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1. Introduction 

An attractive rheological concept is the 
idea of a flow classification scheine. Ideally, 
such a scheme could be used to give an indication 
of how a given real or model fluid would behave 
in a given flow fiel& Giesekus (1, 2) had in- 
vestigated in 1962 in a thoroughmanner how 
various solid particles of a general dumbbell 
nature behaved in homogeneous flow fields, 
and the current contribution may be regarded 
as an extension of his work. The main difference 
is that here we permit the suspended "test" 
particles to change their configurations as they 
are transported by the fluid, instead of regarding 
them as fixed in their shape. This gives rise to 
a different flow classification scheme, as we 
shall discuss below. The idea offlow classification 
is latent in the book of Lodge (3), who con- 
trasted the response of a simple rubberlike liquid 
in steady elongational and shearing flows. 
Noll (4) has introduced a classification scheine 
applicable to steady, homogeneous, isochoric 
flows, but it is not satisfactory for many purposes 
as we shall mention again below. Based on the 
response of a dilute solution of linear-spring 
dumbbell molecules a more realistic classi- 
fication scheine (5-7) has been proposed for the 
motions with constant stretch history (MWCSH) 
of the steady, homogeneous incompressible 
type mentioned above, and the present paper is 
motivated by similar considerations, although 
the results are ultimately not dependent on any 
special molecular model. Note that none of the 
above-cited or the present material seeks to 
discuss the problem of flow classification when 
23O 

the stress state of a particle varies in time; in 
short, we are not concerned with how to define a 
Deborah number (8). 

Since steady, homogeneous velocity fields 
give rise to motions with constant stretch 
history (4, 9) which include viscometric flows 
(4, 10), elongational flows (11), Maxwell  ortho- 
gonal rheometer flows (12) and others (9), we 
shall discuss the concept of flow classification 
within the theory of motions with constant 
stretch history. 

In out set of motions with constant stretch 
history (MWCSH) ler L be the velocity gradient 
of a steady, homogeneous velocity fiel& Then 
the strain history C ( t -  s), 0 < s < ~ ,  has the 
form (4, 9) 

C~(t - s) = e-~L~e-~r [1] 

where L T is the transpose of L. 
Under the classification originally introduced 

by Noll (4), one has three possibilities to consider. 
Since the space we consider is 3-dimensional, 
one has that either 

(i) L 2 = 0; or 

(ii) L 24 :0 ,  L 3 = 0 ;  or 

(iii) L" :p 0, n = 1, 2, 3 .... 

Note that (i) gives rise to viscometric flows (4,10), 
(ii) to the types considered in (9); the case (iii) 
includes both extensional flows (L is symmetric) 
and the flow in the orthogonal rheometer 
(L is not symmetric). It is this aspect of including 
the last two flows in orte category which is not 
very satisfactory, because in the extensional 
flow, one has an exponentially increasing strain 
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component while in the rheometer flow, one 
has strain components which are sinusoidal. 
In many cases, the fluid behaviour in these two 
fields is very different. We thus feel that a 
criterion ought to be developed to distinguish 
between these two flows, over and beyond the 
statement that in one case the velocity gradient 
is symmetric while in the other it is not. To make 
this more precise, consider the following velocity 
field (in a Cartesian frame). 

-- ~ X 2 ,  /)1 = al x l  

I)2 = 0{2 X2 

/)3 = a3 X3 

al + a2 + 

-k ~X 1 , 

a3 = 0, al -¢ a2, 

ai, i = 1, 2, 3, and (2 are const. [-2] 

It gives rise to a MWCSH, but the velocity 
gradient L does not commute with L r and thus 
this flow is not an extensional flow 1). But it is 
clear that the strain tensor will have exponentially 
increasing components like e ~s ()~ real) along 
with sinusoidal ones. So a second criterion is 
necessary to deal more precisely with MWCSH 
under (iii) above. This concept, to be introduced 
here, is based on the idea, hinted at above and 
originally proposed from consideration of mo- 
lecular models (5, 6), that a flow is stron9 if the 
strain history contains a component which 
grows sufficiently fast exponentially in time. 
(Note: increasing time corresponds to de- 
creasing s.) Such flows may then give rise to 
unbounded stresses. On the other hand the 
flow is weak if it does not contain any exponen- 
tially growing strain terms. Note that in weak 
flows the strain thus admits polynomial de- 
pendence on s. In this note we would like to 
recast this definition in terms of the eigenvalues 
of the velocity gradient L and we shall use the 
Jordan form of L to arrive at our conclusions. 
Giesekus (1,2~ also based his classification 
scheme on the eigenvalues of L, and gave names 
to the various flow categories depending on the 
shape of the particle trajectories. There were 
several categories, and our present classification 
is much simpler, containing only two flow 
categories (strong and weak), which we believe 
to be adequate for many purposes. 

Previously (5-7) we have taken into account 
the time constant 0 of our molecular material 

1) IfL commutes with Lr, then e -~L~ e -sL = e -s~t'+L~ 
and we get elongational flow. See (13) for other cases. 

when dividing the flow fields into "strong" and 
"weak" cases, and found criteria of the fol- 
lowing form for determining strong fields 

f ( L )  > 1 /0 .  [33 

The present treatment is equivalent to letting 0 
approach very large values; which, in turn, is 
equivalent to assuming that hydrodynamic 
forces completely dominate spring forces in the 
dumbbell models (5-7). The treatment can be 
altered to include the time constant terms, but 
in that case one might perhaps object that our 
criteria are not purely kinematic, as we wish 
them to be here. Therefore no time constant 
terms will be considered now. 

2. Analysis  

Suppose, given a flow field, it is determined 
that L falls under the case (iii) above, that is 
L" ~ 0, n = 1, 2, 3 . . . . .  Then the eigenvalues of L 
cannot all be zero. If all the eigenvalues of L are 
zero, then the Jordan form of the matrix of L 
will have the form 

i 010] [i Z] [ q =  o o o or [ L ] =  o [4] 
0 0 0 0 

and these obey L 2 = 0 or L 2 ~= 0, L 3 = 0 re- 
spectively. Thus MWCSH of types (i) and (ii) 
above are weak by our definition. 

Hence we see that if L" 4= 0, n = 1, 2, 3 .... , 
then the eigenvalues 2~, i = 1, 2, 3 of L are not 
all zero. We now have three nqore cases, under 
the condition of incompressibility of the material, 
i.e., div v = 0, and that L is real. Thus, 

(a) the eigenvalues are real and unequal, i.e., 

(b) the eigenvalues are unequal, but two occur 
in conjugate pairs, i.e., 

21 = 0{ + if i ,  22 = c~ - ifi,  23 = -2c~  ; 

(c) the eigenvalues are real, but two are equal, i.e., 

21 = )re = 0{, 23 = -20{. 

(The case of all equal real eigenvalues leads to 
2~ --0,  i = 1, 2, 3, and so cannot be included 
here; it was treated above.) Corresponding to 
the above three cases, one can find three non- 
singular transformations M~, i = 1,2, 3 such that 
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the matrix of L is put into the respcctive Jordan 
forms: 

[ 22 0 0 ] 

(a) [ M 1 L M 7  13 = 0 22 0 = [A1].  
0 0 Ä3 

(b) [M2 L M 2  2] = [i ~« 00 1 
0 - 2 ~  

= [ A d  + [ w ]  

where [A 2] is diagonal and [ W] is skew; 

(C) [M3LM32]  = 
0 - 2 ~  

= lA3] + [J] 

whcre [A3] is diagonal and [3] contains the 
oft-diagonal component. The Jordan form for 
case (a) is discussed in Hildebrand (14) while 
for cases (b) and (c), the Jordan forms are given 
in Martin and Mizel (¤5). For (a), (b) and (c), 
e -SL has the following forms: 

(a) e- st = Ms e -Sa* M ;  1 ; [8] 

(b) e -sL = M2e-Sa2Q(s)M~ 1 ; [9] 

(c) e -st  = M3 e-sa3 ( l -  s,])M3 -1 [10] 

In deriving the above forms, we have used the 
following well-known results: 

(i) eUAU-~= M e a M  -1 

for every non-singular M. 

(ii) Since A2 commutes with W,i.e.,A2 W= WA2, 

exp (A2 + W) = exp (Az) exp (W). 

Now exp( - sW) ,  where W is skew-symmetric 
is orthogonal. This expression has been put as 
Q(s) in [9] and Q(s) is orthogonal. 

(iii) Similarly, A3 commutes with J and ~ = 0, 
and hence 

e-SL = M3e-Sa3 e-S.I M-~ 1 

= M3e-SA3(1 -- s , i )M31 [11] 

Note that e-Sai, i =  i ,2 ,3  are all diagonal 
matrices with exponential terms such as 
e x p ( -  s20, exp(2«s), etc. 

In [8]-[10], Mù i =  1,2,3, are constant 
tensors, and since L and L T have the same 
eigenvalues, and since the strain history [1] 
is a product of e -S°" and e -SL, it is clear that 

[5] the strain history will have an exponentially 
growing component if one of the eigenvalues 
is positive, or has a positive real part. Thus a 
strong flow is characterized by at least one 
positive eigenvalue of L, while in a weak flow, 
no positive eigenvalues can occur. It is therefore 
immediate that the flow is weak if the eigenvalues 

[6] of L are all zero or two are imaginary conjugates 
(then the third is automatically zero for it is 
real). Hence a weak flow falls under case (b) 
above with « = 0 ,  f l ~ 0  or 2 i = 0 ,  i = 1 , 2 , 3 .  
We shall now substantiate the claim in (6)that  
the flow in the MaxwelI orthogona! rheo~eter 
is weak. The velocity field in this flow has the 
form 

[7] vl = - O x 2  + f2~Px3, 

U 2 ~ ~ '~X1 , 

v3 = 0. [12] 

The velocity gradient L has the matrix form 

[i ° ô~l IL] = 0 [13] 
0 0 A 

and its eigenvalues are {iß, - i ß ,  0}. 
Thus this flow is weak. 

3. Conclusions 

We have seen that for the case when the 
'restoring force" or time-constant terms are 
omitted we reduce the problem to determining 
whether or not the velocity gradient matrix L 
has any eigenvalues with a positive real part; 
if it does, then we have, ignoring the restoring 
forces in the material, a strong flow. The ref- 
erence of Giesekus (1) should be consulted by 
the interested reader; it may easily be seen by 
comparison that only the "pure elliptic" and 
ùpure parabolic" flows in his classification are 
"weak" flows - the rest are "strong". Thus, 
working from reference (1) or the present 
work, if we are given any particular flow field, 
we can now determine whether or not the flow 
behaves basically like a shear flow (weak flow) 
or an elongational flow (strong flow). Since this 
criterion depends only on standard computa- 
tions, we feel that it will be useful in estimating 
how a real fluid may behave in a given flow field. 
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Summary 

There are some flows in which certain strain com- 
ponents grow exponentially in time, while there are 
other flows in which the components depend otherwise 
on the time. In this paper the former type are called 
strong flows and the ,latter weak. An examination of the 
Jordan form of the matrix of the velocity gradient of 
a steady, homogeneous, isochoric flow is made, along 
with the eigenvalues of such a matrix, to discover when 
such a flow is strong or weak. It is shown that if the 
eigenvalues are all zero or if one is zero and the other 
two purely imaginary, then the flow is weak, with the 
remaining cases leading to strong flows. 

Zusammenfassun 9 

Es gibt Strömungen, in denen gewisse Deformations- 
komponenten exponentielt mit der Zeit anwachsen, 
und es gibt solche, in denen die Zeitabhängigkeit der 
Deformationskomponenten eine andere mathematische 
Form aufweist. In dieser Abhandlung sind die ersteren 
als starke Strömungen und die letztgenannten als 
schwache Strömungen bezeichnet. Eine Untersuchung 
der Jordanschen Form der Matrix des Geschwindig- 
keitsgradienten einer stationären, homogenen Strö- 
mung, zusammen mit den Eigenwerten einer solchen 
Matrix, erlaubt zu bestimmen, ob die Strömung stark 
oder schwach ist. Es wird gezeigt, daß die Strömung 
schwach ist, wenn entweder alle Eigenwerte verschwin- 
den oder aber wenn ein Eigenwert verschwindet und 
die beiden anderen rein imaginär sind. Alle übrig- 
bleibenden Fälle entsprechen starken Strömungen. 
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