cm 

= llO rpm 

0 = 1.0 gm/cm 3 

= 180 gm/cm-sec 

e I = 2.2 gin/cm, ~2 = - 2.gm/cm 

B1 = 82 = O, 83 = 0.i gin-sec/cm 

Y3 = Y4 = Y5 = Y6 = 0 

\ 

ü 2a 3a 4o X 

Fig. 4. Level curves of ~,/g22 
from [5.3] for 12 = 110 rpm and 
two values of al > 0 and a2 < 0 
with al + az ~ 0 

polar caps is now evident and that this flow also 
appears to be dominated by inertial effects. The 
general features illustrated in figure 7b have 
been experimentally obServed by Giesekus (5, 
p. 260). 

For TL 227 oil the quantity pa2/(ai  + «2), : 
cf. [4.18], is small ( < 4 )  so we expect that rar 
away f rom the spinning sphere the secondary 
flow should be dominated by normal stress 

effects. The streamline pattern for TL 227 in 
figure 8 has this property and the numerical 
computations far away f rom the spherical sur- 
face do not indicate that the streamline pattern 
has an envelope (contrary to the case in figure 
7b). In addition, a secondary flow which is 
dominated by inertia is found in polar cap 
regions. Moreover,  the polar caps are found to 
be fairly uni form in size and shape over a wide 
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(a) a = 4.8 cm 

B = ii0 rpm 

p = 1 gm/•m 3 

= 180 gm/cm-sec 

~i = -~ 2 = 2. gm/cm 

Bl = 82 = O, 83 = 0.125 gm-sec/cm 

73 = 0.001 gm-sec2/cm 

74 = y5 ~ y6 = 0 

\ 

\ 

a 2a 3a 4a X 

= ii0 rpm 

0 = 1. gm/cm 3 

= 180 gm/cm-sec 

~i = - e2 = 2.0 gm/cm 

Bl = 82 = 0, 83 = 0.125 gm-sec/cm 

y 3 = -0.001 gm-seg2/cm 

2G 74 = Y5 = Y'6 = 0 

"0 '/ 

Fig. 5. Level curves of ~u/O 2 
from [5.3] for g2 = 110 rpm and 
two values of 73 with 

a 2a 3a 4aX a~ + az = 0 and a~ > 0 

range of angular velocities. Again, we note that 
Giesekus (5) has made general experimental 
observations of  this nature. 

Finally, we emphasize that the results given in 
figures 2 - 8  are intended only as examples to 
illustrate the type of secondary flow pheno- 
menon that is predictable using the general in- 
compressible simple fluid model. We make no 
claim as to whether or not the particular 

material constants used in our computat ions 
represent an existing non-Newtonian liquid. It 
should again be emphasized that in constructing 
figures 7 and 8 only the three material constants 
B, oq and az that were used had some experi- 
mental  justification for STP motor  oil and TL 
227 oil, respectively. For all of  the figures the 
constants were chosen and the computat ions 
were performed without special concern for the 

4 6  ~ 
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3a 

a = 4.8 cm 

B = 300 rpm 

B = i. gin/cm 3 

= 180 gin/cm-sec 

~i = - ~2 = 2 gin/cm 

Bi = B2 = O, 83 = 0.1 gm-sec/cm 

Y3 = Y4 ~ Y5 = ~6 ~ 0 

a 2a ~a 4a X 

Fig. 6. Level curves of g//f22 from [5.3] for the same material constants as in figure 2a but with higher angular 
velocity/2 = 300 rpm 

outcome, and we obtained at least in the cases 
of  figures 7b and 8a, b, a somewhat favorable 
qualitative comparison with the experimental 
observations of  Giesekus (5, cf., fig. 9; 17, cf., 
fig. 2). While our figures illustrate polar cap 
regions of  secondary flow in which inertial 
forces are dominant, we do not also obtain 
equatorial toroidal cells that are inertial 
dominated. In a private communication, Giese- 
kus has suggested that this omission may be due 
to our particular choice of material constants. 
While figures 2 - 6  may at first appear to 
conform to published experimental observa- 
tions, we emphasize, again, that in these figures 
the equatorial cells are dominated by normal 
stresses and this is opposite to what has been 
observed (5, 17, 18). More detailed studies yet 
need to be made on the comparison between the 
theoretical predictions and the experimental 
observations. It seems likely to us that such a 
programm would lead to a deeper under- 
standing of  the material properties and the 
phenomenological behavior of non-Newtonian 
liquids. 
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Summary 

We give a Solution to the problem of the motion of 
a homogeneous incompressible simple fluid around a 
submerged sphere which is in steady rotation about a 
fixed axis. The solution is complete up to fourth 
order in the angular velocity. By way of some explicit 
computations we exhibit, in a series of figures, some 
possible streamline fields that show secondary flow 
regions in the shapes of equatorial tori and/of polar 
caps. The alm of this study is to give support to the 
view that many of the non-trivial secondary flow 
regions that are observed in the laboratory for this 
problem are weil within theoretical description. In 
out computations there are several material constants 
to be chosen and we make no claim that all of those 
we have used have any correspondence with a 
particular fluid substance. However, certain of those 
in figures 7 and 8 have been taken from the 
experimental literature. A discussion of our results is 
contained in Section 5. 
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Fig. 7. Level c u v e s  of  q//Q from [5.3] for £2 = 110 rpm and 1450 rpm. Values for a ,  al and a 2 are as 
measured for STP motor oll at room temperature 
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Fig. 8. Level curves of  ~///~'~2 from [5.3] for £2 = 110 rpm a n d / 2  = 1450 rpm. Values for / t ,  al and ¢t 2 are as 
measured for TL 227 oil at room temperature 
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Zusammenfassung 

Es wird eine Lösung angegeben für das Problem 
der Strömung einer homogenen inkompressiblen ein- 
fachen Flüssigkeit um eine eingetauchte Kugel, die 
um eine feste Achse stationär rotiert. Die Lösung ist 
vollständig bis zu Gliedern vierter Ordnung in der 
Winkelgeschwindigkeit. Durch explizite Ausrech- 
nung werden in einer Folge von Abbildungen Beispie- 
le von Stromlinienfeldern gezeigt, die Sekundärströ- 
mungszonen in der Form von äquatorialen Doppel- 
ringen und/oder Polkappen aufweisen. Das Ziel die- 
ser Untersuchung ist aufzuzeigen, daß viele der nicht- 
trivialen Sekundärströmungserscheinungen einer 
theoretischen Beschreibung fähig sind. In den nume- 
rischen Rechnungen mußten verschiedene Stoffkon- 
stanten eingeführt werden, von denen nicht durchweg 
behauptet werden kann, daß sie einer bestimmten re- 
alen Flüssigkeit zugeordnet sind. Einige derselben (in 
Abb. 7 und 8) sind allerdings der experimentellen Li- 
teratur entnommen. Eine Diskussion der Ergebniss~ 
ist in Abschnitt 5 enthalten. 
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