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1. Introduction 

Ever since Weissenberg demonstrated the 
presence of normal stresses in steady shear 
flow of elastic liquids (1), great interest has been 
expressed in both the experimental and theo- 
retical aspects of these phenomena. It is well 
known that three independent stress functions, 
which are usually taken to be the shear stress 
v12, and the first and second normal stress 
differences, al and o'2, respectively, are suf- 
ficient to characterize the steady shear flow of 
"simple" incompressible fluids (2). Correlations 
between these three stress functions are obtained 
by more specific constitutive assumptions, which 
can be tested on their usefulness by comparing 
theoretical predictions with experimental evi- 
dence. 

In two recent papers by Bird et al. (3,4), 
a relation between the steady state values of the 
primary normal stress function 0, 

0"1 _ 7211 - -  ~ ' 2 2  

0 = 1; 2 ~;2 , [1 ]  
[ 

and the viscosity function q, 
1512 

- ,; , [ 2 ]  
g 

was proposed, which was based on the Goddard- 
Miller rheological equation of state (5), and 
which was of the general Kramers-Kroniq 
type (6): 

4 ~ r / ( ! ) -  q();')d3;' [3] 
0 ( #  = - 7  o ~"--~ --- 7 " 

This relation was compared with the viscosity 
and primary normal stress data of six polymer 
melts, three polymer solutions, and an alu- 
minium soap solution, which were measured 
338 

by several research groups (7-11) and are 
available in the literature. Agreement between 
predicted and measured values of the primary 
normal stress function was reasonable, provided 
that the right hand side ofeq. [3] was multiplied 
by a purely empirical front factor K. It was 
found that K has to be taken 3 for polymer 
melts and 2 for solutions. 

In this paper, a different relation between the 
primary normal stress function 0 and the 
viscosity function q is presented, 

0(~;)-  1 dt/(~;) , [4] 
n d); 

which results from a BKZ-type (i.e. strain- 
dependent) single integral constitutive equation. 
According to this theory, the primary normal 
stress function 0 can be obtained from viscosity 
data by simple differentiation with respect to 
the shear rate ?;. The material parameter n is 
associated with the strain dependence of the 
memory function. This constitutive equation 
has already been successfully used (12) in 
describing the time-dependent non-linear shear 
stress and first normal stress difference behavior 
of a well characterized low-density polyethylene 
melt at constant strain rate as observed by 
Meissner (13, 14). 

Here, the same set of data as used by Bird 
et al. (3, 4) will be taken, and it will be shown 
that eq. [4] is a valid description of material 
behavior in spite of the vast differences in 
physical constitution and chemical structure 
of the polymer melts and solutions considered. 

2. Constitutive equation 

A widely used class of integral 
(15-18) has the general form 

theories 
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= j [ml(s, I1, I2)Ct 1 + m2(s, I, ,  12) Ct] ds, 
0 

[ 5 ]  

where Ce -1 and Ct are the Finger and Cauchy 
tensor respectively, and the memory functions 
m~ and m2 are assumed to be functions of the 
time difference s and the first and second 
invariant of the Finger tensor. 

As the secondary normal stress difference is 
not considered here, m2 is set equal to zero• 
The further assumption was made (12) that ml 
is expressible as a product of two functions, 

ml(s, 11, 12) = #(s)h(I1, I2), [6] 

where h(Ii,I2), which was called the damping 
function, tends to unity for small deformations, 
and #(s) is identical with the rubberlike-liquid 
memory function, to be determined from linear 
viscoelastic data (19-23). 

For stress growth at inception of steady 
flow, i.e. for the case of zero deformation rate 
for times t < 0 and constant deformation rate 
for times t > 0, eq. [5] leads to 

T = i #(s) h(I 1, I2) Ct l(t - s) ds 
0 

oo 

+ h(I~, I2)C;-1(0) ~ #(s)ds. [7] 
t 

Using integration by parts, eq. [7] can be 
rearranged to 

z = i G(s)h(I1,12) C~- l(t - s) 
0 

It? ln(h(I i , I2) .C;- l( t -  s))lds [8] 
• ~ s  

where the relaxation modulus of linear visco- 
elasticity, G(t), is equal to the time integral of 
the memory function #(t) 

oO 

G(t) = ~ #(s)ds. [9] 
t 

The Finger tensor C;-l(t ') for steady shear flow 
at constant shear rate )', and constant volume 
is given by 

1 + 1; : ( t  - t') 2 

C;- l ( t ' )=l~( t - t  ') 
1,(t - t') 0 
1 0 [10]  

0 1 

The invariants of C;- 1 (t') in terms of the relative 
shear deformation 7(s)= 1;" s are 

I 1 = 12 = 3 + )~2S2 

13 ~- 1 ,  [11] 

where s is defined as (t - t'). 
The following damping function h(I1, I2)= 

h(7 2) has been successfully used in the description 
of stress and normal stress overshoot upon 
sudden start-up of steady flow of a low-density 
polyethylene melt (12): 

h(l '2) = exp [ -  n ~ / 2 ] .  [•2] 

The damping constant n, describing the non- 
linearity of the model, is correlated with the 
shear strains 7, and 7,, which correspond to 
maximum shear stress and maximum first 
normal stress difference respectively, by 

1 1 
. . . . .  [13] 

)'~ t', 

From [8], [10], and [12] the time-dependent 
shear viscosity t/(t;, t) and primary normal stress 
function 0(f, t) are given by 

t/(?,, t) = i G(s )exp[ -n] /~  s2] 
0 

• (1 - n]/f2sE)ds, [14] 

and 

0(f ,  t) = } G(s) exp [- n ~] 
0 

• (2 -./f2j) [IS] 

By differentiation of eq. [14] with respect to 7, 
the following relation can be found, 

o ( f , t )  - 1 a,7(, / , , t) ,  [16 ]  
n c~f 

which contains eq. [4] in the limit of steady 
state values: 

1 @ ( f )  
0(f)  - [17]  

n d7 

If a finite series of exponential functions with 
amplitudes ai and time constants zi is used for 
the relaxation modulus G(t), 

G(t) = ~ aizie -'/~' , [18] 

the values of t/(~), t) and 0(~,, t) can be found by 
closed integration (24). 

The steady state values are given by 

ai,c 2 

[19] 
(1 + n w ? )  2 ' 
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Fig. 1. Viscosity function r/of low-density polyethylene 
melt (data of Chen and Bogue (7)): 
V: 160°C 
I :  180°C 
A : 200 °C. 
Full curves: best fits by Carreau's viscosity equation 
(eq. [21]) 
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Fig. 2. Viscosity function q of three polymer 
melts: 
[] : polystyrene, 180 °C (data of Ballenger et al. 

(8)), 
O: high-density polyethylene, 160°(2 (data of 

Ballenger et al. (8)), 
A: phenoxy-A, 212°C (data of Marsh (9)). 
Full curves: best fits by Carreau's viscosity 
equation (eq. [21]) 
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Fig. 3. Viscosity function q of three polymer solutions 
and a soap solution: 
II: 2% polyisobutylene (data of Huppler et al. (10)), 
C): 5% polystyrene (data of Ashare (11)), 
O: 0.75% polyacrylamide (data of Marsh (9)), 
A: 7% aluminium-soap (data of Huppler et al. (10)). 
Full curves: best fits by Carreau's viscosity equation 
(eq. [21]) 

and 
ai r3 

0(')) 
2+,.x-" (1 + n'ci,'/) 3 

D [20] 

3. Data analysis: Carreau's viscosity equation 

The shear viscosity function q for six po lymer  
melts, three po lymer  solutions and an a lumin ium 
soap solution are shown in figs. 1 to 3. The 
solid lines are best fits of  Car reau ' s  viscosity 
equat ion  (25), 

7 - 7 ~  _ [1 + ( ~ # 2 ] - N ,  [ 2 1 ]  

to the exper imenta l  data  as ob ta ined  by Bird 
et al. (3). The pa rame te r  values of  the fluids 
considered are given in table 1. 70 is the zero 
shear viscosity, 7oo the viscosity of  the solvent, 
and 2 a t ime constant .  Fo r  the case of  7,~ < qo, 
the slope of the viscosity function for high shear 
rates ()~;; >> 1) is equal  to - 2 N  on a log-log 
plot and N is related to the power  law exponent  m 
in 

q = (b7 " - 1  [22] 

by 

N = (1 - m)/2. [23] 

F r o m  eqs. [4] and [21], the p r imary  normal  
stress function 0 is readily obtained,  
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Table 1. Properties of test fluids 

Fluid Ref. 

Polymer melts 

Low-density polyethylene 7 
Low-density polyethylene 7 
Low-density polyethylene 7 
High-density polyethylene 8 
Polystyrene 8 
Phenoxy-A 9 

Solutions 

2% Polyisobutylene in 10 
Primol 355 
5% Polystyrene in 11 
Aroclor 1242 
0.75% Polyacrylamide in 9 
95-5 water-glycerine 
7W Aluminium-soap in 10 
decalin and m-cresol 

P 
°C) 

60 
80 
~00 
6O 
80 
H2 

25 

25 

25 

25 

Carreau's viscosity equation parameters 
qo r/~ 2 N 
(dyn s/cm 2) (dyn s/cm 2) (S) (--)  

2.32.105 0 7.18 0.240 
1.21 . 105 0 5.23 0.217 
6.43.104 0 2.86 0.207 
8.92.104 0 1.58 0.252 
1.48.105 0 1.04 0.301 
1.24.105 0 7.44 0.136 

9.23.103 1.50 191.0 0.321 

1.0l • 103 0.59 0.84 0.310 

1.06.102 0.10 8.04 0.318 

8.96.102 0.10 1.41 0.400 

damping constant 
/I 

(-) 

0.13 
0.13 
0.13 
0.20 
0.20 
0.18 

0.15 

0.18 

0.10 

0.20 

0 _ 2 N  2);[1 + (2f)2] - ( u + ' ) ,  [24] 
2(qo - r/Q) n 

or, in the limit of  the power  law 
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Fig. 4. Normalized primary stress function for low- 
density polyethylene melt (data of Chea and Bogue (7)): 
V: 160°C, 
I :  180°C, 
A: 200 °C. 
Full curves: predicted values by eq. [24] 

0 - 1 - m ~b);"-2. [25] 
n 

In figs. 4 to 6, the normalized pr imary stress 
function 0/2(~/o-r /w) is plotted versus the 
non-dimensional  shear rate 2~,. The solid lines 
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Fig. 5. Normalized primary stress function for three 
polymer melts: 
I-q: polystyrene, 180°C (data of Ballenger et al. (8)), 
O: high-density polyethylene, 160°C (data of Bal- 

lenger et al. (8)), 
A: phenoxy-A, 212°C (data of Marsh (9)). 
Full curves: predicted values by eq. [24] 
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are ob ta ined  from eq. [24], where  the p a r a m e t e r  
of  non- l inear i ty ,  n, has  been ad jus ted  in such 
a way as to give a best  fit to the exper imenta l  
data .  The n-values used are  l isted in tab le  I, 
and  lie between 0.13 and  0.2 for po lymer  melts  
and  0.1 and  0.2 for solut ions.  This  agrees 
favourab ly  with a d a m p i n g  cons tan t  o fn  = 0.143, 
which has been de t e rmined  by  a different me thod  
from stress and  n o r m a l  stress overshoo t  da ta  
of  a low-dens i ty  po lye thy lene  melt  (12). 

As can be seen from figs. 4 to 6, agreement  
between p red ic ted  and  measu red  values of  the 

Fig. 6. Normalized primary stress function for three 
polymer solutions and a soap solution: 
I1: 2% polyisobutylene (data of Huppler et al. (10)), 
O :  5% polystyrene (data of Ashare (11)), 
I :  0.75% polyacrylamide (data of Marsh (9)), 
A: 7% aluminium-soap (data of Huppler et al. (10)). 
Full curves: predicted values by eq. [24] 
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Table 2. Constants r~(s) and a~ (dyn/s cm 2) of relaxation modulus G(t) (eq. [18]) as determined from viscosity 
data of test fluids 

Fluids Ref.  T 

CC) 

Polymer melts 

Low-density polyethylene 7 160 ri ai 

Low-density polyethylene 7 180 r~ 
ai 

Low-density polyethylene 7 200 ri 
ai 

High-density polyethylene 8 160 q ai 
Polystyrene 8 180 ri 

ai 

Phenoxy-A 9 212 zi 
ai 

Solutions 

2% Polyisobutylene 10 25 ri 
in Primol 355 a~ 

5% Polystyrene in 11 25 q 
Aroclor 1242 ai 

0.75% Polyacrylamide in 9 25 "Ci 
95-5 water-glycerine ai 

7% Aluminium-soap in 10 25 q 
Decalin and m-Cresol ai 

102 101 
2.402.100 1.821 "103 

10 ° 10 1 

3.814.104 1.761.106 

102 101 
1.579'10 ° 7.837'103 

100 10-1 
3.430.104 9.327.105 

102 101 
3.162.10 -1 2.680.102 

100 10 -1 
3.137-104 4.523.105 

101 
6.851.102 

10 ° 10 1 10-2 
5.428.104 1.357.106 4.348.107 

101 10 ° 
6.635.102 1.194.105 

10 -1 10 2 
2.075.106 6.289-107 

101 100 10 -1 10-2 
6.070-102 3.503.104 1.931.106 6.027.107 

10-2 
8.097.107 

10-2 
7.731.10 v 

10-2 
6.598.10 v 

10-3 
2.396.109 

10-3 
2.175.10 ~ 

10 -3 
1.413.101° 

101 10 ° 10 -1 10-2 10-3 
1.796.10 ° 7.716.102 8.283 • 101 2.125.105 6.151 • 105 

102 101 100 10- 1 1 0 - 2  

1.037.10-2 6.231 - 10-1 8.593.10 ° 3.999.102 6.372.103 

10 ° 10 - 1  10  - 2  10 -3 10 4 

9.382.102 1.261 . 104 4.910.105 7.071 • 106 4.556. IO s 

lO s 102 101 10 ° 10- 1 
3.636- 10-3 6.145.10-1 3.633.10-1 3.525.102 2.237- lO s 



48 Rheologica Acta, Vol. 16, No. 1 (1977) 

primary normal stress function is encouraging 
for 2~,; > 1,while for23; = 1 / 2 ~  + 1 amaximum 
of the primary normal stress function is predicted. 
This is due to the fact, that Carreau's viscosity 
equation prescribes a point of inflexion of the 
viscosity function at 2~; = 1/I//2N - + 1. To avoid 
any artificial effects in the prediction of the 
primary normal stress function, caused by 
the use of only one relaxation time in the 
description of the viscosity function as in the 
case of Carreau's viscosity equation, the ex- 
ponential series approach will now be applied. 

4. Finite series approach 

A relaxation modulus G(t) (eq. [18]) with 
five exponential terms was used and the steady 
state values of the viscosity function q and the 
primary normal stress function 0 are given by 
eqs. [19] and [20]. 

Five relaxation times q(i = 1 ... 5) with deci- 
mal spacing were chosen (table 2). The ampli- 
tudes ai were determined from the viscosity 
data by taking five discrete values q(i'j) (J = 1... 5) 
of the viscosity function at shear rates ~;j = 1/rj 
and solving a system of five linear equations 
of the type 

A B C 
, ~ ~ n ~ l  ~ ~ ~ " J  t ~10~ 

1021 ~ 10 10 ° 

lo'  "'%" B \ lo' 

1 . \ 

10-2 / 200] °C ~ . . . .  X 010 -3 
10 ~ 100 10 ~ 102 

A;/" 

Fig. 7. Normalized primary stress function for low- 
density polyethylene melt (data of Chen and Bogue (7)): 
V: 160°C, 
I :  180°C, 
A : 200 °C. 

Full curves: predicted values by eq. [20] 

5 aiz{ 
q();~) = ~ , (j = 1 ... 5). [26] 

(1 nTis;j) 2 + i =  = 1  

The damping constant n was taken from table 1. 
The constants q and ai determined by this 
method are given in table 2 for the ten fluids 
considered. 

A . . . . . . . .  ~ , . . . . . . .  ~ B C10 o 
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.t7 

Fig. 8. Normalized primary stress function for three 
polymer melts: 
D: polystyrene, 180°C (data of Ballenger et al. (8)), 
• :  high-density polyethylene, 160 °C (data of Ballenger 

et al. (8)), 
A: phenoxy-A, 212°C (data of Marsh (9)). 
Full curves: predicted values by eq. [20] 

The primary normal stress function was then 
calculated from eq. [20] and is shown in figs. 
7 to 9. For high values of the non-dimensional 
shear rate 2i', predictions of the exponential 
series approach coincide with those of Carreau's 
viscosity equation, as expected. At low shear 
rates, however, agreement between predicted 
values of the primary normal stress function 
and experimental data is markedly improved, 
as in the case of the polystyrene and high- 
density polyethylene melt data (fig. 8). 

5. Concluding remarks 

It has been demonstrated that eq. [4], cor- 
relating viscosity and normal stress difference 
data, is a valid description of material behavior 
over a shear rate range of several orders of 
magnitude for the ten polymer melts and solu- 
tions considered. Despite the fact that these 
fluids are vastly different from one another, 
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Fig. 9. Normalized primary stress function for three 
polymer solutions and a soap solution: 
I :  2% polyisobutylene (data of Huppler et al. (10)), 
O:  5% polystyrene (data of Ashare (11)), 
O: 0.75% polyacrylamide (data of Marsh (9)), 
A: 7% aluminium-soap (data of Huppler et al. (10)). 
Full curves: predicted values by eq. [20] 

a single material  parameter,  the damping  con- 
stant n, is sufficient for this correlation. 

Care has to be taken when fitting the vis- 
cosity function for low shear rates (2~ ~ < 1) by 
an empirical equat ion of  Carreau 's  type (eq. 
[21]); inflexion points of  the viscosity curve 
will give rise to artificial maxima in the predicted 
pr imary normal  stress function. 
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Summary 

Based on a single integral constitutive equation with 
a strain-dependent memory function, a relation between 
the primary normal stress function 0 and the shear 
viscosity function r/ is proposed. According to this 
theory, the primary normal stress function 0 can be 
obtained from viscosity data by simple differentiation 
of the viscosity function r/ with respect to the shear 
rate ~;, and multiplication by a factor ( - l /n) .  The 
material parameter n is thereby associated with the 
strain dependence of the memory function. 

This relation was compared with the viscosity and 
primary normal stress data of six polymer melts, three 
polymer solutions, and an aluminium-soap solution, 
which were measured by several research groups and 
are available in the literature. In spite of the vast 
differences in physical constitution and chemical 
structure of the melts and solutions considered, 
agreement between predicted and measured values 
was encouraging. 

ZusammenJassung 

Ausgehend von einer Zustandsgleichung vom Inte- 
graltyp mit deformationsabhiingiger Ged~ichtnisfunk- 
tion wird eine einfache Beziehung zwischen der ersten 
Normalspannungsfunktion 0 und der Scherviskosit~ts- 
funktion ~/ vorgeschlagen. Nach dieser Theorie kann 
man die erste Normalspannungsfunktion 0 aus Vis- 
kosit~itsdaten erhalten, indem man die Viskosit~its- 
funktion q nach der Schergeschwindigkeit I; ableitet 
und den entstehenden Ausdruck mit einem Faktor 
( - l / n )  multipliziert. Dabei h~ingt die MaterialgreBe n 
mit der Deformationsabh/ingigkeit der Ged~ichtnis- 
funktion zusammen. 

Diese Beziehung wurde mit den Viskosit~its- lind 
Normalspannungsdaten von sechs Polymerschmelzen, 
drei Polymerlesungen und einer Aluminiumseifen- 
16sung verglichen, die yon verschiedenen Forscher- 
gruppen gemessen wurden und die in der Literatur 
verf'tigbar sind. Trotz der groeen Unterschiede im 
physikalischen Zustand und in der chemischen Struktur 
der betrachteten Schmelzen und L6sungen wurde eine 
gute 0bereinstimmung zwischen der Theorie und den 
experimentellen Daten gefunden. 
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