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1. Introduction

Of recent years the problem of inter-
stratification in clay minerals has assumed
considerable importance. Many of these
minerals are composed of well-marked layer
structures, and the layers belong to a limited
range of types, all of which can be regarded
as built up from only two fundamental
structural units — the octahedral layer, re-
sembling that of brucite and gibbsite, and
the tetrahedral layer, which does not occur
separately in any natural mineral, but is
related to the cristobalite structure. It is
impossible here to describe these structural
types in detail; suitable specialised works
may be consulted (1, 2, 3).

The layers may occur in nature with
various degrees of interlamellar hydration —
i, e. with water layers between them — and
also with various degrees of what I have
called (3a) “chloritization”” — 1. e., brucitic,
or perhaps gibbsitic type hydroxide layers
between the silicate layers. Some artificially
activated (acid-treated) clay minerals also
probably have silica in interlamellar po-
sitions (4).

It has become increasingly clear that
natural minerals may contain various struec-
tural units of this type mixed up in a random
(but sometimes also in a regular) manner —
as if a pack of cards were formed of two or
three types shuffled together. It is important
to have suitable methods for interpreting the
diffraction effects given by such interstratified
mixtures. Since the people who are inter-
ested in them are often geologists, soil scien-
tists, and others with no specialised know-
ledge of X-ray crystallography, these me-
thods should be easy to apply. There is a
fundamental difficulty resulting from the
fact that the interpretation of the X-ray
diagrams is a structural problem, whereas,
from the investigator’s point of view it is a
matter of identification — and there is a
great difference in the time factor allowable
for these two approaches.

Important fundamental calculations for
such structures were published by Hen-
dricks and Teller in 1942 (5). They were
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probably used very little at that time, being
beyond the grasp of noncrystallographers.
The present author, with G. Brown (6) has
calculated from Hendricks and Teller’s
formulae a series of curves illustrating the
diffraction to be expected from various
mixtures likely to occur in practice. These
calculations have been to some extent check-
ed experimentally (7) and the curves have
undoubtedly been found useful in many
investigations.

However, it is impossible with such a set
of curves to provide for all the variations
likely to occur in actual minerals. In fact
they were only calculated for two-component
systems of large crystallite size, although in
practice applicable to a rather wider range
of types.

For this reason, a direct method based on
Fourier transforms has been applied to
several problems of this nature by the
present author (8, 9). Experience has shown
it to have considerable scope, such as to
warrant giving a fuller deseription than it
has received. This is the aim of the present

paper.
2. Nature of the problem

We are concerned here solely with the
problem of identification defined above. In
its general form, this consists of finding the
manner of distribution of interlayer spacings
in the material under consideration (which
may be, and frequently is, a mixture of
minerals, often however genetically related).

The meaning of the term “mixture’ is not
immediately clear in this connexion, and it
has to be defined. 1t means a “mechanical”’
mixture, i.e.one in which ecrystallites of
different nature are present. Each of the
crystallite types may be itself an inter-
stratification of two or more types of layer,
i.e. a “mixed-layer” crystallite; so that a
given mineral may be a “mechanical’” mix-
ture of “mixed-layer” crystallites. This is a
very complex case. More often, one sort of
mixed-layer crystallite is present, the other
components being readily-recognizable pure
minerals.
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To make these ideas more precise, let us take an
example. A quite commonly occurring case is to have
a mixture of a mica (spacing between layers about
10 A), a vermiculite (spacing between layers variable,
but about 14 A in fully hydrated state), and an inter-
stratification of the two. Since the basic layer structure
of vermiculite is micaceous, there may well be a genetic
relationship between the components. Also, the inter-
stratified crystals may be regarded as being composed
of similar layers separated by interlayer distances,
sometimes of 10, sometimes of 14 A. No other inter-
layer distances will occur.

In general it may always be assumed that
only a limited (and quite small) number of
different interlayer distances can occur in
such minerals, and that the layers in any
crystallite are strictly parallel, and usually
similar in nature. The problem is to find the
law of distribution of the interlayer di-
stances.

Other examples of possible mixed-layer crystal are:

Partially hydrated halloysite (10)
(spacings 72 and 10 A).
Mica and montmorillonoid?)
(spacings 10 and 12-18 A).
Partially hydrated labile chlorite (12)
{spacings 14 and 18 A),
Various organic complexes with montmorillonite (13, 14)
(various spacings between 10 and 22 A or even more).

Apart from clay minerals — the most
important application at present— problems
of an essentially similar type occur in inter-
preting the diffraction diagrams from other
lamellar systems, for instance graphitic acid
(15, 16), x-zinc hydroxide (17), ete.

The markedly lamellar nature of all these
minerals makes it easy to obtain parallel
orientation to the cleavage flakes (it must
be remembered that they are much too small
to handle individually). There are various
ways of doing this, such as allowing a
- suspension to settle on glass (18), applying
pressure (19), centrifuging (20), etc. By suit-
able mounting of the specimen (21) it is then
usually easy to obtain the basal, or (001)?)
series of reflections almost clear of disturb-
ing reflections of other types. At any rate,
this can usuvally be done well enough to
determine the positions and intensities of the
main peaks, and to get an idea of their shape,
though techniques are seldom delicate enough
{even if time were available) for a full
analysis of the total distribution of scatter-

1) This term was introduced provisionally by the
present author (11) to mean any mineral of the mont-
morillonite group. The term “montmorin” (introduced
by Correns) has also been used widely in this sense;
and recently, at the International Crystallographic
Congress in Paris, 1954, the British Clay Minerals
Group has proposed the term ‘“‘smectite’.

%) In the case of mixed-layer minerals, unique
1-indices cannot be assigned, but it may still be useful
to make use of such indices {see ref. 6).

ing from the basal planes. Our problem then
is to obtain the maximum amount of in-
formation from the data readily available.
It is essentially one of identification, rather
than of structure analysis, so some method
which is rapid, and not too difficult to apply,
is needed.

It should be realised that the layers are
usually quite large in extent (say some
hundreds to some thousands of A in dia-
meter), so that they are represented by
narrow rods in reciprocal space. Problems
of integration throughout the volume of a
broad reciprocal rod, such as occur in dealing
with amorphous carbons, for instance, are
not considered here [some similar problems
have however been treated by Méring and
Brindley (22)].

Generally speaking, the existence of ran-
dom interstratification in such material is
betrayed by the presence of a non-rational
series of basal reflection. Such reflections, as
has been pointed out by Méring (23) are not
necessarily more diffuse than those given by
regularly crystallised material, since reflec-
tions from clay minerals are generally broad-
ened in any case due to small particle size
of the material, and various irregularities in
crystallisation, or a different type from those
discussed here.

The problem with which we are faced is
to find the inter-layer spaecings which exist
in the mixture, the proportions in which they
are present, and the manner of their dis-
tribution (i. e. whether completely randomly
distributed; or completely segregated; or
something between the two). It is convenient
for this purpose to consider one layer and
its associated interlamellar molecules (on
one arbitrarily chosen side) as constituting
a complex layer, and the whole mixture as
being made up of a number of such layers,
n different varieties being present. We define
the probability of occurrence of a layer of
type r as pr; and the probability that type s
succeeds type » (again moving in an arbitrary
but defined direction) as pys.
Clearly then

Zppr =1 [1a]
Zsprs = 1, [1b]

We shall show later that we also have the
relation

for all 7.

Zrprors = ps, for all s. [1lc]

A knowledge of the values of the p, and
Prs then completely defines the system.

As an example, we may take the two-component
system with equal amounts of the two components, so

7
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that p, = p, = 1/2. Then, for the completely random
case
Pu=Pu= Par= 1/2.

For the case of complete segregation (separate regular
crystallites)

Pu=Pr=1 pp=0
There is also the possibility of a regular succession of
layers of the two types 1212---, forming a single type
of regular crystal. For this case

Pu= Pe2=0, pp=1.
All intermediate cases are of course possible.

Tt will be noticed that this type of definition of the
p’s does not allow for any influence of a layer on other
than neighbouring layers. Thus the sort of structure
represented by 112112112--- cannot be represented at
all, with any value of the p’s.

3. Derivation of Fourier transform

The Fourier transform method is closely
analogous to the well-known technique for
determining the radial distribution in a
liquid. Certain modifications are however
necessary, since we are here dealing with a
linear, and not a radial, distribution. We
start with the formula, which is developed
on p. 464 of James (24).

|Al2 = O {40+ ZpZgfplq* 5 0a} (2]
Here p, q are atoms and f,, f, the correspond-
ing atomic scattering factors; rp, is an inter-
atomic vector, S the unit vector defining the
scattering conditions; K is 2 n/A.

Now let us consider a layer structure,
having layers with the layer form factor ¥,
say, so that

Fa= Z'pfperpS (3]
where 2’ indicates a sum over all the atoms
belonging to the layer. The sum above can
thus be split into within-layer sums (which
depend only on the nature of the layer) and
between-layer sums. In the latter we can
substitute

rpg = r'pg + Rug + Lre [4]
where r'p, is the within-layer distance
corresponding to rpe; R is the perpendicular
distance between the layers = and g; and
.z is the lateral shift of one layer over the
other. We thus get

|42 = O {d, + EaZoFaFe* ¢F5 (RagTtae)} (5]
where each of the sums includes the case
7= 9.

The layers are assumed identical, so this
becomes simply

e

o
(|F|?is of course a function of angle).

We can simplify the expression by taking

Rre = L+Rng (7]

= Ag+ Zng | F|? "E S (Brot in) (6]

where I is a unitary vector defining the
orientation of the layer aggregate and R,, is
a scalar distance.

We now introduce the probability function
w (R) such that the probability of one layer
in any range di, and one layer in dl, with
separation B, is (Bap)dl,dl,/ T2, T being the
total thickness of the aggregate.

Thus

4P

C
—Q—NzﬁFlzf/w(Rng) QS (D+ Byt trp) ﬂf# (8]

The first (zero-order) term dies out rapidly
with angle, and may be neglected. The
second term, if integrated once, gives unity,
as in the case of liquid diffraction (Ref. 24,
p. 469), on the assumption that there is an
equal probability of finding any layer at any
point in a particle. We are thus left with

|f(17|2 = NzgﬂFP/w(R) ol (Roosatom, cosh) qp 9]
Here u= 4 n (sin ®)/A : « is the angle between
the Ewald vector and the normal to the
layers: oa, is the (scalar) shift of the p layer
with respect to the z layer, in the plane of
the layer: § is the angle between the direction
of this shift and the Ewald vector.

The imaginary part of the above integral
must cancel out, since the intensity [ is real.
Also we may suppose that o -1 as B — ©
i. e. that the crystallites have a finite size, so
that beyond a certain value of R there are
no interlayer distances. Thus

o0
/w(R)cos(MRcosa+uaeosﬁ) dR.[10]
0
Since we are considerung the case of ‘“‘spec-
ular” reflection from an oriented aggregate,
cos x= 1 and cos 8= 0, so that

=4,

|A[* _2N|FP
0T T

_ ca

I 2

IFZ[Z = / w (R)cosuRdIR.
0

(11]

Here ¢ is the mean thickness of a layer
= TIN. The difference between N and
N —1 is neglected. I; is the mean intensity
of scattering by a single layer (for the
particular value of u considered), divided by
the geometrical factor C.

If the expression on the left-hand side of
[11] is represented for brevity by ¢(u), then
on transforming the integral we get

co

w(R) = :‘Z /i(u)cosuRdu
0

[12]
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which gives the probability function directly
from the observations.

It will be noted, that in contrast to the
formula for radial distribution in a liquid
(Ref. 24, p. 497), this is a cosine transform,
and not a sine transform. This is because
the one-dimensional distribution does not
involve any spatial integration. Also, this
function involves the measured intensities
directly, and not their ‘“complements”
(Za/|F2— 1). Finally, if plotted as a func-
tion of R, this formula gives a maximum at
the origin, and not a zero value. This is
because formula [8] includes the case w= p;
the maximum merely expressed the fact that
every layer is at zero distance from itself.
Our function is thus rather analogous to a
Patterson series in one dimension.

the contribution of this peak to the Fourier
integral isg .

a Ig

@ [FsP
where Fs is the value of ¥ at the peak. This
is assumed to be approximately constant
over the whole area of the peak. Thus the
formula for the transform becomes

cos us R [14]

i s
@ [FsP
The analogy to a Patterson series is very
clear from this form of the transform. It is
in fact a Patterson series with non-rational
coordinates (the us), i.e.with no definite
unit cell. We may if we like regard it as being
the Patterson series corresponding to a
very large unit cell (larger than any inter-
layer-vectors we expect to find). This series,

AWV

o (R) = 2§ cos us . [15]

-— -

@) J\f/\ /\ L) i AT~ e

Fig. 1. (1) Ideal case of sharp isolated reflexions, giving the transform o (R) = Ziis cos 2 7 ps R.
This curve is shown in [1a] — (2) Broadened reflexions of error curve type, and of uniform width

(standard deviation), giving the transform w(R)=¢ 2

__1_ ot R

2siscos 2m us .

This curve is shown in [2a].

If, as often happens, we have a diagram
consisting of a series of fairly sharp lines,
but not forming a “rational” sequence, the
entire variation of the function [;/|Fy|* may
not be really observable; we thus cannot
calculate the complete Fourier transform,
even if the labor involved were acceptable.
We can however measure accurately the
positions of the diffraction maxima, and with
fair accuracy their relative intensities. We can
now express the equation [12] in such a way
that it makes use of this information directly.
Let us define the “intensity” of a line by the
expression

s+ O
Is = / Idp
pg —Op

[13]

the integration being performed over a small
region which includes the whole peak. Then

in general, never repeats: however, errors
accumulate as we go to large values of R,
and it becomes progressively less reliable.

4. The case of broad peaks

The approximation used here, of replacing
each peak (which may be quite a diffuse one)
with a single term, may seem to be excessive-
ly drastic.

Let us suppose therefore that each peak,
instead of being represented by a single line
[fig. 1(1)], is represented by a distribution
of intensity having the form of a Gaussian
curve [fig.1(2)]. If u, is the coordinate
(reciprocal spacing) at the center of such a
peak, the distribution is

1 *_la—z("“"s)z
o‘]/Z:z e *

= fs (1) {16]

7*
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and the Fourier transform of this peak is
given by
+ o0

1
——atR?
ffs(,u)cosuRd‘uz e eosus R. [17]
In our case therefore, if the peaks all have
the same widths (same o), we get

_~_1. ot R
w (R) = € 23 As cos /,lsR [18]
where 4, is proportional to the height of the
sth peak.

Essentially, this gives a transform of the
same general shape as that given by a series
of “line peaks” but dying out with distance
from the origin, as given by the factor

__1_62 R
e 2 [fig.1(2a)].

If each us has a different o (i. e. if the
peaks have different widths), we get

1
— o R?

w (R) = ZsAs e cos [,LSR

and the attenuation factor is different for
each term of the summation. It is not
difficult to make this calculation (the Fourier
components, instead of being added “as
received”’, are first attenuated by various
factors depending on R), but the extra com-
plication is probably seldom worth while.

For a rather broad peak, for example, the “half
width” might be 2/100 in reciprocal units, and
6'=.1/100, so that the coefficient of attenuation would
be 0.95 at R = 30 A. This means that, even for quite
broad peaks, the effect of peak width is likely to be
unimportant.

This treatment does not take account of
“skewness” of the peaks, or of the variation
of structure factor within the region of a
peak (which is, in fact, one of the factors
giving rise to skewness). In certain cases,
these factors may be important. It explains
however why quite surprisingly good results
may be obtained, even with rather diffuse
peaks.

{19]

5. Interpretation of the transform

The Fourier transform consists of a curve
with peaks at distinct values of R, these peaks
corresponding to prominent inter-layer di-
_stances. In theory these peaks are extremely
sharp, for in the type of complexes we are
considering, the inter-layer distances are de-
finite. In practice however the peaks are
found to have a certain width, so that if two
inter-layer distances occur close together (say
28 and 30 A), there may be some difficulty in
separating them. The reason for this is that

only a certain number of the diffraction ma-
xima are available to us, i.e. those corre-
sponding t0 4 << gm, where u, is the maxi-
mum conveniently observable value of reci-
procal spacing.

Fig. 1 may represent this case, if we ima-
gine the transform and the intensity function
interchanged. We now suppose the intensity
values to have a progressive diminution
superposed on them [represented by the
dotted line in fig. 1 (2a)]. The result is that
the Fourier transform, which should have
absolutely sharp peaks as in fig. 1 (1), in fact
has peaks of a certain width as in fig. 1 (2).
The intensity is more likely to have a sharp
“cut-off” rather than a superposed gradual
fall. The result of this will be, as is well
known, that a strong peak will be bordered
by parasitic “diffraction’ peaks, at a distance
of about 2/um. These parasitic peaks are usual-
ly particularly noticeable near the big peak
at R = 0, where they usually cause no trou-
ble, and are easily recognised. They may be
eliminated, or greatly reduced, by super-
imposing a gradual fall of intensity (which
ideally should have the form of a Gaussian
curve) on the observed series of intensities.
This may be a useful means of checking on
the reality of a given peak on the Fourier
transform diagram; an example is given
below.

Assuming that the “cut-off” point u. cor-
responds to an attenuation of about 1je, it
can be shown that the “half-width” of the
resulting peaks on the Fourier transform is
about 2/u, A. If, for instance, we are able to
observe diffraction effects down to about
2 A (um = 0.5), the peaks have a “half-
width” of about 4 A, so that it would be
difficult to separate peaks at 28 and 30 A on
the Fourier transform, if “modified” intensi-
ty data (with a gradual fall superimposed ) were
used. Using unmodified data, peaks as close
together as this could generally be resolved,
at the expense of getting some spurious
effects; by calculating both series, and com-
paring them (not a very arduous task) these
spurious effects could be picked out without
difficulty.

Since the Fourier transform represents
o (R), the area of each peak may be taken to
represent the relative probability of the
occurrence of that spacing. Since further the
width of the peaks is constant, heights may
be used instead of areas, except insofar as
partially superposed peaks may occur. Whe-
ther heights or areas are used however, a
difficulty oceurs in that we do not know the



Band 149
Heft 2-3 (1956)

} MacEwan, Fourier Transform Methods for Studying Scattering from Lamellar Systems I 101

correct base line for the peaks. This happens
because the zero-order term has been omitted
from the summation. It corresponds to a
constant which has to be added to all the
terms in the summation.

Nearly always, the correct zero-level can
be drawn in with sufficient accuracy by in-
spection of the curve, especially the region
near RE = 0. There are usually no genuine
peaks in this region, except for the very
large peak at the origin. Associated with it,
it is usually possible to see two diffraction
peaks. The base line is drawn in so as to cub
off approximately equal areas from these
diffraction peaks, above and below (see fig. 6
for an example of this).

Tt is also possible to calculate the position
of the base line, in the following way. We
have

w (R) = Zsigcos ug R,
where s = (a/7) (Ls/|Fs?).

Hence

T T

l/w(R)dR: LZ’sis/cos,ustR. [20]

7 T
0 0

The integral on the right hand side is
practically zero except when us = 0, when it
equals 7. Hence

7
o =—;,- / w(R)dR. [21]
0

But the density of peaks in the w (R) curve

will be about the same for any region

AR > a and < T'. Thus we can say that
R,

o .=.vR21R1 / w(R)dR.
By

This gives the following rule for finding ¢,.
Draw an approximate base-line on the curve
of w (R), and sum the total area of the peaks
in any fairly large range AR. This can be
done approximately by measuring their
heights, and their widths at the base, and
treating them as equilateral triangles; or, if a
planimeter is used, the total area above the
base-line can be measured accurately, neg-
lecting obvious false ‘‘diffraction” peaks
(this is better than reckoning the ‘“‘algebraic”
area, reckoning regions below the provisional
baseline as negative).

The relations [la—c], given in section 2
place severe limitations on the choice of the
probability coefficients, p,s. If there are =»
components in the mixture, the number of
such coefficients is #?, and the number of
equations is n of type [1b] and n of type [1c],
i.e. 2n in all. However, these only provide

[22]

2n — 1 independent conditions, since from
each set of equations we may derive an
identical equation, making use of [1a]. Thus,
multiplying [1b] by p, and summing we get:

2 Zsprpes = 2ppr = 1, by [1a];
and from [lc]:
Z;'Zsprprs = Zsps =1, by [la]

Thus the number of independent conditions
is 2n— 1, so that the number of degrees of
freedom in the pys is #%— 2% - 1.

In the case, for instance, of a two-compo-
nent mixture, we have six coefficients pg,
DB, Pdds PaBs PB4, Prp. But only two of these
are independent. First of all, from [la],
P = 1 — p4. Then, the application of [1b]
and [1c] leaves us with 4 — 4 + 1 = 1 degree
of freedom for the other four constants.

The most convenient- procedure, perhaps,
is to seek constants satisfying [1b] (this can
be done very readily), and also in general
accord with the peak heights. Conditions [1¢]
can then be used as a check on the reason-
ableness of the set of coefficients, which if
necessary can be suitable adjusted. If they
cannot be so adjusted, then the interpretation
must be wrong.

Peak areas (or heights) are proportional to
the probability of finding the corresponding
interlayer spacing in the mixture, or, what is
the same thing, to the number of times it
occurs. Thus, if » represents peak height, we
have, for the “primary”’ or “fundamental”
peaks, i. e. those representing spacings bet-
ween contiguous layers, %, = p, (omitting a
proportionality factor), and for the “‘second-
ary”’ or ‘“combination” peaks (which re-
present spacings between layers separated by
other layers).

hyr = Py prr (23]
hps = PrPrs -+ PsPsr [24]

(since fys is of course really Ay + hgr).
hon hrn = prpe” R [25]

Other coefficients are more difficult to
calculate, but the general principles can be
seen from the following examples:

hape = P4 PapPpc+ PacPop)

+ 25 Pp4aPac T+ PrcPca)
+ 0o (PoaPap + PopPra) ,
hgap=P4sPaaPap+ PapPpa) + PpPpaPas)

Condition [25] means that, in a random
mixture, with no influence of a layer on non-
neighboring layers, the peaks 4, 44, 4AAA4,
...arein the ratio 1: ps4: pas?:... This is
not the case if ordering with non-nearest-
neighbor interaction is permitted. Forinstan-
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ce, in the structure AAABAAABAAAR . . .,
we have py = 0.75, paa = 0.67, paaq = 0.33,
Pac = Pas = ...= 0, so that:

hyglby =089

hasalbaa =05

hpflaqq =0

Sometimes it is useful to remove strong

peaks which mask the positions of others.
Such peaks may also — for the reasons already
stated — besurrounded by “diffraction” effects,
which confuse the diagram. Their removal
may be effected as follows.

A B AA AB (AAA)

BB AAB({AAAA)

mixtures. From these curves we may derive peak
heights and intensities, and calculate Fourier trans-
forms. Fig. 2 shows two transforms (above, unsmoothed
and below, smoothed) for a 10 A: 17.7 A mixture
(corresponding to mica, and glycerol-montmorillonoid)
in proportion 3: 7. Table 1 gives the spacings and in-
tensities used. The zero line has been determined by
the method given in the preceding section. It is clear
that it could, in fact, have been drawn in at sight with
very fair accuracy.

Looking at the transforms, we see at once that
certain peaks (those ab c. 4, 14, 32 &) are spurious and
may be rejected. The peak at around 4 A is a constant
feature of this type of diagram, being due to diffraction
by the very large peak at the origin. Often there is a
second false peak at about twice the distance, a trace of
which is indeed seen in fig. 2.

We now have to try and explain
the genuine peaks by assuming a
small number of fundamental spa-
cings. There is no difficulty in this,
in the present case, and the inter-
pretations are indicated in fig. 2
(where 4 A B, for instance, means
a peak resulting from spacing 4
twice plus spacing B once, in any
order). The values of p, and pp
are derived at once from the rela-

ABB

\AJ\ //lx TAW AN ﬁ]
Vv

tive heights of peaks 4 and B: they
s can be converted to proportions,
assuming of course that no other
material unaccounted-for by these
peaks is present in the sample. From

the “higher-order” peaks we can

v
— e L L i ] o A ad
0 10 20 30 40 o 50

Fig. 2. Transform from calculated intensities for 10: 17.7 A mixture (mica-
montmorillonoid) in ratio 0.3 : 0.7. Above, unsmoothed; below, smoothed

Let us suppose that the peaks we want to
remove are at By, R,,..., and that their areas
are 4,, 4,, . . . We calculate the “intensity”
corresponding to those peaks alone, by means
of the Fourier transform

ip = %ZmAm Ccos ﬂRm e [24:]

This intensity function will have a series of
peak values, the associated total (integrated)
intensities being, say, ipy, ipg, - .. We then in-
troduce these intensities with negative sign
into the calculation of the Fourier transform,
the other terms being, of course, the experi-
mental ¢’s. In this way, we remove the un-
wanted peaks, and the associated ‘“diffrac-
tion” effects.

6. Some practical examples

As a first example of the practical applica-
tion of this method, we will take an arti-
ficially constructed case, since it is simple,
and illustrates well the features of the method.

Brown and the author (6) have published calculated
scattering curves [according to the formula of Hen-
dricks and Teller (5)] for various completely random

derive the pps. For instance (where
A h represents peak height)

hap=K(p4Psp+ PrPB4)>

where K is a known proportionality
factor. .

Table 1
Spacings and intensities of diffraction maxima for

10: 17.7 A random mixture in proportion 3 :7
[from Brown and MacEwan, (6)]
Peakno. d'(A.TU.) T (pk. ht.) Ij|Fir
1 17.7 215 80
2 9.195 10 72
3 5.567 15.4 23
4 4.425 2.9 17
5 3.490 10.6 14

Table 2

Measured and calculated heights of peaks on Fourier
transform from Brown and MacEwan’s data for
diffraction by 70/30 (mioca)-(glycerol-montmorillonite)

interstratification
Peak Calc. rel. ht. Obs. rel. ht.
A 0.32 0.25
B 0.68 0.75
AA 0.10 0.16 (est.)
AB 0.43 0.33
BB 0.46 << 0.60
444 0.03 0
AAB 0.21 0.18 (est.)
ABB 0.45 0.29
BBB 0.01 0

Relative heights are measured from lower (smoothed)
curve in fig. 2, using the proportions 68/32, as directly
determined from the Fourier transforms.
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We can obtain a series of equations of this nature,
and have to find the best values of the prs to satisfy
them, which we can do by trial and error (there is
probably little point in using sophisticated mathe-
matical techniques for this purpose, since very accurate
agreement cannot be achieved). We naturally assume
a completely random mixture to start with (for which
Pap F P = Pw Ppa = Pa4q = P4)- In the present

PEAK POSN. (A} 9.4

(o

17.7

proportion 32:682), a conclusion which is of course
essentially correct.

G. Brown and R. Greene-Kelly (7) have given
actual diffraction data from ‘‘partially collapsed”
montmorillonite, which they show to be in good accord
with predictions of the Hendricks-Teller theory.
Their data may also be interpreted by the present
direct method. Fig. 3 shows the Fourier transform

) 27.4 gg 364 451
A B AB ABB ABB
I ! ! 0177 '
CALC. HT  0.48 0.52 0.67 .43 0.44
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Fig. 3. Transform from observed intensities for a ‘“‘partially collapsed” glycerol-montmorillonite.

AllLllll‘l
05 00

TFig. 4. Diffractometer curves for an oriented aggregate
of clay. Above, before; below, after rapid heating to
450°. From Bradley (25).

case, this at once gives an adequate agreement with
measured values as shown in table 2.

We conclude that the scattering curve corresponds
to a random mixture of 10.3 and 17.5 A spacings in

for the case p = 048 (p = proportion of higher
spacing == our pg).

Measurement of the first-order peaks gives pp = 0.52.

Better agreement is found with the heights of the “com-
bination peaks” if it is assumed that the sequence is
not completely random, but that there is a tendency
to an alternating structure 4BA4B--. The heights
written above the peaks are calculated with p p = pgy

= 0.67;p44 = ppp = 0.33 (for complete randomness,

P p= PR = PR} Pps = Puy = P4)- This tendency
to alternation may well be a genuine effect; but in
general Brown and Greene-Kelly’s interpretation
is well confirmed.

We now consider a much more complicated prac-
tical case, due to Bradley (25). Fig.4, taken from
Bradley’s paper, shows X-ray diffractometer records
of a well-oriented aggregate of a clay before (above)
and after (below) rapid heating to 450° C. Fig. 5 shows
the Fourier transforms derived from these curves.

The analysis of these transforms is complex and
interesting, and may be carried out in considerable
detail. The first step is to find out the correct zero line,
which was done by the method already described. It
is then possible to bring the two curves to a com-
parable scale by adjusting the zero peak to have the
same height: the peak heights on the two curves may
then be compared directly (this process assumes that
in the two cases, the basal series of reflections represents
the same quantity of diffracting material, i.e. that
there has been no conversion of material into the
amorphous, or non-lamellar form).

The peak at about 3.5 A on both transforms is a
“diffraction” peak, and is neglected. The other peaks
on the “before heating” curve may then readily be
interpreted as kaolin (A), mica (B), vermiculite and/or
chlorite plus “‘second order” kaolinite (C -+ 4 A4), mont-
morillonoid (D) (the material was treated with ethylene

%) A mean value from measurements of several peaks.
From the A and B peaks alone, we obtain: 40 : 60 from
the unsmoothed curve, 24 : 76 from the smoothed curve.
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glyg)l, which gives a montmorillonoid spacing around
17 A).

On rapid heating we expect the montmorillonoid
spacing to pass to around 10 A: a vermiculite spacing
would shift to the same value. In fact, as shown in
table 3, which gives a résumé of the measurements of
these transforms, the C' peak hardly changes; the D
peak disappears and the B peakincreases by approxima-
tely the height of the D peak. Clearly therefore the

C peak is due to chlorite, not vermiculite, and the £
peak to montmorillonoid. This interpretation is both
qualitatively and quantitatively in accord with Brad-
ley’s conclusions.

The values of the prs shown in table 3 have been
selected so as to give the best general agreement with
peak heights. They show that the kaolin and mica are
separate phases (p, 4 = 1, pgg = 1), but the chlorite

and montmorillonoid are interstratified, not, however,

FOURIER TRANSFORMS FROM BRADLEY'S SPECTROMETER CURVES

6.5 10 143 0 78 3 0 34 361 v.3
cC
AA 888 BBC
A B C BB AAA  BC AAAA AAAAA  BRBB
] I | 1 1 | ) | I i
\"4 \/ AFTER HEATING
BEFORE HEATIN [ \

Y% \7"’

\VV V

A B C [ B8 AAA AAAA DD  AAAAA B8BBB
AA B8B
7.3 10 143 166 197 234 CC ¢cb 3133 37.5 3.1
29.5
) 1 . | L | X ]
0 10 20 30 K 40

Fig. 5. Fourier transforms from curves of fig. 4 (note that the order is reversed). The numbers atbached to
the curves give peak-height readings in A

Table 3
Analysis of Bradley’s spectrometer curves (Anal. Chem. 25, 729 (1953), fig. 9, left hand curves).

(1) Mineral before heating

(2) Mineral after heating

Peak . Obs. ht. Calc. ht. Peak Obs. ht. Cale. ht.
A7) 0.16 (0.16) A(7) 0.14 (0.14)
B (10) 0.28 (0.28) B (10} 0.50 (0 50)
C+ A4 (14) () 0.24 (0.24) C+ 44 (14) (C) 0.36 (0.36)
D (17) 0.32 (0.32) BB 042 0.42
BB 0.34 0.28 AAA 0.26 0.14
A4A4 0.20 0.16 BC 0.24 0.15
BBB4-0C + A4A4AA4 0.49 0.49 BBB+ CC + AdAAA4 0.55 0.65
cD 0.37 0.16 BEC 0.11 0.16
DD 0.23 0.38 AAA4A4A 0.31 0.14
AAAAA 0.25 0.16 BBBB + BCC 053 0.46
BBBB 0.32 0.28
py=0.16 p, = 0.14 [0.16]
pp = 0.28 pg’ = 0.50 [0,60]
po = 0.24 pe’ = 0.36 [0.24]
pp = 0.32
Paa=1 ppr =1 Pag =1 pgp’ = 0.84 [0.87]
Poc = 0.65 ppp = 0.75 Do’ = 0.76 [0.65]
pep = 035 ppy = 0.25 Pgo’ = 0.16 [0.13] pyp’ = 0.24 [0.35]

Figures in square brackets are calculated from the data in section (1). See text.
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completely randomly?). There is a marked tendency
to segregation of the individual types of layers (pgq

> pgand ppyp > Pph

It should be noted that, on heating, the montmoril-
lonite-chlorite interstratification becomes effectively
a mica-chlorite interstratification. Assuming that this
happens, it Is possible to calculate the expected values
of pho and pip, where the primes indicate the “affer-

heating” values. They are close to the values deter-
mined directly from the Fourier transform of the
material after heating. This comparison is shown in
table 3, the values in square brackets being the cal-
culated ones. This agreement provides very satisfactory
confirmation of our suppositions regarding the nature
of the changes occurring as a result of the heat treat-
ment.

The conclusions drawn from the above treatment
are, of course, in close agreement with Bradley’s,
which were reached without the aid of Fourier trans-
forms; but the Fourier transform method leads directly
to the result, and gives a certain amount of extra detail.

The values of p4, pp, etc. may be considered to

represent actual proportions of different types of
layers. It would be unwise, however, to attribute to
them any absolute importance. They would represent
true proportions if the different types of layer had
identical structure factors (the structure factor for a
mica type layer has been used throughout, in caleulat-
ing the transforms). This is far from being the case.
However, the quantities retain a relative value so long
as the structure factors for each type of layer remain
the same, i. e. an increase in p» does really represent a
corresponding increase in the true proportion of the
r type of layer. Where this condition is not fulfilled,
discrepancies must he expected. The fact, for instance,
that pf is less than pp + pp is probably due to a
change in the structure factor of the B (chlorite} type
of layer, ocourring as a result of the heat treatment.
Fig. 6 (top curve) is a Fourier transform derived
from a glycerol treated montmorillonite which has been
partly dried. (The X-ray photographs were made by
(.. Brown.) We notice immediately the prominent
peak O at 17.7 A, corresponding to glycerol-mont-

4) The term “completely randomly” merely indicates
the absence of any tendency either to segregation (like
layers succeeding each other), or to alternation (unlike
layers succeeding each other).

morillonite. There are also two rather ill-developed
peaks near 10 and 13 A. It would clearly be an advant-
age here to get rid of the strong €' and CC peaks and
their associated diffraction. We therefore apply the
procedure described in the last paragraph of section
5. The resulting curve is the lower one of fig. 6. It
enables us to deduce the accurate spacings of peaks 4
and B (9.5 and 12.3 A) and shows up clearly the “com-
bination” peaks BB, AC, BC. This curve must be
interpreted with caution, since it includes two peaks
(at 7 and 21 A), which have no ready interpretation
and are almost certainly false. Moreover the curve
descends steeply below zero for spacings greater than
30 A, a clear indication that it is not fully accurate.

From the two curves we can readily deduce that:

(1) Glycerol-montmorillonite (C) is the chief spacing,
amounting to about 70%. It is partially mixed, both
because combination peaks occur, and because the
CC peak is lower than C {the peak heigths are in the
ratio pgg, as has been demonstrated).

(2) The A4 spacing (“collapsed ‘montmorillonite”)
occurs in admixture with C, and not to any appreciable
extent alone (absence of peak 4 A4).

(3) The B spacing occurs partially segregated, and
partially in admixture with C (presence of BB and B().

It should be noted that the removal of peaks C,
(0, ete. does not remove the peaks of type 40, BC, etc.

The few examples discussed above have been chosen
to illustrate the practical application of this method.
The author has experimented widely with it, and is
convinced that it can be a valuable aid in the inter-
pretation of all manner of interstratification phenomena.
The method has many of the advantages of that of
Patterson in structure analysis: that it is direct, and
that it shows at a glance the totality of the information
available from the diffraction data. In comparison with
a Patterson diagram, however, the interpretation of
a one-dimensional Fourier transform usually involves
fewer hypotheses.

The chief disadvantage is that, in theory, the layers
must all have the same structure factor. It has been
shown, however, in the present paper, that in practice
useful information can be derived even if there are
great differences in structure factor.

Bradley has shown, in several publications (26, 27)
that one may go a long way in the interpretation of the
X ray diagrams by a more or less intuitive appreciation,
based on a familiarity with the nature of the diffraction
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Fig. 6. Above, Fourier transform from glycerol-treated montmorillonite, partly dried.
Below, the same, after removal of peaks at 17.7 A, and multiples (¢, C0).
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process. The author has applied the Fourier transform
method to many of the cases analysed by Bradley, and
has always found it to give results in substantial agree-
ment with his. There are differences in detail, for
instance in the -exact proportions of the components;
and the Fourier method often gives extra information
which appears plausible. Both the Fourier method and
the “‘intuitive’” method can work well, but the first
mentioned is decidedly more direct and imwmediate in
its application.

7. Methods of calculation

The calculation of a transform of this nature is
conveniently done as follows. We construct first a
preliminary table (table 4). Columns 1 and 2 are the
measured quantities-intensities and spacings of lines

For making these calculations, it is invaluable to
have a table giving cosines to two figures at degree
lines in table 4. Thus we simply have to multiply
the values of column 8 successively by 1,2,3 ... (cor-
responding to values of R in A: we could of course
take larger or smaller intervals as desired, but usually
it is convenient to calculate at 1 A intervals), find the
cosines of these quantities, multiply each by its 4,
and sum for each value of R. Table 5 shows some of
this work. Corresponding to each value of r we have

two colurans, one for (d7*R), and one for A, cos (d}*R)

(which can be calculated from d7*R in one operation,
using a slide rule). The latter quantity is rounded off
to the nearest whole number. The final column gives
the sum of these guantities, and is the ordinate of
the transform for the corresponding value of R.

Table 4
Preliminary calculations for Fourier transform. Kinnekulle clay, type 1 (spacings and intensities from Bystr6ém (28)

%) (6) (7) (8)

I ~ 1000 1 2X 360
Tes @ g Pt —prn (6 —d*
. num. = % ’
{ ) 5|1 (47) d

Ist term v$§ 18.0 32 22.5 4800 0.29 1(4)* 20.00
2nd term 8 9.0 16 11.6 12 117 20 40.00
3rd term w 5.71 1 7.1 530 0.26 1 63 05
4th term 8 444 16 5.5 70 41 13 81.08
5th term v8 3.42 32 4.2 360 21 9 105.26
6th term s 2.93 16 3.4 600 8 6 122.87
Tth term w 2.55 1 2.9 220 1.5 2 141.18
8th term 8 1.92 16 2.2 600 12 7 187.5

* The value 4 was used instead of 1, as it was considered that the intensity was probably underestimated

for this term.

Note that the values of | F7 | used here do not correspond exactly with any of the graphs of fig. 8.

[these particnlar values are for a Kinnekulle clay,
from A. M. Bystrom (28)]. In column 3, the estimated
intensities have been converfed to a numerical scale
(they may of course be so measured in the first place).

Column 4 gives the angular intensity factor (Lorentz,
polarisation and geometrical), column 5 the layer
structure factor, and column 6 the intensities corrected
by means of these factors. They are further multiplied
by a suitable arbitrary number to give convenient
values for manipulation. Column 7 is the square root
of column 6, again with a suitable factor, and rounded
off to give convenient whole numbers. These nuwmbers
are the amplitudes of the Fourier terms; we will call
them 4;, 4,, etc. Finally, column 8 gives 360/d’, i. e.
it is a reciprocal spacing. We will call it d'*. If d” and R
are in Angstroms, then the Fourier transform is simply

Zy Ay cos (dr*R), where (d;*R) is expressed in degrees.

There are as many terms in the summation as there are
intervals, and for angles up to several thousand degrees.
This can easily be prepared before-hand.

Figure 7 shows a simple device which speeds up the

process by eliminating the calculation of dr*R. The

angle di* is set off first by means of the marker M,
the multiples of this angle are obtained successively
by rotating the disc D so as to bring the point B to 4.
The value of 4 cos (d7*R) is then read off directly
at the point where the circle C cuts the scale § (the
circle (" is in a contrasting color and gives negative
values). There is a separate scale for each value of A,.
I have found that twenty such scales, to cover values
from 1 to 20, give adequate accuracy.

With this device the intermediate columns are
eliminated. A calculation of the type shown, up to
R = 40, can easily be done using it in an hour or so.

Table 5
Part of final table for calculation of Fourier transform from data in columns (7) and (8) of table 4
R Ist term  2nd term  3rd termm  4th term Sth termm 6th term 7th term 8th term >
) o Y * Y & Y * Y o Y 13 Y o Y « Y
0 4 20 1 13 % § 2 7 62
1 20 4 40 16 63 0 8 2 105 2 123 3 14 2 18 7 8
2 40 3 80 E 126 l 162 1% 210 § 246 3 282 0 375 7 11
3 60 2 120 10 189 1 243 6 316 6 360 6 424 1 563 6 20
4 80 1 160 19 255 0 324 10 421 5 491 4 565 2 750 6 3
« = (d7*R) in degrees Y = Ay cos (dr* R)
X = 2. Ay cos (d* R)
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Fig. 7. Apparatus for caleulating Fourier transforms, M-marker for setting off angle, rotating around slot SI.
D-disc, graduated in degrees, and rotated around axis dz.
S-transparent scale, graduated in units, 20 of these are available, reading from a maximum of 1, up to a
maximum of 20. The graduations are: 0 to Y, (reading 0); 1/, to 1}/, (reading 1); 1%/, to 2, (reading 2); and so on.
Bo-box of scales. Three scales are seen lying in front of the apparatus,
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Fig. 8. Square of structure factor for basal reflexions from montmorillonite (and similar) layers.
(1) Experimental, from Bradley (29).
(2) Calculated, with allowance for interlamellar material. (See text.)
(3) Calculated as above, without allowance for interlamellar material.
(4) As(3), averaged continuously over 4 units of .
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8. The layer structure factor

The calculation of this quantity necessarily
involves certain assumptions. We must sup-
pose that the type of layer is known, at least
to a first approximation. The structure factor
can then be calculated as a continuous
function of @, or of y = 100/d". If, for in-
stance, the structure is centrosymmetrical
(in the linear projection), and if it has N,
atoms with coordinate 2z, and atomic scatter-
ing factor f,(u), then the layer structure
factor is given by

Fy(u) = Zp Ny fr cos 27 (uz/100).
The more general form of the formula can
easily be worked out. The quantity we are
interested in is |#7|?, and this can be repre-
sented by means of a graph.

For the mineral montmorillonite, Bradley (29) has
already given a useful graph of this quantity, based
on experimentally measured intensities for mont-
morillonite-organic complexes. This curve is reproduced
in fig. 8 curve (1). This figure also shows for comparison
three calculated curves for montmorillonite. The curves
are very similar, and they will do, to a sufficient order
of approximation, for all other layers of the same
general type, micas, pyrophyllite, tale, etc. For chlorites,
they are less accurate, and for kaolin type minerals
quite inaccurate. Use of the wrong curve (as we have
seen) will not affect the determined interlayer distances
very much, but will affect the estimated quantities.

Curve (2) is calculated for layers with interlamellar
material, of the type of water molecules, organic mole-
cules, etc. This has been done (the correction is only
a rough one) by superposing the average electron
density of a close-packed layer of water molecules on
the entire layer, and using, instead of the true electron
content of the atoms, the “electron contrast”, i. e. the
true electron content minus the content of ‘‘background
electrons” in the volume of the atoms.

Curve (3) is calculated using the true electron con-
tents of the atoms. Curve (4) is curve (3), averaged
continuously over 4 units of u, so that it never reaches
zero. One sometimes finds lines of appreciable intensity
where there ought to be a zero of Fi. This may, of
course, indicate that Fy is wrongly calculated. How-
ever, it seems probable that, because of the angular
spread of the X-ray beam, and the width of the
reflections, there are no zeros of the effective curve
of Fi2. The procedure of averaging over a small region
may therefore give rather more realistic values of this
quantity.

Summary

The study of interstratified clay minerals and similar
systems by X-rays requires some means of rapidly
estimating the interlayer spacings present, their pro-
portions and the manner of their sequence. For this
purpose, a simplified one-dimensional Fourier trans-
form is here suggested. For its calculation, only the
positions (“effective spacings”) and intensities of the
basal diffraction peaks need to be known, and these
can readily be obtained from orientation powder dia-
grams or spectrometer recordings. The method of
calculation is here fully described, and illustrated by
practical examples. '

Zusammenfassung

Zum Studium von Tonmineralien und &hnlichen
Substanzen mit Schichtstruktur mittels Rontgen-
strahlen ist es notwendig, eine Methode anzuwenden,
die uns die vorkommenden Zwischenschichtabstinde,
deren Héufigkeit und Folge einfach und bequem zn
schitzen erlaubt. Zu diesem Zweck wird hier eine ver-
einfachte Form der eindimensionalen Fouriertrans-
formierten vorgeschlagen. Zur Berechnung dieser Funk-
tion braucht man nur die Lagen (,,effektiven Abstéinde‘)
und Intensitdten der Basis-Interferenzen zu kennen, und
diese sind leicht aus orientierten. Pulver-Diagrammen
oder den Spektrometerregistrierungen zu erhalten. Die
Methodik der Rechnungen wird ausfiihrlich beschrieben
und mit Beispielen aus der Praxis erldutert.
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