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1. Introduction 
Of recent years the problem of inter- 

stratification in clay minerals has assumed 
considerable importance. Many of these 
minerals are composed of well-marked layer 
structures, and the layers belong to a limited 
range of types, all of which can be regarded 
as built up from only two fundamental 
structural units- the octahedral layer, re- 
sembling that of brucite and gibbsite, and 
the tetrahedral layer, which does not occur 
separately in any natural mineral, but is 
related to the cristobalite structure. It is 
impossible here to describe these structural 
types in detail; suitable specialised works 
may be consulted (1, 2, 3). 

The layers may occur in nature with 
various degrees of interlamellar hydra t ion- -  
i. e. with water layers between t h e m -  and 
also with various degrees of what I have 
called (3 a) "chloritization" - -  i.e., brueitic, 
or perhaps gibbsitie type hydroxide layers 
between the silicate layers. Some artificially 
activated (acid-treated) clay minerals also 
probably have silica in interlamellar po- 
sitions (4). 

I t  has become increasingly clear that  
natural minerals may contain various struc- 
tural units of this type mixed up in a random 
(but sometimes also in a regular) m a n n e r -  
as if a pack of cards were formed of two or 
three types shuffled together. I t  is important 
to have suitable methods for interpreting the 
diffraction effects given by such interstratified 
mixtures. Since the people who are inter- 
ested in them are often geologists, soil scien- 
tists, and others with no speeialised know- 
ledge of X- ray  crystallography, these me- 
thods should be easy to apply. There is a 
fundamental  difficulty resulting from the 
fact tha t  the interpretation of the X- ray  
diagrams is a s t r u c t u r a 1 problem, whereas, 
from the investigator's point of view it is a 
matter of i d e n t i f i c a t i o n - -  and there is a 
great difference in the time factor allowable 
for these two approaches. 

Important  fundamental calculations for 
such structures were published by H e n -  
d r i e k s  and T e l l e r  in 1942 (5). They were 
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probably used very little at that time, being 
beyond the grasp of noncrystallographers. 
The present author, with G. B r o w n  (6) has 
calculated from t t e n d r i c k s  and T e l l e r ' s  
formulae a series of curves illustrating the 
diffraction to be expected from various 
mixtures likely to occur in practice. These 
calculations have been to some extent check- 
ed experimentally (7) and the curves have 
undoubtedly been found useful in many 
investigations. 

However, it is impossible with such a set 
of curves to provide for all the variations 
likely to occur in actual minerals. In fact 
they were only calculated for two-component 
systems of large crystallite size, although in 
practice applicable to a rather wider range 
of types. 

For this reason, a direct method based on 
F o u r i e r  transforms has been applied to 
several problems of this nature by the 
present author (8, 9). Experience has shown 
it to have considerable scope, such as to 
warrant giving a fuller description than it 
has received. This is the aim of the present 
paper. 

2. Nature of the problem 
We are concerned here solely with the 

problem of identification defined above. In 
its general form, this consists of finding the 
manner of distribution of interlayer spacings 
in the material under consideration (which 
may be, and frequently is, a mixture of 
minerals, often however genetically related). 

The meaning of the term "mixture"  is not 
immediately clear in this connexion, and it 
has to be defined. I t  means a "mechanical" 
mixture, i .e.  one in which crystallites of 
different nature are present. Each of the 
crystallite types may be itself an inter- 
stratification of two or more types of layer, 
i. e. a "mixed-layer" crystalhte; so that  a 
given mineral may be a "mechanical" mix- 
ture of "mixed-layer" crystallites. This is a 
very complex case. More often, one sort of 
mixed-layer crystalhte is present, the other 
components being readily-recognizable pure 
minerals. 



Band 149 ] MaeEwan, Fourier Transform Methods for Studying Scattering from Lamellar Systems I 97 Heft 2-3 (1956)J 

To make these ideas more precise, let us take an 
example. A quite commonly occurring case is to have 
a mixture of a mica (spacing between layers about 
i0 A), a vermiculite (spacing between layers variable, 
but  about 14 ~_ in fully hydrated state), and an inter- 
stratification of the two. Since the basic layer structure 
of  vermiculite is micaceous, there may well be a genetic 
relationship between the components. Also, the inter- 
stratified crystals may be regarded as being composed 
of  similar layers separated by interlayer distances, 
sometimes of 10, sometimes of 14 A. No other inter- 
layer distances will occur. 

In general it may always be assumed that  
only a limited (and quite small) number of 
different interlayer distances can occur in 
such minerMs, and that  the layers in any 
erystalHte are strictly parallel, and usually 
similar in nature. The problem is to find the 
law of distribution of the interlayer di- 
stances. 

Other examples of possible mixed-layer crystal are: 
Partially hydrated hMloysite (10) 

(spacings 7"2 and 10A). 
Mica and montmorillonoid i) 

(spacings 10 and 12-18 A). 
Partially hydrated labile chlorite (12) 

(spacings 14 and 18 A). 
Various organic complexes with montmorillonite (13, 14) 
(various spacings between 10 and 22 A or even more). 

Apart from clay m i n e r a l s -  the most 
important  application at p resen t - -  problems 
of an essentially similar type occur in inter- 
preting the diffraction diagrams from other 
lamellar systems, for instance graphitie acid 
(15, 16), s-zinc hydroxide (17), etc. 

The markedly Iamellar nature of all these 
minerals makes it easy to obtain parallel 
orientation to the cleavage flakes (it must 
be remembered that  they are much too small 
to handle individually). There are various 
ways of doing this, such as allowing a 

s u s p e n s i o n  to settle on glass (18), applying 
pressure (19), centrifuging (20), etc. By suit- 
able mounting of the specimen (21) it is then 
usually easy to obtain the basM, or (001) ~) 
series of reflections almost clear of disturb- 
ing reflections of other types. At any rate, 
this can usually be done well enough to 
determine the positions and intensities of the 
main peaks, and to get an idea of their shape, 
though techniques are seldom delicate enough 
(even if time were available) for a full 
analysis of the total distribution of scatter- 

i) This term was introduced provisionally by the 
present author (11) to mean any mineral of the mont- 
morillonite group. The term "montmorin" (introduced 
by C o r r e n s )  has also been used widely in this sense; 
and recently, at the International Crystallographic 
Congress in Paris, 1954, the British Clay Minerals 
Group has proposed the term "smectite".  

2) In  the case of mixed-layer minerals, unique 
t-indices cannot be assigned, but  i t  may still be useful 
to make use of such indices (see ref. 6). 

ing from the basal planes. Our problem then 
is to obtain the maximum amount of in- 
formation from the data readily available. 
I t  is essentially one of identification, rather 
than of structure analysis, so some method 
which is rapid, and not too difficult to apply, 
is needed. 

I t  should be reahsed that  the layers are 
usually quite large in extent (say some 
hundreds to some thousands of • in dia- 
meter), so that  they are represented by  
n a r r o w  rods in reciprocal space. Problems 
of integration throughout the volume of a 
broad reciprocal rod, such as occur in dealing 
with amorphous carbons, for instance, are 
not considered here [some similar problems 
have however been treated by  M a t i n g  and 
B r i n d l e y  (22)]. 

Generally speaking, the existence of ran- 
dom interstratification in such material is 
betrayed by  the presence of a non-rational 
series of basal reflection. Such reflections, as 
has been pointed out by  M6r ing  (23) are not  
necessarily more diffuse than those given by  
regularly crystMlised material, since reflec- 
tions from clay minerals are generally broad- 
ened in any ease due to small particle size 
of the material, and various irregularities in 
erystallisation, or a different type  from those 
discussed here. 

The problem with which we are faced is 
to find the inter-layer spacings which exist 
in the mixture, the proportions in which they 
are present, and the manner of their dis- 
tribution (i. e. whether completely randomly 
distributed; or completely segregated; or 
something between the two). I t  is convenient 
for this purpose to consider one layer and 
its associated interlamellar molecules (on 
one arbitrarily chosen side) as constituting 
a complex layer, and the whole mixture as 
being made up of a number of such layers, 
n different varieties being present. We define 
the probability of occurrence of a layer of 
type r as pr; and the probability that  type  s 
succeeds type  r (again moving in an arbitrary 
but  defined direction) as p~s. 
Clearly then 

~rp~ = i [la] 

~sPrs  = 1, for all r. [lb] 

We shall show later that  we also have the 
relation 

Z r p r p r s  = Ps, for all s. [le] 

A knowledge of the values of the pr and 
Prs then completely defines the system. 

As an example, we may take the two-component 
system with equal amounts of the two components, so 
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t h a t  Pl = P2 = 1/2. Then,  for  t h e  comple te ly  r a n d o m  
c a s e  

P** = PI= = P=2 = 1/2. 

Fo r  t h e  case of  comple te  segregat ion  (separa te  regu la r  
crystal l i tes)  

/ ) I , = P ~ 2 ~  1, P r o =  0. 

There  is ~Iso t h e  poss ibi l i ty  of  a r egu la r  succession of  
layers  of  ~he two  types  1212..., fo rming  a s ingle  t y p e  
of regular  crystal .  For  th i s  case 

P n = P m = 0 ,  P l ~ =  1. 
All i n t e rmed i a t e  eases are  of  course possible.  

I t  will be  no t iced  t h a t  th i s  t y p e  of def in i t ion of  ~he 
p 's  does no t  al low for a n y  inf luence of  a l ayer  on  o the r  
t h a n  ne ighbour ing  layers.  Thus  t h e  sort  of  s t ruc tu re  
r ep resen ted  b y  i12112112..-  canno t  be  r ep re sen t ed  a t  
all, w i th  an y  va lue  of t h e  p 's .  

3. Derivation of Fourier transform 

The F o u r i e r  t ransform method  is closely 
analogous to the well-known technique for 
determining the radial  dis tr ibut ion in a 
liquid. Certain modifications are however 
necessary, since we are here dealing with a 
linear, and not  a radial, distribution. We 
star t  wi th  the  formula,  which is developed 
on p. 464 of J a m e s  (24). 

iA l~ = C {Ao + ,~,vZa/v/q, jKs. ,~q} [2] 

Here p, q are atoms and /v , / a  the correspond- 
ing atomic scattering factors;  r w  is an inter- 
atomic vector, S the uni t  vector defining the  
scattering conditions; K is 2 ~r/X. 

Now let us consider a layer structure,  
having layers wi th  the  layer form factor F~ 
say, so tha t  

Y~ = Y-"io/p elk rv" 8 [3] 

where X' indicates a sum over all the atoms 
belonging to the layer. The sum above can 
thus  be split into w i t h i n - l a y e r  sums (which 
depend only on the  na ture  of the  layer) and 
between-layer sums. In  the  lat ter  we can 
subst i tu te  

rpq = r'pq -~- R=q -~- ~ne [4] 

where r'vq is the w i t h i n - l a y e r  distance 
corresponding to rvq; R is the perpendicular 
distance between the layers z and ~; and 
~-o is the lateral shift of one layer over the 
other. We thus  get 

IA I ~ = c {Ao + Z~ZoF~Fo* jKS'(R=o+ r [5] 

where each of the sums includes the  case 

The layers are assumed identical, so this 
becomes simply 

lAp C __Ao4-X~q]F[~ eigS'(Ru.o+r [6] 

(IF[ ~ is of course a function of angle). 
We can simplify the expression by  taking 

R,o -=- L" R~q [7] 

where L is a un i ta ry  vector defining the 
orientat ion of the layer aggregate and R~o is 
a scalar distance. 

We now introduce the  probabil i ty funct ion 
(o (R) such tha t  the probabil i ty  of one layer  
in any  range dl,~ and one layer in dl~ with  
separation R=~ is (R=~) d l~dlo/ T ~, T being the  
tota l  thickness of the  aggregate. 

Thus 

1A]~ --A0 
C 

T~ . [8] 

The first (zero-order) te rm dies out  rapidly  
wi th  angle, and  m a y  be neglected. The 
second term, if  in tegrated once, gives un i ty ,  
as in the case of liquid diffraction (Ref. 24, 
p. 469), on the  assumption tha t  there is an 
equal probabil i ty of finding any  layer at  a n y  
point in a particle. We are thus  left with 

l A p  N 2 I F [  ~ /" , ~ ,  -- T J a ) ( ~  ) ei"(Rc~176 [9] 

Here # = 4 z (sin 0)/s : a is the  angle between 
the E w a l d  vector and the normal  to the 
layers: ~o is the (scalar) shift of the ~ layer 
wi th  respect to the z layer, in the  plane of  
the layer:  fi is the angle between the  direction 
of this shift and the  E w a l d  vector. 

The imaginary  par t  of the  above integral  
must  caned  out, since the in tens i ty  I is real. 
Also we m a y  suppose t ha t  o~ -+ 1 as R -~ cc 
i. e. t ha t  the crystallites have a finite size, so 
t ha t  beyond a certain value of R there are 
no  interlayer distances. Thus 

03 

C - -  (9 (R) cos (/~ R cos a ~-tt ~ cos fl) d/~. [ 10 l 

o 

Since we are considerung the case of "spec- 
ular"  reflection from an oriented aggregate, 
cos c~ = 1 and  cos fl = 0, so t ha t  

oo 

1~ 2 f ]FI2 -- "7- o~(R)costtt~dR. [II] 
o 

Here a is the  mean thickness of a layer  
= TIN.  The difference between N and 
N - -  1 is neglected. ~ is the mean in tens i ty  
of scattering by  a single layer  (for the  
particular value of # considered), divided by  
the geometrical factor  C. 

I f  the expression on the lef t-hand side of  
[11] is represented for brevi ty  by  i(#),  t hen  
on transforming the  integral we get 

co 

a / i ( g ) c o s # R d ~  [12] 09 ( / ~ )  
9~ J 

0 
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which gives the probability function directly 
from the observations. 

I t  will be noted, ~hat in contrast to the 
formula for radial distribution in a liquid 
(Ref. 24, p. 497), this is a cosine transform, 
and not a sine transform. This is because 
the one-dimensional distribution does not 
involve any spatial integration. Also, this 
function involves the measured intensities 
directly, and not their "complements" 
(L/IFI ~ -  1). Finally, if plotted as a func- 
tion of R, this formula gives a maximum at 
the origin, and not a zero value. Tiffs is 
because formula [8] includes the case ~---- ~; 
the maximum merely expressed the fact tha t  
every layer is at zero distance from itself. 
Our function is thus rather analogous to a 
~P a t  t e r s o n series in one dimension. 

the contribution of this peak to the F o u r i e r  
integral is 

, 4 jysl ~ cos~sR [14] 

where f s  is the value of F at the peak. This 
is assumed to be approximately constant 
over the whole area of the peak. Thus ~he 
formula for the transform becomes 

a Is 
(R) = 27s ~ l y s p  c o s # s R .  [15] 

The analogy to a P a t t e r s o n  series is very 
clear from this form of the transform. I t  is 
in fact a P a t t e r s o n  series with non-rational 
coordinates (the /~s), i. e. with no definite 
unit cell. We may if we like regard i~ as being 
the P a t t e r s o n  series corresponding to a 
v e r y  l a r g e  unit cell (larger than any inter- 
layer-vectors we expect to find). This series, 

(1) (la) 

(2) ~ (2a) 

Fig. 1. (1) Ideal  case of  sharp  isolated refleMons, giving the  t r ans form eo (R) = 27sis cos 2 ~#sR. 
This curve is shown in [1 a] - -  (2) Broadened  reflexions of  error curve type ,  and of  uni form wid th  

1 
- - _ _  a~ RZ 

( s t a n d a r d  deviat ion) ,  giving t h e  t rans form w (7?) = e 2 Xsis cos 2~ #sR. 
This curve is shown in [2 a]. 

If, as often happens, we have a diagram 
consisting of a series of fairly sharp lines, 
but not forming ~ "rational" sequence, the 
entire variation of the function Iz/IF~l 2 may 
not be really observable; we thus cannot 
calculate the complete F o u r i e r  transform, 
even if the labor involved were acceptable. 
We can however measure accurately the 
positions of the diffraction maxima, and with 
fair accuracy their relative intensities. We can 
now express the equation [12] in such a way 
that  it makes use of this information directly. 
Let  us define the "intensity" of a line by the 
expression 

~s+ ~ 
Is = f f d#  [13] 

the integration being performed over a small 
region which includes the whole peak. Then 

in general, n e v e r  r e p e a t s :  however, errors 
accumulate as we go to large vMues of R, 
and it becomes progressively less reliable. 

4. The case of  broad peaks 

The approximation used here, of replacing 
each peak (which may be quite a diffuse one) 
with a single term, may seem to be excessive- 
ly drastic. 

Let us suppose therefore that  each peak, 
instead of being represented by a single line 
[fig. 1(1)], is represented by a distribution 
of intensity having the form of a Gaussian 
curve [fig. 1 (2)]. I f  /zs is the coordinate 
(reciprocal spacing) at the center of such a 
peak, the distribution is 

1 1 (~_~s) ~ 
2 ~2 a ] / ~  e =/s  (/z) [16] 

7* 
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and the F o u r i e r  transform of this peak is 
given by 

+co 

/ s ( # ) e o s p R d #  = e --ffa~/~ eos#sR.  [17] 

- - O O  

In  our ease therefore, if the peaks all have 
the same widths (same ~), we get 

a) (R) = e s X s A s e o s l ~ s R  [18] 

where A8 is proportional to the height of the 
s th  peak. 

Essentially, this gives a transform of the 
same generM shape as tha t  given by a series 
of "line peaks" but dying out with distance 
from the origin, as given by the factor 

2 e [fig. 1 (2a)]. 
I f  each #s has a different as (i. e. if the 

peaks have different widths), we get 
1 

o~ (R) = X s A s  e cos # s R  [19] 

and the attenuation factor is different for 
each term of the summation. I t  is not 
difficult to make this calculation (the F o u r i e r 
components, instead of being added "as 
received", are first at tenuated by various 
factors depending on R), but the extra com- 
plication is probably seldom worth while. 

For a rather broad peak, for example, the "half  
width" might be 2/100 in reciprocal units, and 
~" = .  1/100, so that  the eoefi3eient of attenuation would 
be 0.95 at R = 30 A. This means that, even for quite 
broad peaks, the effect of peak width is likely to be 
unimportant. 

This treatment does not take account of 
"skewness" of the peaks, or of the variation 
of structure factor w i t h i n  the region of a 
peak (which is, in fact, one of the factors 
giving rise to skewness). In  certain eases, 
these factors may be important. I t  explains 
however why quite surprisingly good results 
may be obtained, even with rather diffuse 
peaks. 

5. Interpretation of the transform 

The F o u r i e r  transform consists of a curve 
with peaks at distinct vahies of R, these peaks 
corresponding to prominent inter-layer di- 
stances. In  theory these peaks are extremely 
sharp, for in the type of complexes we are 
considering, the inter-layer distances are de- 
finite. In  practice however the peaks are 
found to have a certain width, so that  if two 
inter-layer distances occur close together (say 
28 and 30 A), there may be some difficulty in 
separating them. The reason for this is that  

only a certain number of the diffraction ma- 
xima are available to us, i .e .  those corre- 
sponding to # </~m, where /~n is the maxi- 
mum conveniently observable value of reci- 
procal spacing. 

Fig. 1 may represent this ease, if we ima- 
gine the transform and the intensity function 
interchanged. We now suppose the intensity 
values to have a progressive diminution 
superposed on them [represented by the 
dotted line in fig. 1 (2a)]. The result is tha t  
the F o u r i e r  transform, which should have 
absolutely sharp peaks as in fig. 1 (1), in fact 
has peaks of a certain width as in fig. 1 (2). 
The intensity is more likely to have a sharp 
"cut-off" rather than a superposed gradual 
fall. The result of this will be, as is well 
known, that  a strong peak will be bordered 
by parasitic "diffraction" peaks, at a distance 
of about 2/#m. These parasitic peaks are usual- 
ly particularly noticeable near the big peak 
at R = 0, where they usually cause no trou- 
ble, and are easily recognised. They may be 
eliminated, or greatly reduced, by s u p e r -  
i m p o s i n g  a gradual fall of intensity (which 
ideally should have the form of a Gaussian 
curve) on the observed series of intensities. 
This may be a useful means of Checking on 
the reality of a given peak on the F o u r i e r  
transform diagram; an example is given 
below. 

Assuming that  the "cut-off" point #,~ cor- 
responds to an attenuation of about l/e, it  
can be shown that  the "half-width" of the 
resulting peaks on the F our i  er transform is 
about 2/#~ A. If, for instance, we are able to 
observe diffraction effects down to about 
2A (#m =-0.5), the peaks have a "half- 
width" of about 4 A, so tha t  it would be 
difficult to separate peaks at 28 and 30 A on 
the F o u r i e r  transform, if "modified" intensi- 
ty  data (with a gradual fall superimposed) were 
used. Using unmodified data, peaks as close 
together as this could generally be resolved, 
at the expense of getting some spurious 
effects; by calculating b o t h  series, and com- 
paring them (not a very arduous task) these 
spurious effects could be picked out without 
difficulty. 

Since the F o u r i e r  transform represents 
(o (R), the area of each peak may be taken to 
represent the relative probability of the 
occurrence of that  spacing. Since further the 
width of the peaks is constant, heights may 
be used instead of areas, except insofar as 
partially superposed peaks may occur. Whe- 
ther heights or areas are used however, a 
difficulty occurs in tha t  we do not know the 
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correct base line for the peaks. This happens 
because the zero-order term has been omitted 
from the summation. I t  corresponds to a 
constant which has to be added to all the 
terms in the summation. 

Nearly always, the correct zero-level can 
be drawn in with sufficient accuracy by in- 
spection of the curve, especially the region 
near R = 0. There are usually no genuine 
peaks in this region, except for the very 
large peak at the origin. Associated with it, 
it is usually possible to see two diffraction 
peaks. The base line is drawn in so as to cut 
off approximately equal areas from these 
diffraction peaks, above and below (see fig. 6 
for an example of this). 

I t  is also possible to calculate the position 
of the base line, in the following way. We 
h a v e  

(t~) ~ Zsis eos~sB, 

where is = (a17~) ([sflFsl2). 
Hence 

T T 

i Zsis f eos/~s/~d/~. [20J 

0 0 
The integral on the right hand side is 

practically zero except when #s = 0, when it 
equals T. Hence 

T 

i0 = T ~ (R)dR. [21] 
0 

But the density of peaks in the w (R) curve 
will be about the same for any region 
A R >~ a and < T. Thus we can say that  

1 f o)(R)dR. [22] i0 " = .  R 2 - - R ~  
R~ 

This gives the following rule for finding i o. 
Draw an approximate base-line on the curve 
of ~o (R), and sum the total area of the peaks 
in any fairly large range A R. This can be 
done approximately by measuring their 
heights, and their widths at the base, and 
treating them as equilateral triangles ; or, if a 
planimeter is used, the total area above the 
base-line can be measured accurately, neg- 
lecting obvious false "diffraction" peaks 
(this is better than reckoning the "algebraic" 
area, reckoning regions below the provisional 
baseline as negative). 

The relations [la--c],  given in section 2 
place severe limitations on the choice of the 
probability coefficients, p~s. I f  there are n 
components in the mixture, the number of 
such coefficients is n 2, and the number of 
equations is n of type [1 b] and n of type [1 c], 
i. e. 2n in all. However, these only provide 

2 n -  1 independent conditions, since from 
each set of equations we may derive an 
identical equation, making use of [1 a]. Thus, 
multiplying [1 b] by pr and summing we get: 

Z r Z s p r p r s  -=- Zrpr  = 1, by [la];  

and from [lc]: 

Z , . • p r p r s  = & p s  = 1, by [la]. 

Thus the number of independent conditions 
is 2 n - -  l, so tha t  the number of degrees of 
freedom in the p~s is n 2 -  2 n -~ 1. 

In the case, for instance, of a two-compo- 
nent mixture, we have six coefficients pA, 
PB, P~A, p_4B, PB.~, pBS. But only two of these 
are independent. First of all, from [la], 
PB = 1 -  p•. Then, the application of [lb] 
and [1 c] leaves us with 4 - -  4 § 1 = 1 degree 
of freedom for the other four constants. 

The most convenient procedure, perhaps, 
is to seek constants satisfying I1 b] (this can 
be done very readily), and also in general 
accord with the peak heights. Conditions [1 c] 
can then be used as a check on the reason- 
ableness of the set of coefficients, which if 
necessary can be suitable adjusted. I f  they 
cannot be so adjusted, then the interpretation 
must be wrong. 

Peak areas (or heights) are proportional to 
the probability of finding the corresponding 
interlayer spacing in the mixture, or, what is 
the same thing, to the number of times it 
occurs. Thus, if h represents peak height, we 
have, for the "pr imary" or "fundamental"  
peaks, i. e.' those representing spacings bet- 
ween contiguous layers, hr = p r  (omitting a 
proportionality factor), and for the "second- 
ary" or " c o m b i n a t i o n "  peaks (which re- 
present spacings between layers separated by 
other layers). 

hrr ~ ~0r~rr [23] 
hrs = prPrs -~ PsPsr [24] 

(since h~s is of course really hrs + hsr). 

hr n hr n ~ Pr prr n -  1. [25] 

Other coefficients are more difficult to 
calculate, but the general principles can be 
seen from the following examples: 

hABC= PA (PAB PBC "~- PAC PCB) 
"~- lab (PBA PAC -~ i~ PeA) 
-t- qag (PeA PAB -t- PCB PBA)" 

hAAB = PA (PAA PAB -~ PAB PBA) @ PB (PJIA PAA)" 
Condition [25] means that,  in a random 

mixture, with no influence of a layer on non- 
neighboring layers, the peaks A ,  A A ,  A A A ,  
�9 . . are in the ratio 1 : pnA : pAA 2 : �9 �9 �9 This is 
not the case if ordering with non-nearest- 
neighbor interaction is permitted. Forinstan- 
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ce, i n  t he  s t r u c t u r e  A A A B A A A B A A A B  . . . .  

we h a v e  pA = 0.75, PAA = 0.67, ~OAA A = 0.33, 
pet, = pet . . . . . .  0, SO t h a t :  

hAA/hA = 0.89 

hAAA/hAA = 0.5 

hA,/]~AA A = 0 

S o m e t i m e s  i t  is u se fu l  to  r e m o v e  s t rong  
peaks  wh ich  m a s k  t h e  pos i t i ons  of  o thers .  
Such  peaks  m a y  also - for t h e  r easons  a l r e a d y  
s t a t e d -  be  s u r r o u n d e d b y " d i f f r a c t i o n "  effects, 
wh i ch  confuse  t h e  d i a g r a m .  The i r  r e m o v a l  
m a y  be effected as follows. 

A B AA AB IAAA) BB AAB(AAAA) 

| ,  . I t I ~ t 

o 2o 3'o ,o X so 

Fig. 2. Transform from calculated intensities for 10 : 17.7 N mixture (mica- 
montmorillonoid) in ratio 0.3 : 0.7. Above, unsmoothed; below, smoothed 

L e t  us  suppose  t h a t  t h e  peaks  we w a n t  to  
r e m o v e  are  a t  Rx, R~ , . . . ,  a n d  t h a t  t he i r  a reas  
are  A~, A2 . . . .  W e  ca l cu l a t e  t he  " i n t e n s i t y "  
co r r e spond ing  to  those  peaks  a lone,  b y  m e a n s  
of t h e  F o u r i e r  t r a n s f o r m  

ip = 2 s  cos /~Rm . . .  [24] 

Th i s  i n t e n s i t y  f u n c t i o n  wil l  h a v e  a series of 
p e a k  va lues ,  t h e  a s soc ia t ed  t o t a l  ( in t eg ra ted )  
i n t e n s i t i e s  be ing ,  say,  iv1, i w  . . . .  W e  t h e n  in-  
t r o d u c e  these  i n t e n s i t i e s  w i t h  n e g a t i v e  s ign 
i n t o  t h e  c a l c u l a t i o n  of  t h e  F o u r i e r t r a n s f o r m ,  
t h e  o the r  t e r m s  be ing ,  of  course,  t h e  exper i -  
m e n t a l  i ' s .  I n  t h i s  way ,  we r e m o v e  t h e  u n -  
w a n t e d  peaks, and the associated "diffrac- 
tion" effects. 

6. Some practical examples 
As a first  e x a m p l e  of t he  p r ac t i c a l  app l ica -  

t i o n  of th i s  m e t h o d ,  we wil l  t a k e  a n  a r t i -  
f icial ly c o n s t r u c t e d  case, s ince  i t  is s imple ,  
a n d  i l lu s t r a t e s  wel l  t he  f ea tu res  of t he  m e t h o d .  

Brown and the author (6) have published calculated 
scattering curves [according to the formula of Hen-  
dr icks and Tel le r  (5)] for various completely random 

mixtures. From these curves we may derive peak 
heights and intensities, and calculate F o u r i e r  trans- 
forms. Fig. 2 shows two transforms (above, unsmoothed 
and below, smoothed) for a 10 A: 17.7 A mixture 
(corresponding to mica, and glyeerol-montmorillonoid) 
in proportion 3 : 7. Table 1 gives the spacings and in- 
tensities used. The zero line has been determined by 
the method given in the preceding section. I t  is clear 
that it could, in fact, have been drawn in at sight with 
very fair accuracy. 

Looking at the transforms, we see at once that 
certain peaks (those at c. 4, 14, 32 2r) are spurious and 
may be rejected. The peak at around 4 ]~ is a constant 
feature of this type of diagram, being due to diffraction 
by the very large peak at the origin. Often there is a 
second false peak at about twice the distance, a trace of 
which is indeed seen in fig. 2. 

We now have to try and explain 
ABB the genuine peaks by assuming a 

small number of fundamental spa- 
tings. There is no difficulty in this, 

f :  07 in the present case, and the inter- 
pretations are indicated in fig. 2 
(where A A B ,  for instance, means 
a peak resulting from spacing A 
twice plus spacing B once, in any 
order). The values of Pet and p/~ 
are derived at once from the rela- 
tive heights of peaks A and B: they 
can be converted to proportions, 
assuming of course that no other 
material unaccounted-for by these 
peaks is present in the sample. From 
the "higher-order" peaks we can 
derive the Prs. For instance (where 
h represents peak height) 

hA B = K (PA PAB @ PB PBA)' 
where K is a known proportionality 
factor. 

Table  1 
Spacings and intensities of diffraction maxima for 

10 : 17.7 A random mixture in proportion 3:7 
[from Brown  and MaeEwan ,  (6)] 

Peak no. d' (/~. U.) I (pk. hr.) I/I yz[" 

1 17.7 215 80 
2 9.195 10 72 
3 5.567 15.4 23 
4 4.425 2.9 17 
5 3.490 10.6 14 

Tab le  2 
Measured and calculated heights of peaks on F o u r i e r 
transform from Br ow n  and MacEwan ' s  data for 
diffraction by 70/30 (miea)-(glyeerol-montmorillonite) 

interstratification 

Peak Calc. rel. hr. Obs. rel. hr. 

A 0.32 0.25 
B 0.68 0.75 
A A  0.10 0.16 (est.) 
A B  0.43 0.33 
B B  0.46 < 0.60 
A A A  0.O3 0 
A A B  0.21 0.18 (est.) 
A B B  0.45 0.29 
B B B  0.01 0 

Relative heights are measured from lower (smoothed) 
curve in fig. 2, using the proportions 68/32, as directly 
determined from the F o u r i e r  transforms. 
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We can obtain a series of equations of this  nature,  
and  have to find the  best  values of the  prs  to satisfy 
them,  which we can do by  tr ial  and error (there is 
probably  li t t le point  in using sophisticated mathe-  
matical  techniques for this  purpose, since very  accurate 
agreement  cannot  be achieved). We natura l ly  assume 
a completely random mixture  to s tar t  with (for which 
(PAB d- P B B  = PB,  P.BA = P A A  = PA)"  In  the  present 

o 
PEAK POSN. (A)9.4 17.7 

A B 
I I 

CALC. HT 0.48 0..52 

proport ion 32:683),  a conclusion which is of course 
essentially correct. 

G. B r o w n  and  R. G r e e n e - K e l l y  (7) have given 
actual  diffraction data  from "par t ia l ly  collapsed" 
montmoril lonite,  which they  show to be in good accord 
with predictions of the  t t e n d r i c k s - T e l l e r  theory.  
Their  da ta  may also be in terpreted by  the  present 
direct method. Fig. 3 shows the  F o u r i e r  t ransform 

27.4 BB 36.4 45. I 
A l l  ABB ABB 

I 0 .17~11 I 
0.67 0.43 0.44 

I 

',,' v 

, t t i 

; 10 1; 20 ~s 30 3'5 40 is X 

Fig. 3. Transform from observed intensities for a "par t ia l ly  collapsed" glycerol-montmorillonite. 

I . . . .  I , , , , I  . . . .  I . . . .  
~ 0  .I 5 ~ .05 O0 

Sin 0 
, (  

Fig. 4. Diffractometer curves for an  oriented aggregate 
of clay. Above, before; below, after  rapid beat ing to 

450 ~ From B r a d ]  ey  (25). 

case, this a t  once gives an adequate agreement with 
measured values as shown in table  2. 

We conclude t h a t  the  scattering curve corresponds 
to a random mixture  of 10.3 and 17.5 A spacings in 

for the  case p = 0.48 (p = proportion of higher 
spacing = our p~). 

Measurement of the  first-order peaks gives PB = 0.52. 
Bet te r  agreement  is found with the  heights of the  "com- 
binat ion peaks"  if  i t  is assumed tha t  the  sequence is 
not  completely random, but  t ha t  there is a tendency 
to an  al ternat ing structure A B A B . . . .  The heights 
wri t ten  above the  peaks are calculated with PAt~ = P B A  

= 0.67; P A A  ~ P]3~ = 0.33 (for complete randomness, 

P A B  = P B P  = P Z ;  P ~ A  = P A A  = PA)" This tendency 
to a l ternat ion may well be a genuine effect; bu t  in 
general B r o w n  and G r e e n e - K e l l y ' s  in terpre ta t ion 
is well confirmed. 

We now consider a much more complicated prac- 
t ical ease, due to B r a d l e y  (25). Fig. 4, t aken  from 
Bradley 's  paper, shows X- ray  diffractometer records 
of a well-oriented aggregate of a clay before (above) 
and af ter  (below) rapid heat ing to 450 ~ C. Fig. 5 shows 
the  F o u r i e r t ransforms derived from these curves. 

The analysis of these transforms is complex and 
interestizlg, and  may  be carried out  in considerable 
d e t a i l  The first step is to ~ d  out  the  correct zero line, 
which was done by  the  method already described. I t  
is then  possible to bring the  two curves to a com- 
parable scale by  adjust ing the  zero peak to have the  
same height :  the  peak heights on the  two curves may 
then  be compared directly (this process assumes t h a t  
in the  two eases, the  basal series of reflections represents 
the  same quant i ty  of diffracting material,  i. e. t h a t  
there has been no conversion of material into the  
amorphous,  or non-lamellar form). 

The peak a t  about  3.5 A on bo th  transforms is a 
"diffract ion" peak, and  is neglected. The other peaks 
on the  "before hea t ing"  curve may then  readily be 
in terpreted as kaolin (A), mica (B), vermiculite and/or  
chlorite plus "second order"  kaolinite (C ~ A A), mont-  
morillonoid (D) (the material  was t rea ted  with ethylene 

3) A mean value from measurements  of several peaks. 
F rom the  A and  ~ peaks alone, we obtain:  40 : 60 from 
the  unsmoothed curve, 24 : 76 from the  smoothed curve. 



104 MacEwan, Fourier Transform Methods for Studying Scattering from Lamellar Systems I [ K_olloid- 
Zeitschrift 

glycol, which gives a montmorillonoid spacing around 
17 A). 

On rapid heating we expect the montmorillonoid 
spacing to pass to around 10 A: a vermiculite spacing 
would shift to the same value. In  fact, as shown in 
table 3, which gives a rgsum6 of the measurements of 
these transforms, the C peak hardly changes; the D 
peak disappears and the B peak increases by approxima- 
tely the height of the D peak. Clearly therefore the 

6.5 

A 
! 

C peak is due to chlorite, not vermiculite, and the 1) 
peak to montmorillonoid. This interpretation is both 
qualitatively and quantitatively in accord with B r a d -  
l e y ' s  conclusions. 

The values of the Prs shown in table 3 have been 
selected so as to give the best general agreement with 
peak heights. They show that  the kaolin and mica are 
separate phases (PAA = 1, ~gBB = 1), but  the chlorite 
and montmorillonoid are interstratified, not, however, 

FOURIER TRANSFORMS FROM BRADLEY'S SPECTROMETER CURVES 

14.3 20 22.8 23 30 34 361 ~'.3 
CC 

AA BBB BBC 

C BB AAA BC A A A A  A A A A A  BBBB 

I I I I I I I | 

AFTER HEATING 

gEFO~ 

! I 
A B 

7.3 10.1 

o 10 

C O B8 AAA \ ] AAAA DD AAAAA BBBB 
AA ~ / BBB 

14.3 16,6 19.7 23.4 ~ /  CC CD 33.3 37.5 39.1 
29,5 

, I , I , l 
20 30 ~ 40 

Fig. 5. Fourier transforms from curves of fig. 4 (note that  the order is reversed). The numbers attached to 
the curves give peak-height readings in •. 

T a b l e  3 
Analysis of B r a d l e y ' s  spectrometer curves (Anal. Chem. 25, 729 (1953), fig. 9, left hand curves). 

(1) Mineral before heating (2) Mineral after heating 
Peak Obs. hr. Calc. hr. Peak Obs. hr. Calc. ht. 

A (7) 0.16 (0.16) A (7) 0.14 (0.14) 
B (10) 0.28 (0.28) B (10) 0.50 (0 50) 
C + A A  (14) (C) 0.24 (0.24) C -t- A A  (14) (C) 0.36 (0.36) 
D (17) 0.32 (0.32) B B  0.42 0.42 
B B  0.34 0.28 A A A  0.26 0.14 
A A A  0.20 0.16 BC 0.24 0.15 
B B B  + CC + A A A A  0.49 0.49 B B B  + CC + A A A A  0.55 0.65 
CD 0.37 0.16 B B C  0.11 0.16 
D D  0.23 0.38 A A A A A  0.31 0.14 
A A A A A  0.25 0.16 B B B B  + B C C  0 53 0.46 
B B B B  0.32 0.28 

p~ = 0.16 p ~ ' =  0.14 [0.16] 
p~ = 0.28 p ~ ' =  0.50 [0,60] 
PC ~ 0.24 Pc'  = 0.36 [0.24] 
Pfl = 0.32 

PAA = 1 PPB ~ 1 P A A ' ~  1 P B B ' ~  0.84 [0.87] 
PrO = 0.65 PDD = 0.75 pr162 ~ 0.76 [0.65] 
PeP ~ 0.35 PDr = 0.25 PBC' = 0.16 [0.13] P~B' = 0.24 [0.35] 

Figures in square brackets are calculated from the data in section (1). See text. 



Band 14.g q MacEwan, Fourier Transform Methods for Studying Scattering from Lamellar Systems I 105 Heft 2-3 (1956)J 

completely randomly*). There is a marked tendency 
to segregation of the individual types of layers (PeC 
> PC and PDD > PD)" 

I t  should be noted that,  on heating, the montmoril- 
lonite-ehlorite interstratifieation becomes effectively 
a mica-chlorite interstratifieation. Assuming that  this 
happens, i t  is possible to calculate the expected values 
of P'BC and •bB, where the primes indicate the "after- 
heating" values. They are dose to the values deter- 
mined directly from the F o u r i e r  transform of the 
material after heating. This comparison is shown in 
table 3, the values in square brackets being the cal- 
culated ones. This agreement provides very satisfactory 
confirmation of our suppositions regarding the nature 
of the changes occurring as a result of the heat treat- 
merit. 

The conclusions drawn from the above t reatment  
are, of course, in close agreement with B r a d l e y ' s ,  
which were reached without the aid of F o u r i e r  trans- 
forms; but the F o u r i e r transform method leads directly 
to the result, and gives a certain amount of extra detail. 

The values of PA, PB, etc. may be considered to 
represent actual proportions of different types of 
layers. I t  would be unwise, however, to at tr ibute to 
them any absolute importance. They w o u l d  represent 
true proportions if the different types of layer had 
identical structure factors (the structure factor for a 
mica ~ype layer has been used throughout, in calculat- 
ing the transforms). This is far from being the case. 
However, the quantities retain a relative value so long 
as the structure factors for each type of layer remain 
the same, i. e. an increase in ~r does really represent a 
corresponding increase in the true proportion of the 
r type of layer. Where this condition is not fulfilled, 
discrepancies must be expected. The fact, for instance, 
that  p~ is less than PB 4-PD is probably due to a 
change in the structure factor of the B (chlorite) type 
of layer, occurring as a result of the heat treatment.  

Fig. 6 (top curve) is a F o u r i e r  transform derived 
from a glycerol treated montmorillonite which has been 
partly dried. (The X-ray photographs were made by 
O. Brown. )  We notice immediately the prominent 
peak C at i7.7 ~ ,  corresponding to glycerol-recur- 

4) The term "completely randomly" merely indicates 
the absence of any tendency either to segregation (like 
layers succeeding each other), or to alternation (unlike 
layers succeeding each other).  

A B C 

v V~ya A a~ J 

i i I 0 . I i I ,  

0 ~ 20 30 

morillonite. There are also two rather ill-developed 
peaks near 10 and 13 A. I t  would clearly be an advant- 
age here to get rid of the strong C and CC peaks and 
their associated diffraction. We therefore apply the 
procedure described in the last paragraph of section 
5. The resulting curve is the lower one of fig. 6. I t  
enables us to deduce the accurate spacings of peaks A 
and B (9.5 and 12.3 A) and shows up clearly the "com- 
bination" peaks BB, AC, BC. This curve must be 
interpreted with caution, since it includes two peaks 
(at 7 and 21 A), which have no ready interpretation 
and are almost certainly false. Moreover the curve 
descends steeply below zero for spacings greater than 
30 z~, a clear indication that  i t  is not fully accurate. 

:From the two curves we can readil z deduce that :  
( 1 ) GI yc erol-montmorillonite ( C ) is the chief spacing, 

amounting to about 70%. I t  is partially mixed, both 
because combination peaks occur, and because the 
CC peak is lower than C (the peak heigths are in the 
ratio PeC, as has been demonstrated). 

(2) The A spacing ("collapsed montmorillonite") 
occurs in admixture with C, and not to any appreciable 
extent alone (absence of peak AA). 

(3) The B spacing occurs partially segregated, and 
partially in admixture with C (presence of BB and B C). 

I t  should be noted that  the removal of peaks C, 
CC, etc. does not remove the peaks of type A C, BC, etc. 

The few examples discussed above have been chosen 
to illustrate the practical application of this method. 
The author has experimented widely with it, and is 
convinced that  i t  can be a valuable aid in the inter- 
pretation of all manner of interstratifiea~ion phenomena. 
The method has many of the advantages of that  of 
P a t t e r s o n  in structure analysis: that  it is direct, and 
that  it shows at a glance the totali ty of the information 
available from the diffraction data. In  comparison with 
a P a t t e r s o n  diagram, however, the interpretation of 
a one-dimensional F o u r i e  r transform usually involves 
fewer hypotheses. 

The chief disadvantage is that, in theory, the layers 
must all have the same structure factor. I t  has been 
shown, however, in the present paper, that  in practice 
useful information can be derived even if there are 
great differences in structure factor. 

B r a d l e y  has shown, in several publications (26, 27) 
that  one may go a long way in the interpretation of the 
X ray diagrams by a more or less intuitive appreciation, 
based on a familiarity with the nature of the diffraction 

AAC 
BB AC BC CC BBB 

v 

o 

A 

Fig. 6. Above, F o u r i e r  transform from glycerol-treated montmorillonite, part ly drie& 
Below, the same, after removal of peaks at 17.7 •, and multiples (C, CG). 
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process. The author  has applied the  F o u r i e r  t ransform 
method to many of the  cases analysed by  B r a d l e y ,  and 
has always found it  to give results in substantial  agree- 
men t  with his. There are differences in detail, for 
instance in the  exact proportions of the  componen t s ;  
and the  F o u r i e r method often gives extra information 
which appears plausible. Both  the  F o u r i e r  method and  
the  " in tu i t ive"  method can work well, bu t  the  first 
ment ioned is decidediy more direct and immediate in 
its application. 

7. Methods of calculation 

The calculation of a t ransform of this na ture  is 
conveniently done as follows. We construct first a 
prel iminary table  (table 4). Columns 1 and 2 are the  
measured quantities-intensities and spacings of lines 

T a b l e  4 
Preliminary calculations for F o u r i e r transform. Kinnekulle clay, type 

For making these calculations, i t  is invaluable to 
have a table  giving cosines to two figures at  degree 
lines in table  4. Thus we simply have to multiply 
the  values of column 8 successively by  1, 2, 3 . . .  (cor- 
responding to values of R in A:  we could of course 
take  larger or smaller intervals as desired, bu t  usually 
it is convenient  to calculate a t  1 A intervals), fred the  
cosines of these quantities,  mult iply each by  its At, 
and sum for each value of R. Table 5 shows some of 
this  work. Corresponding to each va lue  of r we have 
two columns, one for (d~.*R), and one for Ar cos (d~*R) 
(which can be calculated from d;*R in one operation, 
using a slide rule). The la t ter  quant i ty  is rounded off 
to the  nearest  whole number.  The final column gives 
the  sum of these quantities,  and is the  ordinate of 
the  t ransform for the  corresponding value of R. 

1 ( spacings and intensities from B y s t r 6 m (28) 

(1) (2) (3) (4) (5) (6) (7) (8) 

/est. d" I ~, IF l i~ 1000 1 2 x 360 _,,  
(num.) -- ~ [Flf~ ]/(6~ ~ = d  

(At) 

1st te rm vs 18.0 32 22.5 4800 0.29 1(4)* 20.00 
2rid term s 9.0 16 11.6 12 117 20 40.00 
3rd term o 5.71 1 7.1 530 0.26 1 63 05 
4 th  term 8 4.44 16 5.5 70 41 13 81.08 
5th  term vs 3.42 32 4.2 360 21 9 105.26 
6th  term s 2.93 16 3.4 600 8 6 122.87 
7th  term w 2.55 1 2.9 220 1.5 2 141.18 
8 th  term s 1.92 16 2.2 600 12 7 187.5 

* The value 4 was used instead of 1, as i t  was considered t h a t  the intensi ty  was probably underest imated 
for this  term. 

Note t ha t  the  values of I Fl ]2 used here do not  correspond exactly with any of the  graphs of fig. 8. 

[these part icular  values are for a K i n n e k u ] l e  clay, 
from A. M. B y s t r 6 m  (28)]. I n  column 3, the  estimated 
intensities have been converted to a numerical scale 
( they may  of course be so measured in the  first place). 

Column 4 gives the  angular intensi ty factor ( L o r e n t z ,  
polarisation and geometrical), column 5 the  layer 
s t ructure  factor, and column 6 the  intensities corrected 
by  means of these factors. They are fur ther  multiplied 
by  a suitable arbi t rary  number  to give convenient  
values for manipulat ion.  Column 7 is the  square root 
of  column 6, again with a suitable factor, and  rounded 
off to  give convenient  whole numbers.  These numbers  
are the  amplitudes of the  F o u r i e r  terms;  we will call 
t h e m  A~, A~, etc. Finally, column 8 gives 360/d', i.e. 
i t  is a reciprocal spacing. We will call i t  d'*. I f  d" and R 
are in~_ngstr6ms, then  the  F o u r i e r  t ransform is simply 
ZrAr cos (dr where (d;*R) is expressed in degrees. 

There are as many  terms in the  summat ion as there are 
intervals,  and for angles up to several thousand degrees. 
This can easily be prepared before-hand. 

Figure 7 shows a simple device which speeds up the  
process by  eliminating the  calculation of clr*R. The 
angle d~* is set off first by  means of the  marker  M, 
the  multiples of this  angle are obtained successively 
by  rota t ing the  disc D so as to bring the  point  B to A. 

t ,  
The value of Ar cos (dr /~) is then  read off directly 
a t  the  point  where the  circle C cuts the  scale S (the 
circle C' is in a contrast ing color and  gives negative 
values). There is a separate scale for each value of At. 
I have  found t h a t  twenty  such scales, to cover values 
from 1 to 20, give adequate  accuracy. 

Wi th  this  device the  intermediate  columns are 
eliminated. A calculation of the  type  shown, up to 
R = 40, can easily be done using it  in an hour  or so. 

T a b l e  5 
Pa r t  of final table for calculation of F o u r i e r  t ransform from data  in columns (7) and (8) of table  4 

1st te rm 2nd term 3rd term 4th  term 5th term 6th term 7 th  te rm 8th te rm Z' 
R a Y ~ Y c~ Y c~ Y a Y cr Y a Y a Y 

0 4 20 1 13 9 6 2 7 62 
1 20 4 40 16 63 0 81 2 105 2 123 3 141 2 188 7 8 
2 40 3 80 3 126 T 162 12 210 8 246 3 282 0 375 7 11 
3 60 2 120 1-0 189 1 243 6 316 6 369 6 424 1 563 6 20 
4 80 1 160 1-9 255 0 324 10 421 5 491 4 565 2 750 6 3 

a =  (d~*R) in degrees Y = A r  cos(d~*R) 
Z=XrAreos(d~*J~) 
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Fig. 7. Apparatus for calculating F o u r i e r  ~ransform~. M-marker for setting off angle, rotating around slot S1. 
/?-disc, graduated in degrees, and rotated around axis Ax. 

S- transparent  scale, graduated in umts. 20 of these are available, reading from a maximum of 1, up to a 
maximum of 20. The graduations are: 0 to t/~ (reading 0); 1/2 to 11/2 (reading l) ; 11/2 to 21/~ (reading 2); and so on. 

Bo-box of scales. Three scales are seen lying in front of the apparatus. 
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Fig. 8. Square of structure factor for basal reflexions from montmorillonite (and similar) layers. 
(1) Exper[mentaI, from B r a d t e y  (29). 
(2) Calculated, with altowanee for interlamellar material. (See text.) 
(3) Calculated as above, without allowance for int~erlamellar material. 
(4 / As (3), averaged conl~inuously over 4 units of p. 
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8. The layer structure factor 
The calculation of this quan t i ty  necessarily 

involves certain assumptions. We must  sup- 
pose t ha t  the type  of layer is known, at  least 
to a first approximation.  The s tructure factor 
can then  be calculated as a continuous 
function of O, or of # = 100/d'. If, for in- 
stance, the  s tructure is centrosymmetr ical  
(in the linear projection), and if i t  has Nr 
atoms with  coordinate Zr and atomic scatter- 
ing factor /r(#), then  the layer s t ructure 
factor is given by 

Fz (~) = ZrNr/r cos 2~ (~z/100). 
The more general form of the formula can 
easily be worked out. The quan t i ty  we are 
interested in is IFzl 2, and this can be repre- 
sented by  means of a graph. 

For the mineral montmorillonite, B r a d l e y  (29) has 
already given a useful graph of this quantity, based 
on experimentally measured intensities for mont- 
morillonite-organie complexes. This curve is reproduced 
in fig. 8 curve (1). This figure also shows for comparison 
three calculated curves for montmorillonite. The curves 
are very similar, and they will do, to a sufficient order 
of approximation, for all other layers of the same 
general type, micas, pyrophyllite, talc, etc. For chlorites, 
they are less accurate, and for kaolin type minerals 
quite inaccurate. Use of the wrong curve (as we have 
seen) will not affect the determined interlayer distances 
very much, but  will affect the estimated quantities. 

Curve (2) is cMculated for layers with interlamellar 
material, of the type of water molecules, organic mole- 
cules, etc. This has been done (the correction is only 
a rough one) by superposing the average electron 
density of a close-packed layer of water molecules on 
the entire layer, and using, instead of the true electron 
content of the atoms, the "electron contrast", i. e. the 
true electron content minus the content of "background 
electrons" in the volume of the atoms. 

Curve (3) is calculated using the true electron con- 
tents of the atoms. Curve (4) is curve (3), averaged 
continuously over 4 units of #, so that it never reaches 
zero. One sometimes finds lines of appreciable intensity 
where there ought to be a zero of Fl. This may, of 
course, indicate that  F1 is wrongly calculated. How- 
ever, it seems probable that, because of the angular 
spread of the X-ray beam, and the width of the 
reflections, there are no zeros of the effective curve 
of Fl 2. The procedure of averaging over a small region 
may therefore give rather more reMistic values of this 
quantity. 

Summary 
The study of interstratified clay minerals and similar 

systems by X-rays requires some means of rapidly 
estimating the interlayer spacings present, their pro- 
portions and the manner of their sequence. For this 
purpose, a simplified one-dimensionM F o u r i e r  trans- 
form is here suggested. For its calculation, only the 
positions ("effective spacings") and intensities of the 
basal diffraction peaks need to be known, and these 
can readily be obtained from orientation powder dia- 
grams or spectrometer recordings. The method of 
calculation is here fully described, and illustrated by 
practical examples. 

Zusammen/assung 
Zum Studinm von TonminerMien und ~hnliehen 

Substanzen mit  Schichtstruktur mittels 1%Sntgen- 
strahlen ist es notwendig, eine Methode anzuwenden, 
die uns die vorkommenden Zwischenschichtabst~nde, 
deren tt~ufigkeit nnd Folge einfach und bequem zu 
sch~tzen erlaubt. Zu diesem Zweck wird hier eine ver- 
einfaehte Form der eindimensionalen F o u r i e r t r a n s -  
formierten vorgeschlagen. Zur Berechnung dieser Funk- 
tion braucht man nur  die Lagen (,,effektiven Abst~nde") 
und Intensit~ten der Basis-Interferenzen zu kennen, nnd 
diese sind leicht aus orientierten,Pulver-Diagrammen 
oder den Spektrometerregistrierungen zu erhalten. Die 
Methodik der Rechnungen wird ausffihr]ich beschrieben 
und mit Beispie]en aus der Praxis erl~utert. 
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