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Long wavelength approximation to peristaltic motion of a power law fluid 
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Abstract: Peristaltic motion of a power law fluid in a two-dimensional channel is 
studied. Assuming that the wavelength of the peristaltic wave is large in com- 
parison to the mean half-width of the channel, a solution for the stream function 
is obtained as an asymptotic expansion in terms of slope parameter. Expressions 
for axial pressure gradient and shear stress are derived. The effect of flow 
behaviour index n on the streamline pattern and shear stress is studied and the 
phenomenon of trapping is discussed. 
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1. Introduction 

The fluid mechanics of  peristaltic motion has been 
extensively studied for some years as it is known to be 
one of  the main mechanism for fluid transport in bio- 
logical systems. From the point of  view of  fluid me- 
chanics, peristaltic pumping is characterized by the 
dynamic interaction of  fluid flow with the movement 
of  a flexible boundary. In fact peristalsis is the major 
mechanism for the transport of  urine from kidney to 
bladder, food mixing in the intestines etc. It is also 
speculated that peristalsis is involved in the vasomo- 
tion of  small blood vessels. Also mechanical devices 
like finger pumps and roller pumps use peristalsis to 
pump blood, slurries, corrosive fluids and so on. 

Several authors [1 - 5] have studied the fluid mechanics of 
peristalsis and a review of much of the literature is given by 
Jaffrin and Shapiro [6]. Most of the investigations were 
carried out for better understanding of urine transport from 
kidney to bladder. However, Nicoll and Webb [7] and Nicoll 
[8] suggested that peristalsis plays a major role in blood cir- 
culation. The arterioles and venules are seen to change their 
diameters periodically. Although the spatial waveform of 
such a vasomotion has not been ascertained it is conceivable 
that peristalsis is involved in the vasomotion of small blood 
vessels [2]. Some theoretical and experimental studies 
[9-13] have been made on the peristaltic motion of blood 
considering blood as a non-Newtonian fluid and also as sus- 
pension of solid particles in Newtonian fluid. Raju and 
Devanathan [9] studied peristaltic motion of blood consider- 
ing blood as a power law fluid. They obtained the solution 
for the stream function as a power series in terms of the 
amplitude of deformation and evaluated the stream func- 
tion and velocity components by solving numerically two 
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point boundary value problems with a singular point at the 
origin. 

In this paper we study the peristaltic transport of  
blood, modelled by a power law fluid, under long 
wavelength approximation for better understanding 
of  the role of  peristalsis in blood circulation. The 
solution for stream function is obtained as an asymp- 
totic series in terms of  slope parameter and the expres- 
sions for axial pressure gradient and shear stress are 
derived. The effect of  flow behaviour index n on the 
streamline pattern and shear stress is studied and the 
phenomenon of  trapping is discussed. 

2. Formulation of the problem 

We choose non-Newtonian fluid of  a power law 
model which is characterized by the constitutive equa- 
tion 

To = - P ~ i j  + lZpl~eij (1) 

where T,j and eij are the stress and rate of  deformation 
tensors, p is the pressure,/Zp is the flow consistency 
index, n is the flow behaviour index and 

1 (n - 1 ) /2  

0 = ~-ei je i j  

This model represents dilatant, Newtonian and 
pseudoplastic fluids n > 1, n = 1, n < 1, respective- 
ly. 
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We consider laminar flow of a power law fluid, 
characterized by eq. (1), through a two-dimensional 
channel with flexible walls on which are imposed trav- 
elling sinusoidal waves of long wavelength. A rec- 
tangular cartesian coordinate system (x, y) is chosen 
with the x axis aligned with the centre line of the 
channel. The travelling waves are represented by 

27~ 
17(x, t) = d + asin (x  - c t )  (2) 
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where d is the mean half width of the channel, a is the 
amplitude of the wave, 2 is the wavelength and c is the 
wave speed. The equations of momentum and con- 
tinuity are 

On p - - + u  
0t 

0v p - - + u  
Ot 

ou + v = (T~) + (Txy), 
Ox ~ ~ (3) 

O__~_y ] 0 0 OV + V = (Tyx) + (ryy),  

Ox -~x -~Y (4) 

0 u  0 v  
- -  + - -  = 0 ,  ( 5 )  
Ox Oy 

where u, v are the velocity components along x and y 
directions, respectively, and p is the density of the 
fluid. The boundary conditions on the velocity com- 
ponents are 

u = 0  at y = 1 7 ,  (6) 

017 
v -  at y = 1 7 ,  (7) 

Ot 

together with the regularity condition 

0u  
v = O -  at y = O .  (8) 

Oy 

Using the transformation 

O~ O~ 
- - U - - C ,  - - - -  V ,  

Oy Ox 

X c t  
= - = t' - (9) x ' ~ t ' , ~  T ,  ,~ 

from a stationary to a moving frame of reference and 
introducing the following non-dimensional quanti- 
ties 

x '  ~ - t '  y '  Y ~ '  ~ a 
d cd  d 

d p ,  p d  p d  n , 17 
a -  , - R - - -  17 - 

A f l C 2 2  ' ~lpC n-2 ' d 

eqs. (3) and (4) can be written in non-dimensional 
form, after dropping the primes, as 

Ott/ V20~t~r/ Ot[/ ~ 2 0 t / J  / _ 1 

Oy Ox Ox Oy ] R 

Ox Oy \ Ox Oy 

+ -- t~ 2 

~(02~rJ a2 02~ ~ 
" C k 0 y  2 0x2 ]@1] 

( l O )  

where 

V2 0 2 0 2 -- + U 2 
0y  2 0X 2 

and 

2 02 ~ )2 
0 = a + 

Ox Oy 

02 ~ u2 0 2 ~I y ? (n- 

0y 2 0-Z / 

1)/2 

is the non-dimensional form of 0. 
The corresponding boundary conditions are 

O~ 
- - 1  at y =  17, (11) 

8y 

= q  at y = 1 7 ,  (12) 

02~ 
- - - - 0  at y = O ,  (13) Oy 2 

where q is half the flux in the negative axial direction in 
the moving frame of reference. However, by account- 
ing for Galilean transformation, there will be a net 
positive flux in the stationary frame of reference. 
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3. Method of solution 

We now consider long wavelength approximation 
and seek an asymptotic solution for the stream func- 
tion in terms of the parameter a (a ,~ 1) as 

~ =  ~e0 + a~e~ + . . . .  (14) 

Substituting (14) in (10)-(13) and collecting coeffi- 
cients of various powers of a, we get the following set 
of equations: 

Zeroth order: 

02 ~ 02 ~rJ0 In 
ay 2 L 0y2 J = 0, (15) 

0 ~ o _  1 at y r/ (16) 
Oy 

~ 0 =  q at y =  r/, (17) 

02~r/° - -  0 at y = 0 .  (18) ~rJ0- 0y 2 

First order: 

n 0 2 

R 0y 2 

oe0 

0y--'--- T- ~)--/'// J 

a3~o O~o a3~o 
Oy Ox Oy 2 Ox Oy 3 

(19) 

0~1 _ 0  at y = e ,  (20) 
Oy 

~ = 0  at y = g ,  (21) 

0 2 ~  
~ 1 - - - - 0  at y = 0 .  (22) 

8y 2 

Solving eq. (15) under the corresponding boundary 
conditions, we get 

/ \2 + (l/n)7 
~° - n 2n  + l y l ~ -  + l n rl ] (q + ,7) - y. 

(23) 

The solution of  eq. (19) under the boundary 
conditions (20)-  (22) and using (23) can be obtained 
as 

~1 -- RB1  

where 

2 n + l  n n 
A 1 A i x  - -  

n 3 n + 2  4 n + 3  3 n + 3  

• {y4+(3/n) _ 3y2+(l/n)rl2+(2/n) + 2yr13+(3/n)} 

+ 2Alx & A I A 2 x  
n 3 n + 2  2 n + 2  

-1 
• {y3+(2/n) _ 2y2+(1/n)Vl 1 +O/n) + yrl2+(2/n)}[, 

(24) 

Z 1 - 

n q + r /  
n + 1 ~2+(1/n) ' 

2 - -  - -  

and 

B 1 = 

2 n + l  q + r /  1, 

n + l  !? 

2n + 1 q + r / ]  (1-")/" 

n F]2+(1/n) J 

The axial pressure gradient can be obtained from 
eq. (3) using eqs. (14), (23) and (24) in the following 
form: 

0p 0P0 0Pl - - - - - - + ( ~  + . . .  
Ox Ox Ox 

1 f2n+i o+ ]n 
R n r] 2+(l/n) 

+ ot(K 1 - A 2 A 2 x  ) + O(0~ 2) (25) 

where 

g 1 = _ 
I. 2n + 1) 2 

(3n + 2)(4n + 3) AIAlxrl2+(2/n) 

3n + 2 2 A l x -  A1A2x r/l+0/n) " 

The shear stress acting on the wall is defined as 

T = 

(Txy 1 -- | T  + ((Tyy- : x x ) - -  
d x  

1 + 

a ty  = r/(x), 

/ 

(26) 
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where Gxy, Oyy and  Gxx are the usual stress com- 
ponents .  The  non-dimensional  shear stress can now 
be obtained as 

~'w ~ ~" 

ppc n 

d" 

- -  ~ +--( l~n) qL1 

IR IA 2n + 1 2n + 2 
+ a ~A~x3n + 2 4n + 3 

- -  r/3 + (2/n) 

+ 2Alx-  AIA2x 3n + 2 r/2+(l/n) 1 

• n rl2+(1/n ) r/ L 2 + 0(0  '2) 

(27) 

where 

L I - 

1 +  

and 

dq  

d x  
L 2 = 

i+  \ T / /  

4 .  D i s c u s s i o n  

We have presented approximate  solution for  the 
stream funct ion as an asymptot ic  series in terms o f  
slope parameter  a.  The leading term o f  the expansion 
(14) gives the limiting solution for  very long waves in 

--0.2 0 0.2 0 ' 4  0-6 0-7 
Fig. 1. Streamlines in waveframe when a trapped 
bolus exists in laboratory frame for n = 0.8 

q I ~ i I | I 1 
- 0 -2  0 0-2 0 ,4  0-6 0"7 

Fig. 2. Streamlines in waveframe when a trapped 
bolus exists in laboratory frame for n = 1.0 
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Fig. 3. Streamlines in waveframe when a trapped 
bolus exists in laboratory frame for n = 1.2 

the limit a -+ 0. Further it may be observed that the 
zeroth order solution ~0 for n = 1 (Newtonian fluid 
case) reduces to the solution of  Shapiro et al. [3]. The 
velocity components can be obtained by using the 
solution for stream function ~u. To study the effect of  
flow behaviour index n on the streamline pattern and 
shear stress, we have carried out numerical computa- 
tion and the results are graphically depicted. 

The streamlines have been drawn for R = 5, e = 
0.2, ct = 0.1, q = - 0 . 3  and they are presented in 
figures 1 - 3  for pseudoplastic (n = 0.8), Newtonian 
(n = 1) and dilatant (n = 1.2) fluids respectively. It 
can be clearly observed from the figures 1 -  3 that 
"trapping" occurs in all the cases. When trapping 
occurs, the centre streamline splits and there is a 
region of  recirculating, closed streamlines and it com- 
prises of  a bolus of  fluid. In the stationary frame of  
reference the bolus of  fluid is trapped with the wave 
and it advances as a whole with the wave speed. We 
can notice from figures 1 - 3  that the streamline 

Table 1. Shear stress acting on the wall 
(R = 5, a = 0.1, e = 0.2, q = -0.3) 

x n = 0 . 8  1.0 1.2 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 

0.0408 0.0438 0.0470 
0.3418 0.3668 0.3920 
1.3978 1.4889 1.5787 
1.4007 1.4910 1.5799 
0.3416 0.3667 0.3919 
0.0377 0.0416 0.0456 
0.3800 0.4190 0.4599 
1.6610 1.8449 2.0400 

pattern remains the same as n varies but the area of  
the trapped bolus increases as n increases. Further, it 
may be pointed out that the streamline pattern is 
similar to the one obtained by Shapiro et al. [3] for 
Newtonian fluid (n = 1). Because of  the presence of  
n, it may not be possible to analytically obtain a range 
for trapping. 

The shear stress acting on the wail rw is presented in 
table 1 for n = 0.8, 1.0 and 1.2. We can observe from 
this table that there is no qualitative change in the be- 
haviour of  shear stress as n varies. But the magnitude 
of  the wall shear increases as n increases. 

Using eq. (25) we can obtain the pressure rise over 
one wavelength as 

A p a  = j d x  . . . .  
0 OX 0 -R  r/2+(l/n) 

7 
- A2A2x)|  dx  + o (a  2) + ~(gl 6 

3 (28) 

Because of  the non-linearity caused by n it is not 
possible to carry out analytical integration and obtain 
explicit pressure-flow relationship. 
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