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Eulerian tensors of finite strains 
their principal values 
strain rate tensor 
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with respect to time 
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Introduction 

Or/O0 
maximum Newtonian viscosity 
dimensionless parameter of elastic po- 
tential 
flow temperature and glass transition 
temperature 
free energy, entropy and internal energy 
of activation 
gas constant 
characteristic lengths of segments in the 
presence and absence of a field respec- 
•ively 
characteristic sizes ofmolecular network 
characteristic relaxation times 

Viscoelastic polymer systems are capable of 
accumulating large recoverable strains under 
the effect of intensive external actions. Thus, 
the viscous and relaxational parameters become 
nonlinear functions of the deformation rate and 
normal  stresses appear. Under very large ex- 
ternal interactions the polymer liquids exhibit 
a number  of "solid-like" properties: wall slip, 
cracking, brittle fracture during flow. 

For  theoretically investigating these phe- 
nomena we have to derive the rheological 
equations which describe the behaviour of 
fluid polymer materials in the range of large 
elastic strains. For  sufficiently small elastic 
strains such equations have been derived in 
(1),(2) and they include almost all known 
rheological models as particular cases. 

In this paper  the methods of irreversible 
thermodynamics have been used for constructing 
the rheological equations containing a small 
number  of parameters  which describe the be- 
haviour of fluid polymers in an unbounded 
range of variation of recoverable strains. 
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We have assumed that the high-elasticity 
state is the internal thermodynamical equi- 
librium state for viscoelastic polymer media. 
The high-elasticity state is characterized by 
very large recoverable strains. 

Therefore in § 1 we have outlined all the 
theoretical facts pertaining to the behaviour of 
elastic media with arbitrary strains in the 
nontraditional Eulerian description which is 
convenient for application to viscoelastic ma- 
terials. 

In § 2 we have given a formal scheine of 
irreversible thermodynamics as applied to the 
construction of simple constitutive equations 
for viscoelastic media. This scheine differs from 
that described in (1), (2) in that any additional 
kinematic considerations are not needed for 
constructing its purely thermodynamical path. 

The Maxwellian media - the most important 
case for the systems under consideration - have 
been examined in detail in § 3 and they have 
been classified with respect to different criteria. 

In § 4 concrete equations for the nonlinear 
Maxwellian model have been constructed bas- 
ing on a subsidiary hypothesis accounting for 
the orientation phenomena specific to visco- 
elastic polymer media. Similarly, a few para- 
metric generalizations which account for a 
number of additional effects of these media are 
also considered. 

Finally, the qualitative physical representa- 
tions on the strains in polymer melts and 
concentrated polymer solutions are given in § 5. 

§ 1. Eulerian description of the behaviour of 
nondissipative elastic medium (3) 

The thermodynamical state of an elastie 
medium is completely determined by one of 
the thermodynamical functions, say, the specific 
free energy f dependent on temperature T 
and an arbitrary measure for the strain, sym- 
metric tensor of the second rank a = {aij}. 
For  the sake of simplicity we shall assume that 
the medium is everywhere isotropic though 
most of the formulas are valid eren for a non- 
isotropic medium. Moreover, without any loss 
of generality, we shall take a fixed Cartesian 
coordinate system as the Eulerian reference 
frame. 

By definition, the tensor a, the measure for 
the strain, is a sufficiently smooth reversible 
isotropic tensor function of the Eulerian tensor 
of finite strain ~ = {~ij}. 

The tensor ~ is introduced in the usual way 
as the difference of metric tensors in nonde- 
formed (t = 0) and deformed (at the instant t) 
states (4). Simple measures which we shall use 
are of the following form 

h = -½1n(g - 2«), 

c = exp(2h) = (õ - 2~) -1,  

c -1 = e x p ( - 2 h )  = 5 - 2~, 

[1.1] 

[1.2] 

[1.3] 

where h is the Hencky strain measure, e is the 
Finger  strain measure, and 5 is the unit tensor. 

The tensors ~, h, c, c-~ are coaxial; the for- 
mulas [1.1]-[1.3] are satisfied after the sub- 
stitution 6-»  1 for the respective principal 
components ei, hi, % and c~ -1. These formulas 
show that the tensor « is positively defined and 
for the principal components ~,h,¢ we have 
the following domains of definition: 

- ~  < e ~ < ½ , - « , ~ < h i <  + ~ , 0 < c ~ < + ~ .  

[1.4] 

In the kinematic description of continuous 
finite strains, besides the finite strain tensor a, 
we generally consider the kinematic tensor 
characteristics, namely, the symmetric tensor of 
strain rates e =  {e~j} and the antisymmetric 
vorticity tensor ~ =  {o)ij } related with the 
velocity vector v(x, t) as follows: 

~v~ ~v__ L _ ~v~ Ov j . [1.5] 
2 %  = Oxj + ~x~ ' 2o9~j = t?x~ ~?x i 

If we introduce the Jaumann tensor derivative 
with respect to time 

a V =  ä + o ~ . a -  a . e j  

with 

da ~?a ~a 
h =  d~ - c~~-+ v~ c~x~ 

then the relation between the deformation 
measures e , c , c -1  and the kinematic charac- 
teristics e, o~ can be expressed as follows: 

~v + ~.e  + e .~ = e,  [1.6] 

c v - e . e - e ' c = O ,  [1.7] 

c - w  + c  - 1 . e +  e . c  -1 = 0 .  [1.8] 

Furthermore,  if we apply the equations of 
eonservation of mass, momentum and energy, 
as well as the Gibbs relation, then we can 
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obtain the balance equation for the specific 
entropy S 

dS 
P dt - 

~(~ (?x~ + P s ,  

1 
- - - - q .  V T + a ' e - p j ] r > _ O  [1.9 3 T P s  - T 

where p is the density, a = {%} is the symmetric 
stress tensor (for a medium with no internal 
rotations), q =  {q¢} is the heat flux vector 
(contraction of two tensors is denoted by 
two dots « ' e  = a~t ~e#« or occasionally as 
#" e = tr {a- e}). The quantity Ps is the entropy 
production in the system, and according to the 
second law of thermodynamics it is positive for 
irreversible processes and vanishes for the 
equilibrium stare. 

A medium is said to be ideally elastic if the 
equality 

TPs]  r = # ' e  -- P f i t  = 0 [1.10] 

holds true under isothermal strain conditions. 
It is known that the relation between the stresses 
and strains a = a(a) follows ffom [1.10]. If this 
dependence is known beforehand, then all 
deformation measures prove to be identical, 
but in studying the relationship between these 
equations and the function f = f ( T , a )  in the 
Eulerian description we find that the Hencky 
tensor h has a special meaning. Thus, we have 
(3), (5) 

P ~ J Õ - ~ ( , ù , j ~ f )  « = " , ,  = p : ~ - z -  [ 1 . 1 1 ]  
T T 

and, as a consequence from it, for an arbitrary 
deformation measure we obtain '  

~ ~  ~a«~ [1.12] 
Œij = P T ~h~j 

The proof of [1.11] follows directly from [1.6] 
and [1.I0]. 

From now onwards, for the elastic deformation 
measure we shall use the tensor c with the 
invariants 

11 = t rc ,  12 = ~(ill 2 _ t r c 2 ) ,  13 = detc [1.13] 

obeying the Hamilton-Cayley identity: 

c 3 - I1c z + I2c -- 13Ö = 0. [1.14] 

For  an isotropic medium f = f ( T ,  I i , I » 1 3 ) ,  
and from [1.12], we obtain 

a =  2 p c . = - -  % =  2pci~ • [1.15] 
UC 

By virtue of [1.2] and [1.5], from [1.10] for 
an isothermic process we find that 

WPsIT=«:«-p)IT=«:{e- hl 
= a : { e - h  v} = 0 .  

Nonetheless, evidently we have e 4:/;, e 4: hv, 
which follows from [1.6]-[1.8]. Now we shall 
determine the tensor H(c, c v) for which 

H(c, c v) = e. [1.16] 

This problem reduces to solving the eq. [1.7] 
which can be expressed in a closed form 1) 

H(c, c v) = ½(1112 - 13) - 1  {( 12 + 12) Cv 

+ I l I 3 c - l . c V . c  -1  + c . c V . ¢  

_ 1 3 ( c - i . c V  + d . c  1) 

- 1 l ( c . c  v +  c v . c ) } .  [1 .17]  

The tensor H has the following properties: 

1. For  any isotropic tensor function ~0 (h) we have 

tr {~0(h). H(c, cV)} = tr {q)(h). 2c - I .  c v} 

= tr {q0(h). h v} = tr {~o(h) • h} [1.183 

which follows directly from [1.17] and [1.14]. 

2. Ifc ~ 8(h - ,  0),then from [1.17]it follows that 

H(c, c v) = hV{8 + O(h 3. m)}, [1.19] 

3. H ( c -  1, c -  lv) = _ H(c, cV). [1.20] 

The formula [1.20] is obtained directly from 
[1.17] if we take account of the following 
relations 

(c-l)v = _ c - l . e  v .c,  I1(c-1) = i2(c)/i3(e),  

l e ( c - l )  = i1(c)/i3(c), i 3 ( c -1 )=  1/i3(c), [1.21] 

which can be easily proved. 
Now we shall separate the isotropic bulk and 

the shear components in the tensors h,c, e 
(Po is the density of the medium in nondeformed 
state): 

h = h' + ~ ~ t r h ,  c = c 'exp(~t rh) ,  

e =  e, + 3!($ tre , t r h ' =  0 , d e t c ' =  1 , t r e ' =  0, 

t rh = ln(p/po),  detc = exp(2trh) = pO/p2, 

~) An implicit form of the solution of this equation is 
used in (3). The formula [1.17] derived by L. M. Zubov 
was communicated to us by A. I. Lur'e. 

6* 



88 Rheologiea Acta,  Vol. 15, No. 2 (1976) 

d 
tre = -~-In(po~p). [1.22] 

Now we if introduce the following invariants 
from [1.22] for the tensor e"  

t 1' 1 = t r e '  = 11131,13 detc' = 1 

1~ = ½(I '~- trc '2) = trc '-1 = I2I~ el3 [1.23] 

then the Hamilton-Cayley identity for c' takes the 
form: 

C '3 -- 1'1 ¢'2 + I'2C' -- 6 -=- O. [1.24] 

Substituting [1.22] into [1.7] and [1.8], from 
[1.17] we can determine the function H(c', c 'v) 
having the properties 1.-3. The equalities [1.7], 
[1.8] and [1.16] remain valid even after the 
substitutions c ~ c', e ~ e'. 

For an isotropic elastic medium for which 
f - f ( T ,  p, 1'1, I~) the eq. [1.15] gives (6) 

a/p = - T6 + 2 

[ ~ f  c' ~ 3 f  c ' - t ]  [1.25] 
• - ~ 1  T - -  T ' 

For elastomers of cross-linked rubber type, 
we can neglect the volume strains as compared 
with the shear strains in the entire deformation 
range of practical interest (7). Therefore we can 
consider these materials as incompressible (p = 
const) and thus simplify the dependence so 
obtained. In this case we have c = c', and the 
invariants in the principal axes are of the form 
(ci is the principal value of c) 

I1 = c l  ~-C2 - ] -C l1C2  1, I2 = C l  1 + C 2  1 -~C1C2, 

13 = CIC2C3 = I .  [1.26] 

From [1.26] it follows that 11 ~ 12 for c ~ c-  1. 
From [1.26] it follows that for independent 

changes in Cl, c2 in the range c~ > 0 the functions 
I1(cl,c2),I2(Cl,C2) vary independently in the 
"wedge-shaped" region: 

I~-(I2) < I1 < I1-(I2), 12(11) < I2 < I~(I1).  

[1.27] 

The functions I~(I2) , I ; ( I2)  and the corre- 
sponding inverse funetions 1~(10,12(10 are 
well defined for I~ > 3, 12 > 3, and they can be 
expressed in a parametric form as follows: 

Ii-(x) = I+(x) = x + 2x -1/2, 

I+(x) = I2(x  ) = x -1 + 2x  1/2. [1•28] 

The curves I l ( I l ) represent  monotonically 
increasing functions of the arguments; they are 
symmetrical with respect to the bisectors of the 
first quadrant [11 = 12] of the planes 11 , 12 
and intersect at the points 11 = 3, 12 = 3 having 
identical slopes. 

For an incompressible isotropic elastic me- 
dium, the function p o f ( T , e ) =  W(T, I I , I2)  is 
generally called the elastie potential and its 
domain of definition is given by the formulas 
[1.27], [1.28]. The formula [1.25] thus is 
converted into the Finger relation (8) 

a --- - p 6  + 2W1c - 2W2 c-I  

W k -  ai k , k = l , 2  [1•29] 

where p is the Lagrange multiplyer determined 
from the boundary conditions with due regard 
for the incompressibility of the medium• 

Now we shall study the thermodynamical 
stability of the stressed state in an incompres- 
sible elastic medium under a given elastic 
potential W(T, I1, I2)- First consider some 
"small" neighbourhood of a fixed stressed stare 
with the tensor c characterized by the small 
tensor 6c for which 

tr{6c} = tr{2c.(/~ +/~2) + 0(f13)}, 

tr/~ = 0; tr{6c 2} ,~1 [1.30] 

where /~ = 6h is the increment in the Hencky 
deformation tensor. 

Expanding 11,12 in terms of the tensor fl 
parameter and then substituting these expres- 
sions in the formula for the elastic potential 
W =  W(T, 11,12) and retaining only the terms 
up to second order of we obtain 

6 W =  W(c + 6 c ) -  W(c) 

= 8 1 W +  ö~l~W+ 6~22~W 

61 W = 2 W1 tr (c-/~) - 214/2 tr (c- 1. p) 

6~1)W = 2|¥1 tr(c.fl 2) + 214'2 tr(c -1 ./~2) 

ô~2 z) W = 4 Wll tr2(c • fl) - 8W21 tr(c. fl)tr(c -1./~) 

+ 4 W22 trZ(c - 1. fl), 

with 

32W 
Wkm ¢3iklm ; k, m = 1, 2. [1.31] 

The term 61 W in [1.31] is equal to the work 
of stresses in the main stressed state with the 
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deformation tensor c, whereas the terms 6~1)W 
and 6~z2)W characterize the dynamic stability 
of the elastic medium. 

An ideally elastic medium is said to be 
thermodynamieally stable in the neighbourhood 
of the stressed state c if the difference between 
the variations in the elastic potential 6 W  and 
the work of the stresses 61 W over small de- 
formations is positive, i.e. for a stab[e system 
we have 

6 W -  61 W =  6~zl~W + 6(22)W> O. [l.32] 

This definition is consistent with the definition 
of mechanical stability (8), and it is a trivial ease 
for small deformations (c -» 6), The terms 6(21) W, 
6(22) W of second order in fr, as can be easily seen, 
are independent of each other and therefore 
for stability it is necessary and sufficient that 
B(l } VI / > 0, 6(2 2) W > 0 for any /~. The second 
inequality holds valid if and only if 

V¢1 > 0 W2 > - m i n e  2,W 11 > 0 ,  
' W1 

w,~ < w,1 w22. [J.33] 

If W~ = const and W/i = 0, then the conditions 
"[l.33] are satisfied for all c if and only if 

W 1 > 0 ,  W e > O .  [1.34] 

In the general case the conditions [1.34], 
which are close to the necessary condition, 
will be called, for the sake of simplicity, as the 
conditions of  thermodynamical stability. 

In concrete situations we shall consider the 
Mooney-Rivlin potential (8) 

W =  #[11 - 3 + Œ(I2 - 3)]. [1.35] 

This potential has been derived based on the 
phenomenological considerations and satisfac- 
torily deseribes the behaviour of rubber under 
small deformations il« ~< 0.1 + 0.2. When « = 0, 
from [1.35] we obtain the classical potential 
of the network high-elasticity theory (7), which 
gives iz = p R T/M~. where R is the gas constant, 
M,. is the mean molecular weight of the chain 
between two links. 

§ 2. Thermodynamical deseription of the behaviour 
of viscoelastic (dissipative) medium 

In the nonequilibrium state we can make an 
attempt to retain the local description of the 
medium with the help of the specific free energy f 
dependent on temperature T and an internal 

parameter, namely, the tensor of recoverable 
strains a«= {a«,ii} determined, say, by the 
element-wise loading of the medium (fictitious 
or factual in some cases). Thus, for small particles 
by virtue of the local equilibrium hypothesis, 
all relationships known in equilibrium ther- 
modynamics remain to hold true by assumption. 

Within the framework of this hypothesis we 
shall determine the thermodynamical flux H~, 
and the force 2) a« due to the tensor parameter a,, 
using the same considerations as in the equi- 
librium case, i.e. with the help of the formulas 
[1.i l] ,  [1.12] and [1.17]. Thus, the relationship 
between the reversible measures of deformation, 
by definition, is given by the formulas [1.1 ]-[1.3] 
in which all quantities have the suffix e, and all 
the properties of H,, mentioned above are 
preserved. 

For this case the eq. [1.9] gives 

T P  s +  T - l q  . V T = a : e - p f l r  

= a : e  - a,,:H,, [2.1] 

This equation shows that the discrepancy of 
both a« from a and that of H« from e accounts 
for the nonequilibrium in isothermic deforma- 
tion of the medium under consideration. There- 
fore we can determine the tensors ap and ep 
which characterize the contribution of non- 
equilibrium properties of the system into the 
dissipations. These tensors vanish in the equi- 
librium thermodynamical state: 

e v =  e -  H e, a p = a - a ~ .  [2.2] 

With the help of [2.2] we can rewrite the 
expression [2.1] in the form proposed in (9) 
for investigating the small viscoelastic strains: 

T P s =  - T - l q .  V T + a p : e + a , , : e p > O .  [2.3] 

From the first tensor equality [2.2], which 
plays the role of "kinematic equation',  we can 
obtain the equalities of the type [1.6]-[1.8] 
containing the difference e -  ep for e with the 
help of the formula [1.17]. In particular, 
analogous to [1.7] and [1.8] we obtain 

c, v - c,, (e - ep) - (e - ep). c,, = 0, 

(c~- 1)v + c,71. (e - ep) + (e - %). co, 1 = 0. [2.4] 

In the subsequent pages we shall study the 
behaviour of isotropic viscoelastic media under 

2) The suffix e shows that the tensor quantities are 
reversible. 
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large recoverable strains so the volume effects 
can be neglected in most of the cases. The 
incompressibility condition takes the form: 

tre = 0,  trep = 0, detc« = 1. [2.5] 

Only two of the three conditions [2.5] are 
independent. The behaviour of a compressible 
viscoelastic medium has been investigated in 
(1, 2). 

The right-hand side of the expression [2.3] 
is the sum of the products of thermodynamical 
fluxes (q,%,ap have been taken to be such 
fluxes) by their conjugate thermodynamical 
forces (in our case VT, a«, e respectively). The 
constitutive equations of the medium are the 
phenomenological relations between the thermo- 
dynamical fluxes and the forces which for the 
case considered (small deviation from the ther- 
modynamical equilibrium) are assumed to be 
quasilinear with Onsager symmetry for the 
kinetic coefficients (10). Basing on simple prop- 
erties of the tensor dimensionality, we can 
express these relations as 

«T 
q~ = - xi~(c«) c~x~ [2.6] 

, (1) (2) ' = Mi~«~(ee) ae,~~, O'p,ij Mijaß(Ce) eß: + 

M(2) ( 3 ) ' = Mij«p(c«)a«,~« [2.7] ev,ij -- ij~ß(c«)eß« + 

The primes in [2.7] denote the deviators of 
the respective tensors. The eq. [2.6] corresponds 
to the law of heat conductivity, while the 
equation [2.7] to the rheological relation for 
a viscoelastic medium. As the scheme is quasi- 
linear, i.e. the kinetic coefficients x, M tk~ are 
dependent on the equilibrium parameter co, 
we can take account of the "induced anisotropy" 
that appears under large recoverable strains co. 
Similar relationships with due regard for the 
deformation anisotropy can be derived in con- 
sidering diffusion, polarizability and other phe- 
nomena in viscoelastic media. 

The tensor kinetic coefficients M (k) have a 
number of properties which follow from the 
symmetry of the tensors e,%,tr, a e and the 
incompressibility condition [2.5] 

M(k) A~(k) A~(k) .-(k)o = M.(.~) = 0 [2.8] i j~ß ~ ~*a j iaf l  ~ ~va ijflŒ~ JVl iiap -'-t3act " 

By virtue of [2.8] we can write the expression 
for Ml~)~~(Ce) (k = 1, 2, 3) as follows: 

-}- (m(~) c'ij + m(3k) «~ ")C'«a 

+ ,lm(k)/4 ~ij "1--- tn(sk)cÜ 1') c~-/~l' 

t 2 ,! + m(6k)(c'i«6jß + Cj~5i~ -- 3(5ijC«a 

t t 2 , 
~ -  Ciß(~ jŒ -}- C jfl~)iŒ - -  "~ (~¢toCij ) 

+ m(7k)(c~l'bj~ + C~l'(~ifl - -  äßijCŒ --1' 

"J- C ~  1' t~j~ t .+ CjB l'(~ia - -  2 - 1 -~6«~cij '). [2.9] 

For the sake of convenience, in the expression 
[2.9] and further onwards we shall omit the 
suffix e, thus rn(: k) = m(2k)(T, I1, I2) are the govern- 
ing scalars of the tensors, where 

c , = c _ 6 ! l  C - I '  1 3 1 '  : C- - - t ~ l 1 2 ,  

11 = t rc ,  12 ---- trc 1 

The heat conductivity tensor x(c) has the 
following structure: 

xi~(c ) = xo(T, 11, I2)(~ij + x l ( T ,  11, I2)cij 

q'- x 3 ( T  , I l ,  I2 )c~  I [2.10] 

Now if we substitute the phenomenological 
relations [2.6] and [2.7] into [2.3], we can 
express the entropy production as a quadratic 
form of the thermodynamical forces: 

(1 )  . T P s = T -  ~ xi jVi  T V j T  + Mii~~eoe«t~ 

/ I / / (3)  f r '  f r '  > 0. [2.11] -1- ~, t  i jaß ~ e , i j  We,afl  - -  

Since the terms in [2.11] are independent, 
and this form is positively definite, we find that 
the tensors are also positive definite. The last 
tensor can be expressed as 

{x} > 0, {M (t)} > 0,  {M ~3)} > 0. [2.12] 

Here the tensor kinetic coefficient M {2) is not 
positive definite. 

Using the expression [2.9] we can explain 
the expression [2.7] considering the two terms: 

ù~(1) ,,,- 1'~ M(1)(c) "e = m] 1)e + tr(c'e)(m~211c' + , 3  ~ , 

r w ( 1 ) » -  1'~ + tr(c-l"e)(m(41)c'  + , s  ~ ) 

+ m 6 ( c . e  + e.  c - 2g tr(c.e)) 

+ m(71)(c -1 .e + e . c  -1 - 26tr(c -1.e)), 

[2.13] 

M ( 3 ) ( C )  " at« ~" q ) ( c )  = C 1 (T~ 11,12) c' 

- C2(T, I , ,  I2) c -  1 ,  [2.14]  
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Thus, the rheological relations [2.7] for the 
nonlinear viscoelastic medium in general contain 
16 governing scalar functions of the invariants 
of the recoverable deformation tensors c, more- 
over very weak constraints [2.¤2] are imposed 
on m~ 11 (the constraints on the functions C1, C 2 
will be examined in the subsequent pages). 

In some particular cases, the relation [2.7] 
is converted into the rheological equations for the 
M a x w e l l i a n  nonlinear liquid (M~I)= M~21=O, 
aù = O, i.e.ae = a) and theKelvin-Voigt nonlinear 
medium (M~2~- - M ~3t =O,  ep = 0). For the last 
case, the general constitutive equations were 
derived in (11). 

Now we shall briefly examine the noniso- 
thermal behaviour of a viscoelastic medium. 
From [2.12] it follows that the positive definite 
tensor of thermic resistance r(c) = x -  1(c) exists. 

The measurements of heat conductivity coef- 
ficients under uniaxial stretching of polymers in 
high-elasticity state for sufficiently high drawing 
rates have shown that the  heat conductivity 
has a distinct anisotropy (12), and the tensor r 
is coaxial with the tensor c for which 

r H + 2r± = 3r o = const [2.15] 

is true under simple stretching. Hefe r j/ and r± 
are the thermal resistances parallel and per- 
pendicular to the stretching direction respec- 
tively, r 0 is the coefficient of thermal resistance 
in isotropic (nonstressed) state. 

Within the framework of the local equilibrium 
hypothesis we can retain the equality [2.15] 
for the nonequilibrium case too, however, in 
a general case it leads to the following expression 
for the thermal resistance tensor: 

r(c) = ro6 + RI( /1 ,  I2)c '  + R 2 ( 1 1 ,  12)c -1 '  [2.16] 

where Ri is a function of the invariants of the 
tensor c. Certain constraints following from the 
positive definiteness of the tensor r are imposed 
on these functions Ri. At present adequate 
number of facts are not available so that we 
cannot further examine the behaviour of the 
tensor r(c). 

Different expressions for the temperature 
variations are given in (1), for instance, one of 
them is 

d T  ä ¢?T 
Po«« dt - dx,  x u ~  + A T P s l  r [2.17] 

where cù is the heat capacity for a constant 

stress tensor and A is the thermal equivalent 
of work. 

§ 3. Thermodynamics and rheology of 
Maxwellian nonlinear medium 

In this section we shall consider a particular 
case of viscoelastic incompressible medium of 
Maxwellian type which gives a satisfactory 

-qualitative description to the behaviour of 
concentrated polymer solutions and melts. 

The equations which characterize this type of 
medium have the form: 

a = « ,  = - p 6  + 2 W 1 c  - 2W2 c-1  , [3.¤] 

c v - c .  e - e .  c + 2 c . % ( c )  = O, [3.2] 

d e t c =  1, t r e = 0 ,  [3.3] 

e,, = C1(£ - lBI1) -  C2(c -I - ½ 6 1 2 ) ,  [3.4] 

D = T P s [  r = a,, :e v = (½ Ii  I2 - 3) 

• (C1 W2 + C2W1)+ Ca Wl(trc 2 - 1 1  2 ) 

+C2W2(trc  2_311 2 ) 2 ,  [3.5] 

where W(T,  I I , I 2 )  is the elastic potential, 
8W 

Wk = c3I---~' D is dissipation. The rheological 

behaviour of the Maxwellian medium is com- 
pletely determined by two scalar functions 
C1, C2 dependent on two basis invariants of 
the tensor c, i.e. on I i = t r c ,  1 2 = t r c  1. We 
shall assume that the elastic potential W 
characterizing the local equilibrium properties 
of the medium is given. 

For c :/: ö, then for the quantities contained 
in [3.5] we have the following inequalities: 

[¥1 > 0 ,  W2_>0, 1 1 1 2 > 9 ,  

trc 2 - 112 = ~(I~ - 3¤2) > 0, 

t r c - 2  --~12 : 3 1 2  2-( 122 -- 31I) > 0. [3.6] 

Therefore [3.5] together with [3.6] form the 
constraints imposed on C1, C2. 

Now we shall consider some simple particular 
cases which characterize the Maxwellian media. 

1. Maxwel l ian  isotropic viscous medium 

By virtue of [3.1] the deviator of the stress 
tensor ~r'~, has the form: 

a" = 2 I ¥ 1 ( c - ½ 6 I , ) -  2W2(c 1 _ 1612).  [3.7] 

We shall assume that the relationship between 
aé and %, is analogous to the Newtonian law: 
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ep = (22) -1 a; [3.8] 

where 2 = 2(T, I1,I2) is some scalar function 
having the meaning of viscosity. From [3.4], 
[3.7] and [3.8] we have 

C 1 = W1/),, C 2 = W2/~, [3.9] 

Substituting [3.9] into [3.5] we obtain 

e l ( /1 ,  12)[I1=I 2 = C2(I , ,  I2)111_i2 

whieh is always satisfied by virtue of [3.11] but 
contradicts [3.9] - the potential W characteristic 
of real materials. 

3. Maxwell ian media with "nonequilibrium" 
potential 

D = ~ {(I, 12 - 9) W, W2 + W2(I~ - 312) In this case in [3.4] we have 

+ W22(I 2 31,)} > 0 [3.103 C, = 2  oTj O7J __ . ~i 1 , C 2 = 2 - ~ 2  (Ck=2tl Ik;  k = l , 2 )  

Thus the quadratic forms in the curled brackets [3.13] 
in [3.10] are positive definite, therefore 2 > 0. 

The relationships [3.9] satisfy the Ziegler 
principle of minimum irreversible forces (13), i.e. 

min tr {e 2 } 

for a given D defined by [3.5] and fixed e. 

2. A simple case o f  the Maxwell ian medium with 
anisotropic viscosity 

Assume that 

C1(11, I »  T) = C2(I » 11, T).  [3.11] 

In this case, as is evident flora [3.5], we have 

C~ > 0(C2 > 0). 

And since 11 ~ Iz for e ~ e- 1 then for e -» e- 1 
we have ep--* - % .  In this case, as it follows 
from [2.4] the kinematic eq. [3.2] is invariant 
with respect to the transformations e ~ c - ' ,  
and e --+ - e .  

Since for real rubber W(I1,  I2)@ W(I2,  I1), 
then there exists an anisotropic relationship 
between a'« and ep given by some tensor of the 
fourth rank M (3) in [2.7]. 

It is really interesting that unlike [3.9], in 
the anisotropic case described by the formulas 
[3.11], a flat deformation state is possible in 
which 

e ~- - -  e l 2  e22 , Cd) = - -  , 2  0 , 

0 0 0 

e =  c12 c22 , I l = I  2 = I .  [3.12] 

0 0 

Indeed, in this case, the eqs. [3.12] and [3.2] 
give 

where 7" = 7~(T, 11,12) is the "nonequilibrium" 
potential. Then 

O7/ 
ep= 2e..-~e q6 = 2~U1(c --~ 611) 

_ 2t/,2(e -1 _ ~ßI2) [3.143 

where q is the Lagrange multiplyer defined by 
the incompressibility condition tr e e - -0 .  

In the case of [3.9] the potential 7 /has  the 
form: 

d W  itl = ~'(W) = I 
J ,~(w) 

[3.15] 

In the case of [3.11], as can be easily seen, the 
potential 7' given by the formulas [3.13] is 
a symmetrical function of I l ,  I 2, i.e. 

~(I1, I2) = ~P(I2, I l ) .  [3.16] 

§ 4. Some examples of Maxwellian models. 
Generalization 

The rheological relations derived in § 2 and 3 
are common for the viscoelastic media of 
different nature. They can be further improved 
and generalized only with an account of the 
specific properties of the viscoelastic media. 

Therefore now we shall examine some sim- 
plifying hypotheses which account for the 
specific features of strains in polymer melts 
and concentrated solutions with the view of 
giving simple but adequate description to the 
basic nonlinear properties of media with the 
help of a few constants having simple physical 
meaning. 

We shall first examine the constitutive rela- 
tionships for the Maxwellian nonlinear model. 
We shall assume that the elastic potential is 
given (for example, by the expression [1.35]); 
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as it follows from the eqs. [3.1]-[3.5], it is 
necessary to specify the type of two functions: 

CI(II, 12, T), C2(I1,12, T). 

For this purpose we shall formulate several 
assumptions. 

a) The nonequilibrium potential ~u(I~, 12, T) 
given by the formulas [3.13] and [3.14] may 
be used for describing the nonlinear rheological 
properties of the polymer media. 

b) The viscosity of the system is anisotropic: 
the viscosity assumes maximum value in the 
direction where maximum stresses act. In a 
rough approximation this is described by the 
equality e~,(c)~-ep(e -~) i.e. the formulas 
[3.11] or [3.16]. 

c) The nonequilibrium potential ~P satisfying 
the condition [3.16] depends only on the elastic 
potential and is related with it in a simple 
manner: 

¢P = ~(Ws), 2Ws = W(I1,I2)+ W(Iz, l~). 
[4.1] 

Analogous to [3.15] we shall put that 

f dWs [4.2] 
q ' (ws)  = ,~(ws) 

where 2(Ws) has the meaning of a characteristic 
scalar coefficient of viscosity or (with the same 
dimensional factor) characteristic relaxation 
time. 

d) The viscosity or the characteristic relaxa- 
tion time steeply increases with the recoverable 
strain; this dependence is determined by a 
function of exponential type. From [4.2] we have 

2 = 2o(T)exp {-~-Ws}, ]~ = const > 0 [4.3] 

where #(T) is the high-elasticity modulus con- 
tained in the definition of elastic potential W 
(see, for example [1.35]), Ô is a dimensionless 
constant depending only on the type of the 
polymer. 

The assumption (a) corresponds to the "prin- 
ciple of maximum simplicity" of description; 
the assumption (c) accounts for the closeness 
of the system to the thermodynamical equi- 
librium state stipulated everywhere in this 
paper; the assumptions (b) and (d) take an 
account of the orientation of the polymer 
systems in strong mechanical fields. Thus, the 
assumption (b) corresponds to the effective 

levelling of components of the nonrecoverable 
strain rates due to the growth of viscosity in the 
direction of maximum stress. This "induced 
orientation" is developed in nonlinear condi- 
tions only if a,,(c) ~ «<(c-1), and is especially 
obvious in considering the principal values of 
the tensors c, a«, et, under simple stretching or 
simple shearing. From the assumption (d) 
(formula [4.3]) it follows that IlepH -» 0 for IIc]l » 1, 
and that corresponds to the loss of fluidity 
under large recoverable strains observed in 
many experiments (14),(151. This is evident 
from the resultant formula for ep obtained from 
[3.4], [3.13], [4.2] and [4.3] 

• [ ( c -  ½ 6 1 1 ) [ ~ s . ,  - ( c - '  - ½ 6 1 2 ) W s , 2 ] .  

[4.4] 

The formulas [4.4], [3.1]-[3.3] form a closed 
system of constitutive equations for describing 
the isothermal behaviour of polymer systems 
within the framework of the Maxwellian non- 
linear model. 

Nevertheless, these equations do not predict 
the retardation phenomena inherent to the 
polymer systems. For describing this pheno- 
menon we shall make use of the eqs. [2.7] as- 
suming that at, = a - a« 4: 0. We shall stipulate 
the following simplifying assumptions: 

e) Relaxation and retardation can be regarded 
as independent phenomena. 

0 The kinetic coefficient M (~) in [2.7] is a 
scalar (anisotropic relaxation properties have 
already been taken into account in [4.4]). From 
the assumption (e) it follows that M (21 : O  in 
[2.7], whereas from the assumption (f) and the 
first equality of [2.7] we have 

a t , - a - a « = m ( I  1,12 ,T) e (m>0) .  [4.5] 

f) The retardation viscosity m or the charac- 
teristic retardation time 0, (differing from m 
by a dimensional constant) steeply increases 
with the growth in the recoverable strain. This 
dependence is similar to [4.3], i. e. 

0r--~ m = mo(T) exp{--~- Ws}. [4.6] 

The physical meaning of the assumptions (e) 
and (f) leading to the formulas [4.3] and [4.6] 
is discussed in § 5. 
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If we take an account of the retardation, then 
the closed system of rheological equations 
takes the form: 

a + p 6 = 2 c W 1  - 2c-1W2 

c v -  c . e -  e . c  + 2c . ep (c ) - -  O, 

t r e = 0 ,  d e t e = l ,  

ep = ).o(T) exp - -fi- W s 

• [(«- ~,~I,)w~,,-(c - ~ -  - ~ , ~ I g w ~ , d ,  

D = T P s l T  = 32o(T------- ~ exp -- --f 

{ (I , I2 -- 9)(W1 Ws.2 + W2 Ws,,) 

+ 2(12 -- 312)Wl Ws,, + 2(12 -- 311)W2Ws, 2 

32°(T) } 
-+ 4mo(Tl tr(a2) ' 

11 = t r c ,  I z = t rc  -1, W =  p o f ( T ,  I i , I 2 ) ,  

ow~ 
2W s =  I~I  1,12)+ W ( I  2 , I1) ,  W s ,  = ~i k 

[4.7] 

From these equations it follows that after the 
loss of fluidity (e»-» 0), the behaviour of the 
medium is described by the equation of state of 
Kelvin-Voigt type. 

The system ofeqs. [4.7] contains four constants 
of the material fl, 2o(T), mo(T), #(T).  We shall 
now give a method for determining the last 
three constants. In the linear region, from [4.7] 
we have 

c = t$ + 2h + 0(h2), lim (W 1 + W2) 
c~t$ 

= l im (W~,s + [~/2,S) = Wg + I¥ O 
c~~ 

a' -- a + p 8  = m o e  + 4 ( W  ° +  W°)h; 

c3h 4(W° + W°) [4.8] 
63--- ~- + ep = e; ep --- h . ~.o 

The formulas [4.6] lead to linear rheological 
equation: 

& 
0 o - ~  = 2 ù o  1 + 0, o t / e  [4.9] 

where the positive constants 0 o,"o, 0r are the 
relaxation time,Newtonian viscosity, retardation 
time respectively, and 0r = sOo(O < s < 1). These 
parameters are determined from the standard 
rheological measurements in the linear region, 
for example, from the dynamic experiments. 
On comparing the constants in [4.8] and [4.9], 
we find that 

2 0 = 2ùo(1 - s), m o = 2ùoS, 

2(wo + w o) = ùo(a - s) 
0o [4.10] 

If we assume, for instance, that the type of the 
elastic potential is given by the expression [1.35], 
where Œ = 0.1 + 0.2 is known, then 

wO-~- wO ~- W1 -~ ~¥2 = ]./(1 -~-Œ) 

and from [4.8] we obtain 

= ½ùo(I - ~) [oo(I + «) ] - '  

The parameter fl which determines the physical 
nonlinearity in the behaviour of the material 
is found from additional considerations. 

It is known that the rheological behaviour of 
polymer melts and concentrated polymer solu- 
tions in the linear region is described by suf- 
ficiently representative set of relaxation times. 
Therefore, the description of the behaviour of 
the systems by the eqs. [4.7] in the linear region 
reduces to a three-parameter model [4.9], and 
probably it cannot be an appropriate one. 

Nonetheless, it is hoped that the nonlinear 
behaviour of these polymer liquids may be 
satisfactorily described by the system [4.7] in 
a wide range of strain rates as a consequence of 
the assumption that only the nonlinear mecha- 
nism gives the major contribution into the 
rheological behaviour. 

However, we may assume, in addition to the 
eq. [4.7], that the nonlinear relaxation properties 
of the system can be deseribed by a set of 
relaxation times. Such a description, naturally, 
is not consistent with the general description 
discussed in § 2. Therefore, for a simple concrete 
description of such a type, we shall formulate 
the following hypothesis. 

g) The nonlinear viscoelastic behaviour of 
concentrated polymer liquids is described by 
a set of mutually non-intersecting linear relaxa- 
tion "modes" with additional "viscous" friction. 
Loss of fluidity may take place only one of these 
modes (corresponding to the least characteristic 
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relaxation time in the linear region)• The 
additional viscous friction depends only on the 
elastic strains at the first mode. 

The corresponding equations are of the form: 

+ 2 Y (ck w~ k~ - c~'  l'V~ k~) 
k 

c v -  c k . e  - e .c« + 2c  k. e*p>(Ck) = 0, 

tre = 0 ,  detc« = 1, 

p - )O(T)exp ---#« Ws ~kl 

• {(«k -- 1 6I?))  W~sk] -- (C; '  --½ 6P2k')w~k2'}, 

I] k)= trck, I~2k~ = trc# l, tig = fl(k = 1), 

B k = O ( k >  1), 

Po f =  W = Y, W (k), 
k 

2 w~ ~~ = w «~(I~ k~, I~ ~~) + w ~*' (1% I?~), 

D = T P s J r =  m o ( T ) e x p { - ~ l  W~sl'} tr e2 

ùrõ- exp - ~ Ws ~k) 
+ 3  k 2 k  ~ k  

f tr(k) l(k)  Q~ / I/U(k) I/i/(k) ..t- • ~~11 " 2  - - ~ I ~ " 1  " S , 2  ~ ~'V2 (k)[~i/(k)~ " 'S,I!  

+ 2(17 '2 - 3 I~2 k,) W~I k) w~sk~ 

+ 2(I~2 «~2 3 I~1 ~~) w2 ~kJ ""~~~~ -- VV~;,2 ) " 

[4.1 I ]  
These formulas describe the relaxation phe- 

nomena both in a flowing polymer or after the 
loss of fluidity. 

The independence of different nonlinear re- 
laxation modes postulated in the assumption (g) 
can be explained by the fact that the relaxation 
phenomena are created by microprocesses taking 
place in different scales. The least scale cor- 
responding to the least relaxation time and 
giving the major contribution into the proposed 
description is probably the supermolecular one 
(for details see § 5). 

§ 5. Qualitative physical concepts on the deforma- 
tion of polymer melts and concentrated 
polymer solutions 

The assumptions made in §4 for specifying the 
type of equation of state for the polymer media 

need to be substantiated from the viewpoint 
of polymer physics. However, the physical 
kinetics of this field is in such an unsatisfactory 
state that so far there is no theory that could 
adequately describe the relaxation behaviour 
of block polymers even in the linear region. 
Therefore, the viewpoint advanced in this section 
cannot claim to be anything else than a mere 
reformulation of the already existing hypotheses 
in a different language. The suitability of the 
hypothesis suggested and the proposed formulas 
has to be ultimately verified by the experiment. 

We shall assume that the high-elastic be- 
haviour of polymers both above and below the 
flow temperature T I is a result of the existence 
of a labile network of "crosslinks" which unlike 
in the vulcanized rubber is of fluctuating nature. 
This gives rise to the irreversible flow in non- 
crosslinked polymers above the glass transition 
temperature T o or the flow temperature 7).. 
If the polymer is amorphous, then no flow is 
developed in the range T o< T <  T s due to 
very strong effect of temperature on the vis- 
cosity. This temperature fange is the region of 
high-elasticity behaviour of polymers (16); it is 
characterized by an ability for high recoverable 
strains caused by the entropy elasticity of 
macromolecular chain between two crosslinks 
of the fluctuating network. Though the behaviour 
of the material is of nonequilibrium type, yet the 
nonequilibrium may be exhibited weakly as in 
the case of chemically crosslinked systems. For 
this state of incomplete thermodynamical equi- 
librium the following relation holds valid (7) 
(as well as the eq. [1.35]): 

W =  p o A f  ~ - T A S  = 11¢o(I~,I2), 

# ~ po R T#,. -1 [5.1] 

where A f  and A S  are the "deformation" varia- 
tions in the specific free energy and entropy 
respectively, «~ is some temperature independent 
function of two invariants of the tensor c. 

In the nonequilibrium case (for example, 
in the presence of irreversible flow), within the 
framework of local thermodynamical equi- 
librium hypothesis, we can assume that the 
elastic potential W is given by the eq. [5.1]. 

Furthermore, we shall assume that in con- 
centrated polymer liquids with a net structure, 
the characteristic processes of relaxation and 
viscous flow are mainly determined by the 
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activated formation and break of linkage be- 
tween the neighbouring parts of macromole- 
cules. Thus, the characteristic relaxation time 
can be expressed as (17): 

0 = 01(T ) e x p ( A f * / R  T ) ,  O, -,~ [ T p o ( T ) ]  -1 

d f *  = A U* - T A S *  [5.2] 

where AU*, A f * ,  AS*, are the specific internal 
energie, free energy and activation entropy 
respectively. When there no mechanical field, 
i.e. AS* = const, A U* = const, the last formula 
in [5.2] does not give any additional mechanical 
information. When there is a field, the term AS* 
equal to the order of the entropy of the segment 
participating in the transfer act, diminishes as 
a result oforientation effect of the field. Therefore 
we can approximately assume that 

LJS* ~ -- fl03(11,/2), fl ~ M,/M,, (0 < fl <_ 1) 

[5.3] 

where M, is the molecular weight of the segment. 
The parameter fl characterizing the flexibility 

of the macromolecular chains increases with 
increasing rigidity of molecules. Therefore we 
can take that the mean number of crosslinks per 
unit volume must decrease with increasing 
intensitya): On the other hand, the orientation 
effect of the field must increase the chain rigidity 
and growth of M,. Therefore, the parameter fl 
in [5.3] can be taken to be approximately 
constant. 

If the intensity of the mechanical field is so 
great that it distorts the potential barriers which 
govern the activation process, then, say, in the 
case of simple stretching with stress a we have 

AU* ~ AU~ - »,a. [5.4] 

This formula is usually used for describing 
the creep phenomenon under conditions close 
to the limiting oriented state when there are 
practically no entropy effects. For polymer solu- 
tions, for which the stresses are small, we can 
take in most cases 

AU* ~ AU~ = const.  [5.5] 

On substituting [5.3] and [5.5] into [5.2] we 
obtain 

3) Probably, this will be the case if the intensity of 
the field is not so high as to cause secondary effects 
associated with crystallization. 

0 ,~ Oo(T)exp{f log(I3,  ¤2)}, 

AU* 
O o ( T ) ~  0I(T) exp { ~ }  [5.6] 

which is in qualitative agreement with [4.3]. 
The dense packing in the polymer melts and 

their concentrated solutions calls for the need 
to account the additional "side" action of one 
segment with other neighbouring segments not 
belonging to that chain; and in the case of 
solutions with solvent molecules as well. This 
interaction is of viscous in nature and can be 
roughly estimated by the formulas [4.5] and 
[4.6], The similarity of formulas [4.3] and [4.6] 
is in agreement with the assumption that the 
relaxation time 0 and the retardation time 0r 
increase with increasing segment length caused 
by the orientation effect of the mechanical field, 
i.e. 0/0 o ,w, Or/O ° ~ 1/1 o > 1 where 1 and 10 are 
the characteristic segment lengths in the presence 
and absence of a field respectively. 

So far we developed a viewpoint based on 
simplified assumption on the statistically uni- 
form fluctuating network with the characteristic 
scale L 0 and the corresponding relaxation time 
0 o. Under real conditions, however, the flowing 
block polymer can be represented as a set of 
"networks" enclosed in each other with the 
characteristic length Lg and times Ok with mini- 
mum length L0 and time 0o. If we are not 
interested in the processes in the scale of a few 
monomer units, then we can neglect the rapid 
relaxation processes and thus "average" the 
relaxation characteristics. If the inequality 
Lo ~ L1 ~ ... ~ LN(Oo ~ 01 ~ "'" ~ 0N)hold true, 
then the relaxation processes in different scales 
will evidently be uncorrelated, i.e. mutually 
independent (see assumption 9). Besides, if the 
relaxation transition into solid stare takes place 
in the least size network, then it will not have 
any effect on the "network" of larger sizes, and 
thus we can neglect the transitions in higher 
order networks as the time scales in different 
"networks" are not interrelated. 

Everywhere in this paper we employed the 
term "transition into high-elasticity stare", which 
is realized according to the kinetic criteria, 
if T > T« under the effect of strong mechanical 
fields. The residence time of the material in 
this stare, however, under given external condi- 
tions strongly depends on the nature of the 



Leonov. N«mequilihrium thermodynami«s and rheology o[' cis«oelastic polymer media 97 

polymer (flexibility of the chains, their branching, 
specific polymer-solvent interaction, etc.). 

For  rigid chain polymers this residence time 
will be minimum, and as soon as the fluidity is 
lost, the polymer may pass from the high- 
elasticity state into glass-like or crystalline stare 
depending on the chain structure. For  flexible 
chain polymers we may expect that they reside 
in the high-elasticity state for a sufficiently 
long time. In this and other cases, this residence 
time is restricted by the strength considerations. 

Incidently, if the field is removed after the 
kinetic transition of the system into a solid-like 
stare under isothermal conditions, the polymer 
may pass back into its viscous state. Therefore, 
for fixing the oriented state under a strong 
external mechanieal field, the polymer has to be 
either cooled down or it taust develope strong 
(say, chemical) crosslinks. 

These physical concepts are applicable to 
highly concentrated systems with a distinct net 
structure. They cannot predict many of the 
effects characteristic to dilute polymer solutions 
for which the parameters characterizing the 
phase composition may have a significant 
bearing. Besides, the effects already mentioned, 
phase equilibrium and kinetic effects may play 
a decisive role in these systems. They may give 
rise to demixing in the polymer-solvent systems 
under strong mechanical fields. 

Conclusions 

The theory of rheological behaviour of con- 
centrated polymer solutions, proposed in this 
paper, is based on the assumption that the 
irreversible thermodynamical states of these 
systems are close to the high-elasticity stare 
- t h e  state of an elastic medium with giant 
recoverable strains. This assumption is supple- 
mented with the orientation effects for these 
systems in strong mechanical fields where direct 
relaxation transition may take place into high- 
elasticity state at temperatures far exceeding 
the melt point. Many of the "solid-like" effects 
observed in polymer solutions at higher rates 
of deformation can be explained from this 
viewpoint. 

In terms of the irreversible thermodynamics, 
the polymer liquid is an interesting example 
of weakly nonequilibrium system whose no'n- 
linear behaviour is strongly dependent on the 
nonlinearity of the local-equilibrium state; the 

dissipative phenomena may diminish in this 
system under strong external fields. 

A comparison of the theory with the experi- 
mental results will be published in a subsequent 
communication. 

Summary 

Nonlinear constitutive equations for viscoelastic 
polymer media have been derived with the help of 
irreversible thermodynamical methods. These equations 
contain a small number of constants which have 
obvious physical meaning. The work is based on the 
hypothesis that the high-elasticity stare characterized 
by large elastic strains is the local equilibrium thermo- 
dynamical state of these media. A theoretical descrip- 
tion is given to explain the kinetic transition of fluid 
polymer media into high-elasticity stare at temperatures 
above the flow temperature. 

ZusammenJassung 

Mit Hilfe der Methoden der Thermodynamik irre- 
versibler Prozesse werden nichtlineare rheologische 
Stoffgleichungen Für viskoelastische Polymere abge- 
leitet. Diese Gleichungen enthalten nur wenige Kon- 
stanten, die eine klare physikalische Bedeutung haben. 
Die Untersuchung ist auf die Hypothese gegründet, 
daß der hochelastische Zustand, der durch große 
elastische Dehnungen gekennzeichnet ist, der Zustand 
des lokalen thermodynamischen Gleichgewichts dieser 
Stoffe ist. Es wird eine theoretische Erklärung des 
kinetischen Übergangs von flüssigen Polymeren in den 
hochelastischen Zustand bei Temperaturen oberhalb 
der Fließtemperatur gegeben. 
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