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1. Introduction 

For shear-thinning fluids with no yield stress 
three main regions are commonly identifiable 
in the flow curve: 

(i) an initial Newtonian region at low rates of 
shear, with viscosity qo, 

(ii) an intermediate shear-thinning region 
where the shear stress a at shear rate ¢ is given 
approximately by a power law relation, a = K ~~, 

(iii) a second Newtonian region with a limit- 
ing viscosity q~ at high rates of shear. 

Shear-thinning is usually attributed to struc- 
tural breakdown in the fluid, but analogy with 
the dynamic viscous response to oscillatory 
shear suggests a close asso¢iation with visco- 
elasticity. This is the subject of the present in- 
vestigation. 

A good representation of the complete flow 
curve is given by the equation 

= I/oo + (qo - ~~)t[1 + (2¢)m]. [13 

This equation was originally derived (1) from 
a consideration of particle interactions in a 
disperse system but it has also found wide 
application to polymer melts and solutions (2, 3). 

At intermediate rates of shear (t/0 » q » t/~o) 
eq. [1] gives an approximation to power law 
behaviour with m = 1 - n, i.e. in this region 
d log tl/d log ¢ = - m. 

Previous work (3) has shown that the exponent 
m is related to polydispersity, with an upper 
limit of unity for a monodisperse system. In the 
case of bulk linear polymers it has been related 
to molecular weight distribution through the 
empirical equation 

m = ( ~ w l Y ~ N ) -  ~/~. [2] 
549 

With increasing polydispersity there is a de- 
crease in the value ofm and hence in the gradient, 
d log q/d log ¢, in the shear thinning region, i.e. 
a broadening of the flow curve in the sense 
that shear-thinning extends over a wider range 
of shear rates. 

The present work is primarily concerned with 
the significance of the parameter 2. Clearly this 
has the dimensions oftime, with t / =  (t/o + t/~)/2 
when 2¢ =el,  i.e. at a shear rate 2 -1 . If the 
fluid is regarded as a viscoelastic system it 
should be possible to identify 2 with a relaxation 
time defined by a ratio tl/G of viscous and elastic 
constants. In general q and G will both show 
shear dependence but one may postulate that 
at sufficiently low rates of shear there will be 
both a Newtonian viscosity q0 and a Hookean 
shear modulus Go with 

2 = tlo/Go. [3] 

Eqs. [1] and [3] provide a possible basis for 
deriving relaxation times and elastic shear 
moduli from viscosity/shear data. This paper 
examines the validity of this approach. 

2. Experimental procedure 

In outline the procedure was to evaluate 2 
from shear-thinning data and to compare values 
of 2 with relaxation times obtained from normal- 
stress measurement and from stress relaxation. 
The measurements were carried out using a 
model R.16 Weissenberg Rheogoniometer (ex 
Sangamo Weston Controls Limited) at 25 °C. 

2.1. Evaluation of 2 

2 was evaluated by graphical means from 
viscosity/shear data using eq. [1]. 
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At low rates of shear (q » ~~o), eq. [1] implies 
a linear relation (1) between l / t / and  )~m, with an 
intercept 1il/o, and gradient c/t/o, where « = Ära. 

Figure l shows data for an aluminium laurate 
solution plotted in this way, with m = 1. 

Knowing the value of 2 the corresponding 
elastic shear modulus can be expressed by r/o/2. 
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Fig. 1. Graphical evaluation of t/0 and 2. 6% solution 
of aluminium laurate in decalin 

2.2. Normal stress measurement 

From measurements of shear stress a and first 
normal-stress difference N1, Weissenberg's rela- 
tions (4) were used to derive a recoverable elastic 
shear strain 7w, an associated elastic shear 
modulus Gw and relaxation time 2w given by 

7w = N1/a,  

Gw = «/~w = (72/N1, 

and 

2w = tlo/(Gw)o, 

(Gw)o representing the Hookean value at zero 
shear rate. 

2.3. Stress relaxation measurements 

With the Rheogoniometer coupled to a UV 
recorder, a steady shear rate was applied and 
the equilibrium shear stress «o recorded. The 
electromagnetic brake was then applied and the 

relaxation recorded. Consistent with the be- 
haviour of a simple Maxwell fluid, relaxation 
was approximately exponential and the Max- 
well relaxation time 2M was taken as the time 
for the stress to fall to «o/e. The corresponding 
elastic shear modulus GM = r/o/2~t. 

3. Comparison of results 

3.1. Hookean behaviour 

Hookean behaviour was observed in aqueous 
solutions of ammonium polymethacrylate. In 
figure 2 data for a 15% solution gives a linear 
plot of recoverable strain, expressed as N1/« , 
against shear stress «. G w is obtained from the 
slope and 2 w = ~lo/Gw. 
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Fig. 2. Hooke's law in shear. 15% aqueous solution 
of ammonium polymethacrylate 

In Figure 3 values of 2w derived in this way for 
five different solutions of ammonium poly- 
methacrylate are compared with the correspond- 

[4] ing values of 2 from viscosity/shear data. Good 
[5] correlation is shown, with 2 corresponding to 

2»./3. 
Yable 1 lists the values of 2w, 2, and 2M 

[6] obtained by the three different methods. 2 shows 
good agreement with the Maxwell relaxation 
time 2M and it appears that 

2 = 2M = 2w/3 [73 

o r  

GM = 3 Gw. [83 

This implies a recoverable elastic shear strain 
?~e given by 
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7« = N1/3«,  [9] 

i.e. one third the Weissenberg value, and an 
elastic shear modulus given by 

G = 3 f f 2 / N  1 . [10] 
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Fig. 3. Correlation of relaxation times. ,~w from normal- 
stress data, 2 from viscosity data 

Table 1. Comparison of relaxation times by different 
methods. Values in msec at 25 °C for five solutions of 
ammonium polymethacrylate 

Normalstress Shear-thinning Stressrelaxation 
value value value 

2w 2 2M 

82 28.4 30 
126 43.8 42 
264 89 90 
302 102 105 
362 123 130 

3.2. Non-Hookean behaviour 

Figures 4 and 5 show two examples of non- 
linear stress-strain behaviour. 

Here the shear strain has been expressed as 
N1/3« in accordance with eq. [9]. The dotted 
lines through the origin correspond to the values 
of Go evaluated fromviscosi ty/shear  data using 
eqs. [1] and [-3]. In each case the line appears 

t a n g e n t i a l  to the curve, indicating that Go has 
been correctly evaluated. 
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Fig. 4. Non-Hookean behaviour. Aqueous polyacryl- 
amide solution 
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Fig. 5. Non-Hookean behaviour. 5% aluminium lau- 
rate/decalin 

4. Measurement of recoverable shear strain 

The present work provides indirect evidence 
that in the solutions examined the recoverable 
elastic shear strain can be expressed by N1/3«. 
In view of this unexpected result it was decided 
to undertake direct measurements of recover- 
able strain using a Deer Rheometer. This in- 
strument was not available at the commence- 
ment of the investigation. 
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The Deer Rheometer is a rotational instru- 
ment with the essential feature that shear stress 
can be applied or removed virtually instanta- 
neously by means of an electromagnetic field 
and the instrument response recorded in terms 
of either angular displacement or angular ve- 
locity. 

Low inertia cone and plate geometry was used 
and the sample subjected to a period of steady 
shear flow at a selected shear stress, recording 
the angular displacement on a chart-drive pen 
recorder. At a convenient time the stress was 
removed and the recoverable strain derived 
from the angular recoil of the cone. A typical 
recorder trace is reproduced in figure 6. 
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Fig. 6. Recovery curve for 6%. aluminium laurate 
solution. Deer Rheometer. 50 mm, 1 ° cone. a = 71.2 Pa 

In figure 7 values of 7« derived in this way 
for a 4 % solution of aluminium laurate in decalin 
show good agreement with N~/3 a from normal 
measurement on the Rheogoniometer.  
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Fig. 7. Comparison of Nl/3a with direct measurement 
of 7e- 4% aluminium laurate/decalin 

In figure 8 direct measurement of 7« for a 6 % 
aluminium laurate solution shows initial Hoo-  
kean behaviour with a shear modulus of 400 Pa. 
Shear thinning data, shown in figure 1, gives 
t/o = 513 Pa s, 2 = 1.29s and Go = ~/o/2 = 397Pa. 
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Fig. 8. Hookean behaviour at low strains. 6% alu- 
minium laurate. Direct measurement with Deer rheo- 
meter 

It is evident that the direct measurements of 
recoverable strain provide further evidence in 
support  of the relations 7« = N 1 / 3 a  and 
Go = t/o/2. 

5. Application to polymer melts 

The present measurements have been con- 
fined to solutions of aluminium laurate in 
decalin and aqueous polymer solutions. The 
treatment may be extended to a polymer melt 
by reference to data published by Han (5) for 
a low density polyethylene m e r  at 200 °C. 

It  is convenient to introduce the normal-stress 
coefficient tP = N1/72 and to write To = lim 7/ 
then ~~o 

= • 3 ù ô / O o ,  

i.e. 7% = 3qo2.  [11] 

The shear dependence of 7 ~ is basically similar 
to that of t/, and by analogy with eq. [1] Ueda 
and Kataoka  (6) have proposed the equation 

= 7Q + (tP o - 7Joo)/(1 + flpm') [123 

with 

m' = 2m.  [13] 
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For the LDPE melt Ä/Iw/Ä/IN = 20 and eqs. 
[2] and [13] give m = 0.55, m ' =  1.1. Using 
these values, figures 9 and 10 show plots of the 
viscosity and normal-stress data in accordance 
with eqs. [1] and [12]. From the viscosity data 
we obtain 1/o = 14300 Pa s and 2 = 3.68 s, while 
eq. [11] gives ~o = 3t/o2 = 158.103 Pa s 2. The 
normal stress plot (fig. 10) gives 7% = 154- 103 
Pa s s. 
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Fig. 9. Graphical evaluation of t/o and 2. LDPE melt 
(5) at 200 °C 
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Fig. 10. Graphical evaluation of ~Vo~ LDPE melt (5) at 
200°C 

6. Conelusions 

A simple relationship has been established 
between the shear-thinning behaviour of a liquid 
and its viscoelastic properties, enabling relaxa- 
tion times and elastic shear moduli to be pre- 
dicted from viscosity/shear data. Predicted 
values show good agreement with stress relaxa- 
tion measurement and with direct measure- 
ment of recoverable shear strain. There is also 
good agreement with normal-stress data pro- 
vided the recoverable elastic shear strain is 
expressed by N1/3 «. 

Weissenberg's relation ~2 e : N1/a for recover- 
able shear strain has been the subject of some 

controversy. Lodge (7) suggests that Weissen- 
berg's theory probably relates to free recovery 
and is not applicable to any situation where 
lateral movement is constrained by instrumental 
factors, as in a rotational viscometer. For his 
theoretical rubberlike liquid Lodge shows that 
the ultimate constrained recoverable shear strain 
is N1/2«, i.e. half the Weissenber 9 value. A1- 
though the two theories differ by a factor of 2 
both find experimental support in the literature. 
As the present work gives an experimental 
result N1/3 « further evidence appears necessary. 

It has been shown that relaxation times and 
elastic moduli can be evaluated graphically 
from viscosity/shear data using eq. [1]. However, 
when shear-thinning is marked (qo » t/~) an 
alternative and simpler procedure is possible. 
All that is required is a knowledge of t/o and the 
shear rate 71/~ at which i / =  Mo/2. From eq. [1] 
we note that when 2~ = 1, 

= (~o + ~~)/2 ~ ~o/2. 

Hence 

,~ = 1/91/2 

and 

Go = t/o71/2. [14] 

Thus applying the relation G0 = 3«2/N1 to 
the normal-stress data shown in figure 2 gives 
t/0 = 483 Pa. Viscosity data give r/o = 48.8 Pa s 
and ¢1/2 = 10.2s -1, giving Go = q O ß l / 2  = 498 
Pa. 

A very simple relation between viscoelasticity 
and shear thinning is thus established. The 
controlling parameter is the relaxation time 2 
and it can be postulated that significant shear- 
thinning will be experienced by any fluid when 
the applied shear rate approaches the recip- 
rocal of its relaxation time. Thus water has a 
very low viscosity and high elastic modulus 
giving a relaxation time of the order 10 -14 
seconds. For all practical purposes it behaves 
as a Newtonian fluid but shear-thinning would 
be expected at shear rates in the region of 
1014 sec- 1 

Summary 
The shear-thinning behaviour of a liquid is repre- 

sented in terms of a relaxation time 2, defined by the 
ratio rto/G o of initial viscous and elastic constants. 
The relationship provides a very simple basis for the 
evaluation of 2 and Go from viscosity/shear data. 
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Results are compared with relaxation times and 
moduli from primary normal-stress measurement, 
from stress relaxation and from direct measurement 
of recoverable shear strain. Good agreement is found 
but there is experimental evidence the recoverable 
shear strain 7« is related to normal stress N1 and 
shear stress a by ?'« = N1/3a, which does not agree 
with the theoretical prediction of either Weissenber 9 
or Lodge. 

Zusammenfassun 9 

Das Scherentzähungsverhalten einer Flüssigkeit 
wird mittels einer Relaxationszeit 2 beschrieben, die 
durch das Verhältnis der Anfangswerte von Viskosität 
und Elastizitätsmodul tlo/G o definiert ist. Diese Be- 
ziehung eröffnet eine einfache Methode zur Bestimmung 
von 2 und Go aus Scherviskositätsmessungen. D~c 
damit erhaltenen Ergebnisse werden mit Relaxations- 
zeiten und Moduln verglichen, die durch Messung der 
ersten Normalspannungsdifferenz, der Spannungsre- 
laxation und der Scherdehnungsrückstellung (recover- 
able shear strain) gewonnen worden sind. Es wird eine 
gute Übereinstimmung gefunden, zugleich aber wird 
der experimentelle Nachweis geführt, daß die Scher- 
dehnungsrückstellung ?« mit der ersten Normalspan- 

nungsdifferenz N1 und der Schubspannung « "durch 
die Beziehung ?'« = N1/3 a verknüpft ist, was sowohl 
zu der theoretischen Voraussage von Weissenberg als 
auch zu derjenigen von Lodge im Widerspruch steht. 
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