
Neural Comput & Applic (1997)5:76-98
�9 1997 Springer-Verlag London Limited Neural

Computing
& Applications

Pruning Backpropagation Neural Networks Using Modern
Stochastic Optimisation Techniques

Slawomir W. Stepniewski I and Andy J. Keane 2

~Department of Electrical Engineering (IETiME), Warsaw University of Technology, Warszawa, Poland, 2Department of
Mechanical Engineering, University of Southampton, Southampton, UK

Approaches combining genetic algorithms and neu-
ral networks have received a great deal of attention
in recent years. As a result, much work has been
reported in two major areas of neural network
design: training and topology optimisation. This
paper focuses on the key issues associated with the
problem of pruning a multi-layer perceptron using
genetic algorithms and simulated annealing. The
study presented considers a number of aspects asso-
ciated with network training that may alter the
behaviour of a stochastic topology optimiser.
Enhancements are discussed that can improve top-
ology searches. Simulation results for the two men-
tioned stochastic optimisation methods applied to
non-linear system identification are presented and
compared with a simple random search.

Keywords: Optimisation; Neural network; Pruning;
Genetic algorithm; Simulated annealing

1. Introduct ion

Feedforward networks are perhaps the most com-
monly used among all types of neural networks.
These networks seem to be an attractive tool for
control engineering mainly due to the need for the
flexible, accurate and inexpensive process models
which they can provide. It should be emphasised that
creating and validating alternative process models is
sometimes a rather costly procedure. For example
Bhat et al. [1] estimate that in the petroleum industry

Correspondence and offprint requests to: Prof A.J. Keane, Depart-
ment of Mechanical Engineering, University of Southampton,
Highfield, Southampton SO17 1B J, UK

these costs can be as high as 75% of all the expenses
associated with the development of a control system.

Neural models may be used in a number of ways
in control systems. They may be employed as multi-
step ahead predictors in optimal control systems
[2,3] or in transportation delay compensators (Smith
predictors). One step-ahead neural predictors can be
employed in reference model control schemes or
related approaches [3,4]. In some cases, neural mod-
els function as Jacobian approximators of the con-
trolled plant [5,6]. Such Jacobians are required, for
example, when the controller is also built using
neural network techniques, and needs to be trained
while reflecting the influence of the plant. For these
tasks, neural models are especially useful when the
non-linear plant parameters vary in time or its ana-
lytical description is imprecise [5]. Neural models
may also be used to estimate otherwise unavailable
data for use by external controllers. Such problems
occur, for instance, in technological processes that
involve biomass fermentation [7]. In such cases,
laboratory analyses introduce delays in sampling and
are performed over such long intervals that they
may cause operability problems for a given control
system. Neural networks can then estimate unknown
measurements based on more readily available out-
puts, e.g. process age, oxygen consumption, carbon
dioxide production, etc. Besides these basic plant
models, other specially designed neural networks
may operate as sensor/actuator failure detectors [8]
or even function as direct controllers when a stable,
inverse plant model exists [3].

Obviously, in all these applications the maximal
performance of the neural model is very desirable.
The capabilities of control schemes generally
improve as the synthesised model better matches
the object. Well designed networks should also be

Pruning Backpropagation NNs Using Modern Stochastic Optimisation Techniques 77

as small as possible, especially for applications that
require on-line model parameter adaption. Poor exci-
tation or correlation between input signals and dis-
turbances at the plant output, due to control feedback
loops, commonly make identification conditions
more difficult and oversized networks may then be
prone to overfitting [9].

Finding a suitable neural network architecture for
a particular application is still a challenging task. It
is possible to experiment with hand crafted designs
found by trial and error procedures, but a much
more appealing approach is to employ techniques
that tune the network topology automatically.
Methods developed for automated neural network
topology design can be categorised into three major
groups according to how they handle the problem
of constructing network structures; a particular
method can allow a topology to shrink only, expand
only, or both shrink and expand.

A series of methods that attempt to shrink or
prune some given original architecture are described
in Reed [10]. For this task, one possible approach
is to estimate the importance of each individual
connection or whole node inside the network and
then gradually to remove unnecessary components.
A comparison of two such algorithms, Optimal Brain
Damage (OBD) and skeletonisation is covered, for
example, in Eigel-Danielson and Augustejin [11]. A
more general approach than OBD is called Optimal
Brain Surgeon (OBS) and is presented in Hassibi et

al. [12]. Reduction in network size can be also
combined with the process of network training.
Weight decay and weight elimination approaches
[9,10] modify the learning law in such a way that
it tends to lower the absolute values of connection
weights so the weakest synapses can be removed if
identified as being redundant.

Probably the most well known example of a
method that utilises the expansion strategy is cascade
correlation, designed by Falhman et al. [13]. This
method progressively adds hidden nodes until the
output error of the network decreases to a desired
level. As a result a special kind of topology is
created that may be viewed as a layered architecture
with one node in each hidden layer connected to
all previous nodes as well as the network input
and output.

Stochastic optimisation techniques, such as genetic
algorithms, have been employed for both network
pruning and in the schemes that allow networks to
grow and shrink. They use an objective function
that reflects the overall performance of a network
(complexity, accuracy, learning speed, etc.) to guide
the search toward regions where promising architec-
tures are more likely to be found. The methods

often differ in the way they encode solutions and
also sample the search space. A more comprehensive
discussion of genetic algorithms applied to designing
neural networks is carried out in the retrospective
paper [14].

In this paper we focus attention on reducing
the size of neural networks (without compromising
network generalisation ability or learning accuracy)
using stochastic optimisation techniques. We investi-
gate the problem of pruning feedforward neural
networks that are used to carry out nonlinear identi-
fication. The performance of two methods that have
recently gained a great deal of attention - Genetic
Algorithms (GA) and Simulated Annealing (SA) -
are examined. These methods are additionally com-
pared to a simple random search. As is shown later
in this paper, such a comparison provides a rather
severe benchmark for the methods under investi-
gation.

Simulated annealing and genetic algorithm
approaches provide several attractive features for
developing near optimal network architectures. First
of all, they offer a true separability between the
stages of network training and architecture develop-

m e n t . This allows hybrid systems to be designed
for network pruning. Since the pruning procedures
investigated here utilise only the overall, off-line
evaluated, network performance to guide the top-
ology search, the same approach, as for feedforward
networks, may be used for other network types, e.g.
boolean or recurrent neural networks. The latter ones
are better suited to function as multi-step ahead
predictors, but they are typically more sensitive to
architecture oversizing [15]. It is also worth noting
that the cost function used for topology optimisation
need not be the same as that used for the training
phase. The proposed methodology allows great
flexibility in setting up this function, since SA or
GA do not make any assumptions about continuity
or differentiability of the problem to be solved. In
particular, they allow the user to introduce a variety
of terms that quantify network complexity, generalis-
ation ability or network performance measured under
conditions that emulate true working environments.
Finally, the search may be conducted at various
levels of detail, especially by a GA. It could be
used not only for node or synapse removal but, for
example, it could be extended to assign appropriate
transfer functions for each node. A GA method
can also be very easily distributed among several
processors or computers as it operates on popu-
lations of solutions that may be evaluated concur-
rently.

Besides these features, the GA and SA do not
suffer from several of the shortcomings for which

7 8 S. W. Stepniewski and A. J. Keane

other pruning techniques are sometimes criticised.
For example, sensitivity analysis/based methods
using second order expansion of the cost function
are valid only if the weight changes are small [16];
as the synapse weight grows so does the error in its
sensitivity estimation. Moreover, for some pruning
methods (e.g. skeletonisation or OBD), it has been
observed that they tend to underestimate the impor-
tance of the elements that are located closer to
network inputs [11]. These effects are especially
problematic in 'wide' network architectures due to
so called derivative dilution. In contrast to stochastic
optimisers, OBD or OBS attempt to remove one
link at a time. As was noted in Reed [10], such
techniques may not estimate correctly the importance
of some configuration of connections, such as where
two weights cancel each other exactly. Removing
either one leads to a significant error increase, so
their individual importance is then not negligible,
but in reality the whole pair is useless in performing
the desired input-output mapping. Another difficulty
with such methods is associated with the threshold
definitions that are used to decide which network
elements are important. This problem is especially
severe in weight elimination or weight sharing
schemes, as it should not be assumed that small
weight value is a reliable indication of redundancy.

The methodology presented here is similar to that
described in Miller e t al . [17] and Whitley e t al .

[18], however, this study focuses on solving another,
distinct class of problems. In the cited reports, top-
ology optimisation was tested on such tasks as the
boolean XOR function, four-quadrant classification
or the binary adder. On these tests, neural networks
are expected to simply produce rapid changes in
response for certain small deviations in their input.
Therefore, such problems do not examine a very
important feature of neural networks, i.e. their ability
to generalise knowledge from examples. Good gen-
eralisation means that a network is capable of pro-
ducing smooth approximations of training data: four-
quadrant classification or the logical XOR do the
exact opposite. Of course, the different test problems
investigated here require alternative, more appropri-
ate methods to train the neural networks and to
verify their performance.

As the problem becomes more complicated, so
the size of the network and training data set
increases and the training of a single network may
become very slow. For this reason, most reported
experiments in the field of combining genetic algor-
ithms and neural networks have been tested on very
simple examples. In some cases networks are not
trained fully, instead their performance evaluated
after some small number of cycles is used to esti-

mate the final output error and the usefulness of a
given design. This, however, may not reflect the
true result when the network is allowed to train
over enough epochs for convergence to be reached.
To ensure more reliable estimates, the neural net-
works in our survey are trained fully at the expense
of the greater time needed to complete the topology
optimisation. Also, we permit the optimisation algor-
ithm to sample a much bigger space of possible
solutions by choosing relatively complex networks
as the starting point for pruning.

2. Non-linear Identification

For SISO (single input single output) systems the
problem of non-linear identification can be generally
formulated as finding an approximation for a nonlin-
ear, multivariable function H(.) of the form:

y (k) = H (y (k - 1),...,y(k - n) ,

u (k - 1),...,u(k - m)) (1)

where y (k) and u(k) represent, respectively, system
output and input measured at a discrete moment k.

Here the identification is performed off-line on a
set of data gathered earlier. Because the process of
searching for optimal neural network topologies is
relatively slow, the approach cannot be used as an
on-line scheme, so we assume that the unknown
system is time invariant. Moreover, the process
described by Eq. (1) should be stable. Since sig-
moidal activation functions exhibit saturation, the
amplitude of the network output for some architec-
tures (those with no direct connection between the
input and output) are naturally limited. As all the
activation functions of the neural networks under
investigation here are continuous, so are the network
outputs. Therefore, we suppose that a system
described by the discrete Eq. (1) is also continuous.
Figure 1 schematically illustrates the principle of
modeling a nonlinear SISO system with a neural net-
work.

A training algorithm adjusts the weights of the
neural network to minimise a function 't r defined as
a sum of squares:

1 1 NL
* = ~ EL = ~ ~'~ e~ (k)

i=1

1 NL

= 2 ~'~ [y;(k) - 3~i(k)] 2 (2)
i=l

where the parameter NL denotes the number of
training patterns and e (k) is the difference between
target and actual network output.

Pruning Backpropagation NNs Using Modern Stochastic Optimisation Techniques 79

u(k)
.

, . ! NONL INEAR
i v i

SYSTEM

E3 , !

y(~)

~(k) ! L

e(k)

Fig. 1. Modeling a nonlinear SISO system with a neural network
(the scheme presented is off-line).

The process of training is not, however, a pure,
single objective optimisation problem defined by a
cost function air. It is desirable that a trained network
should not only produce a correct response for the
training patterns, but also for unseen data. Therefore,
in the simplest case, to assess trained network gener-
alisation ability we may introduce another parameter,
say Ev, calculated in the same way as EL but for
different data points. Usually, it is assumed that the
unseen patterns are located in the region covered
by the training data set. In such a case, this problem
of generalisation is closely related to that of inter-
polation.

To verify the performance of genetic algorithm
and simulated annealing methods in neural network
topology optimisation, we have used an identifi-
cation test problem derived from Su and Sheen [19]:

y(k) -- 2.5y(k - 1)

sin (Tr exp(-u2(k - 1) - y2(k - 1)))

+ u (k - 1)[1 + u2(k- 1)] (3)

This system was excited by setting u to be a random
signal with zero mean uniformly distributed between
-2 and 2. Because the current response y(k) depends
only on the previous input u (k - 1) and output
y (k - 1) the above problem can be easily visualised
in 3D space, as shown in Fig. 2.

3. Network Architecture

Many neural network applications can be treated as
the approximation of a multivariable function. It has
been shown theoretically that an architecture with
one hidden layer is sufficient to approximate with
a desired accuracy any continuous, bounded value

y(k-l) 0 ~ . 1) 1

Fig. 2. The response surface of the non-linear system (3) to be
modelled by the neural network.

function. This kind of approximation makes the
somewhat impractical assumption that the number
of nodes in the hidden layer can be increased, if
necessary, without limits. Therefore, in reality for
more demanding applications, neural networks with
multiple hidden layers are used.

Employing more complicated architectures with
several hidden layers inevitably raises questions
about the patterns of synaptic connections that
should be chosen to fit best a given neural network
application. Clearly, the number of units in the
network affects its performance; small networks
learn slowly or may not learn at all to an acceptable
error level. Larger networks usually learn better but
such sizes may lead to generalisation degradation
which is often known as overtraining or overfitting.
The correct size of the network is problem depen-
dent and is a function of the complexity of the
input-output mapping to be realised by the MLP
and the required accuracy. As shown in Haykin
[9, pp. 180], using cross-validation techniques it is
possible to train oversized networks that generalise
well and sometimes even better than smaller ones.
The common goal is, however, to simplify the
design without sacrificing its performance. Smaller
networks 'assemble' their response surfaces with
fewer components coming from each node activation
function and therefore their outputs tend to be
smoother.

As the approach presented in this paper allows
only shrinkage of the initial topology by removal
of redundant links and nodes, in our experiments
we have chosen overdetermined networks as a start-
ing point for the optimisation procedure. The general
architecture under investigation here is the Multi-
Layer Perceptron (MLP).

Throughout this work we have not restricted our
tests to traditional MLP structures where only neigh-

80 S. W. Stepniewski and A. J. Keane

bouring layers are connected. In general, we assume
that pruning can be launched from a layered network
with an arbitrary pattern of synaptic links. The only
requirement is that an initial network topology must
not violate the principle of feed-forward architecture,
so that no closed or self loops are allowed and all
signals inside the network are transmitted in one
direction, i.e. from the input to the output layer. An
example of a modified MLP is shown in Fig. 3 (n.b.
in general, some connections between nodes may
skip the intermediate layers). In all the networks
under investigation here, the hidden nodes have
the same type of sigmoid ~ x) = tanh(x)) activation
function and the output node has a linear (f(x)= x)
transfer function. These are asymmetric functions;
as stated in Haykin [9, pp. 160] using asymmetric,
sigmoid activations for backpropagation networks
should ease their training. To increase network capa-
bility to approximate non-linear mappings, pro-
cessing nodes are always biased.

Let us assume the initial architecture to be pruned
has a full set of links between the nodes of adjacent
layers only. After pruning, the resulting network
will typically have some unnecessary nodes removed
but the number of layers remains unchanged. By
choosing topologies where some links skip neigh-
bouring layers we give the pruning algorithm (at
least theoretically) the chance to remove a whole
layer. In this paper, we therefore have also investi-
gated an initial architecture where all possible con-
nection sets between layers (that do not violate the
feedforward nature of the network) are allowed. We
call this architecture a hyper-connected network. In
such networks, each layer, starting from the network
input side, is linked to all its predecessors (Fig. 4(0).
This is an extreme case, since it is very likely that
we will ask the pruning procedure to remove many
meaningless connections. One can, of course, also
consider other choices with less links over neigh-
bouring layers, e.g. only output nodes have connec-

processing nodes

input layer hidden layers output layer

Fig. 3. An example of the kind of feedforward neural network
architecture used in the study.

tions to all other layers. Figure 4 presents various
layered network topologies that may be used to
initiate pruning.

By selecting the topology of an initial network
to be pruned we can restrict quite precisely the
search space available for an optimisation algorithm.
For example, if the configuration of the starting
network is 2-4-4-1, and connections are allowed
only between adjacent layers then a genetic algor-
ithm is able to examine all four layer architectures
that have the same or a lesser number of nodes in
each hidden layer. Therefore, such topologies as 2-
2-2-1 or 2-4-2-1 may be checked because removing
certain links in the initial topology leads to deacti-
vation of entire nodes. On the other hand, if for the
same configuration of nodes we allow the maximum
number of connections between layers (a hyper-
connected network), then the search may be also
carried through such architectures as 2-3-1, or even
2-1, because it is then possible that whole layers
may be abandoned.

Thus far in discussing various initial topologies
for pruning, we have made the simplifying assump-
tion that network hidden nodes are permanently
assigned to particular layers. This is always the
case for traditional MLPs, but for more complicated
architectures an association of a given node with a
layer is more a matter of mutual dependencies
between nodes inside the network. For example, if
we remove all links between two hidden layers of
a hyper connected architecture 2-4-4-1 then we can
arrange this topology into the three layer structure
2-8-1. Figure 5 presents some rearrangements in net-
work topology that are possible after removing cer-
tain synaptic connections from a hyper-connected 2-
1-1-1-1 architecture. Although encoding of the
hyper-connected architecture with one node in each
hidden layer requires the longest chromosome with
respect to the number of nodes (for a given frame-
work of network inputs and outputs) this kind of
topology has the interesting property of being able
to form, as a result of pruning, an arbitrary layered
structure with the same or smaller number of orig-
inally established hidden nodes.

As has been shown, for some architectures, where
more connections between layers exist, with some
of them skiping adjacent layers, the pruning pro-
cedure may cause certain nodes to migrate from one
layer to another. Then, the term 'layer' has no
precise meaning. We can still use this concept,
however, to visualise architectures found by stochas-
tic optimisers. We need an algorithm that is able to
arrange nodes into layers automatically, since man-
ual inspection of encoded solutions is a rather labori-
ous task, even for small scale problems (the results

Pruning Backpropagation NNs Using Modern Stochastic Optimisation Techniques 81

r
I

J
l

1,
c) U E)

J J ,, J U Jl 11 k,
"11]1 o, -,, F)

Fig. 4. Different feedforward architectures that may be used to initiate pruning. A - only adjacent layers are connected; B - layered
architecture with auxiliary, direct links between network input and output; C - layered topology with extra coupling to network
output; D - layered topology with extra coupling to network input; E - layered structure with direct links of each hidden layer to
network input and output; F - hyper-connected network (all possible connections are allowed).

(connection 4-5 is removed)

hyper-connected: 2-2-I-I
(connection 3-4 is removed)

hyper-connected network 2-1-1-1-1 %

hyper-connected: 2-3-1
(connections 3-4, 4-5 and 3-5

are removed)

Fig. 5. Various topologies derived from a hyper-connected network 2-1-1-1-1 by pruning some of its connections.

presented in this paper involved training 15,000
different networks). Such an algorithm is presented
in the form of a flowchart in Fig. 6. The basic idea
behind this method is very simple: assuming that
for any node it is possible to obtain a list of units
connected to its input at any time, the algorithm
recursively invokes all dependent nodes starting suc-
cessively from the output nodes and assigns
incremented layer numbers to nodes as it proceeds
deeper into the hierarchically organised feedforward
structure. After completing this process the algor-
ithm ensures that the nodes of the input layer
(network sensors) are all assigned the highest
layer number.

The algorithm presented in Fig. 6 arranges net-
work units into layers, but the particular locations
of nodes inside any one layer remain undefined. In
our approach we label each node with an integer
number. This number is then used to sort nodes
belonging to each layer.

Using a modified initial architecture may be also
beneficial in other ways. For example, it was
observed [18] that if direct connections exist
between the network input and output, the process
of training was usually subtantially shorter and
therefore the whole pruning procedure may be com-
pleted in less time.

82 S. W. Stepniewski and A. J. Keane

Invoke recursivslyall i
incoming nodes with

incremented layer
counter Mc = Mc+ 1.

IReset layer numbering f o r ~
all nodes, Mi= O; total 1

number of layers Mt = O. �9

+
Choose the first i

I output node.

,+
/

Mark all nodes of the I

I network as not in use; set
layer counter Mc = I.

~ E R R O R ! Closed Ioop~
inside the network. J

Mark the current node as |

I the one in use.

Update the node layer number /
and the total number of layers: I if Mi< Mcthen Mi= Mc,

if Mr< Mcthen Aft = Mc.

Yes

No

Choose the next ~ =7 �9
output node n~

Assign all input nodes
to the M'toth [ayer.

Fig. 6. A flowchart for the computer routine that arranges nodes of a feedforward network with an arbitrary pattern of connections
into layers.

4. Topology Encoding

For neural network topology optimisation performed
by genetic algorithms, two main types of encodings
(weak and strong) have been used to convert net-
work structures into the form of a chromosome. The
weak paradigms require 'interpreters' to translate
chromosomes into networks. Such encodings usually
store some kind of instruction sets about how to
build a neural network rather then direct information
about connections. Weak encodings have been
reported as being able to produce successful results
for constructing large neural networks. Unfortu-
nately, they suffer from several constraints such as
search spaces being limited to certain architectures
or difficulties in representing detail connections.
Such methods usually also require a modification of
the standard genetic algorithms operators because
different literals in the chromosome string may have
different meanings, so, for example, crossover may
not be permitted everywhere in the string. Also, the
intermediate step of building a network topology
from a weak representation makes the relationship

between the fimess function and the corresponding
chromosome more complicated, and it is therefore
harder to analyse its impact on the topology search.

A strong encoding of the network connections
establishes a direct relation between synapses and
genes in the chromosome string. For this type of
representation it is very natural to use a binary
alphabet (e.g. 1 - link exists, 0 - no connection).
A strong encoding of the connectivity pattern of a
multilayer perceptron can then be represented by a
N x N matrix (N - number of network nodes includ-
ing the input layer; in our study the diagonal
elements of the matrix refer to the biases of pro-
cessing nodes and the remaining part encodes synap-
tic links).

It is possible to create the chromosome used by
the genetic algorithm directly from such a connecti-
vity matrix by concatenating all its elements (more
preferably rows, since each one encodes full infor-
mation about incoming links and the bias of a
particular node) in one binary vector. However,
this representation is overdetermined because some
connections that may be encoded using this scheme

Pruning Backpropagation NNs Using Modern Stochastic Optimisation Techniques 83

are not allowed in feedforward networks. For
example, input nodes do not process signals and
they cannot have incoming links or biases so the
corresponding rows of the connectivity matrix are
always zero. Also, within one layer there should be
no connections between nodes. This fact, together
with the unidirectional transmission of signals from
input to output requires at least half the non-diagonal
elements of the connectivity matrix to be zero.
Violation of these rules leads to obviously invalid
topologies. The simplest method to overcome this
problem is just to neglect genes whose values cannot
be used for some reason. This in fact produces a
shortened chromosome with only genes that are
significant for the network topology to be pruned.
In our experiments we assumed that all processing
nodes had biases, so this allows a further exclusion
of genes representing these elements. Figure 7 illus-
trates how the chromosome is built for the case of
a simple 3-layer neural network.

The final chromosome representation has several
desirable properties. Because all bits are treated
uniformly, all genetic operators designed for binary
strings can be applied without modification. The
chromosome can be used to encode any initial archi-
tecture, even with some irregularities. Also, by sim-
ply treating the whole chromosome as a series of
binary numbers, this encoding can be used with
other optimisation methods such as simulated
annealing. The cost of such flexibility is that, despite
the sparse structure of the connectivity matrix, the
chromosome length grows rapidly as the network

becomes more complicated. For some hyper-connec-
ted architectures with one output node, this length
may be as long as (N(N-1)-M(M-1))/2, where
M is the number of network sensors.

5. Simplification

Networks created by genetic algorithms or simulated
annealing usually contain unconnected nodes or con-
nections that are not used when calculating network
responses. A simple example is a 'degenerate' net-
work with no connections to the output layer but
fully connected elsewhere so that no signals can be
transmitted from the network input to its output. In
such a situation the network architecture could be
reduced to two, separate layers, one input layer and
one output layer; all existing synaptic connections
inside the network are redundant and can be
removed. Therefore, in this work a simplification is
carried out automatically (before launching the train-
ing process), which leaves the input-output mapping
unchanged. To explain the method of simplification
first we demonstrate how it works for the case of
the particular topology shown in Fig. 8.

Obviously, in this example node 10 is not func-
tional as it is not used in creating network output,
and therefore it can be removed together with the
connections from node 6. The response of node 3
does not depend on network input because it sources
its input signal from bias only, and is further modi-
fied by a node transfer function and weighted by

1

2

3

4

5

1 2 3 4 5

0 0 0 0 0 ~

0 0 0 0

~,, z~,~ 83 o

L4a L4a 0 B 4

I~176176176176176176176176176 I~176 I I ~ I~ I ,4

I I I I I I I
Fig. 7. Chromosome construction using strong encoding of the neural network connections.

S. W. Stepniewski and A. J. Keane 84

Fig. 8. Application of simplification procedure to a feedforward
network with biases on all processing nodes.

an outgoing connection before transmitting to node
8. In this situation node 3 behaves as a secondary
bias for node 8, and therefore can be combined
with it. This results in omitting two redundant para-
meters (one for the bias and one for the connection
weight to node 8) in the network definition. The
same procedure might be applied to connections
between nodes 6-7 and 6-8 because node 6 has no
links from other nodes. A rather different situation
is encountered in node 9. Although this node has
incoming connections from node 6, its output is
also independent from the network input. Therefore,
node 9 can be removed from the network without
sacrificing its functionality (after correcting the bias
of node 11), so finally, the resulting network has
only 14 weights (9 connections and 5 biases) instead
of 24 weights (15 connections and 9 biases). This
reduction in problem dimensionality significantly
eases the learning process.

In our experiments we have investigated neural
networks with all processing nodes biased. In such
cases simplification leads to occasionally correcting
bias values. However, the method of network simpli-
fication can be easily extended to architectures with
any configuration of biases. The simplest version
can be obtained if we allow the addition of biases
to unbiased nodes whenever this kind of action is
necessary. To demonstrate the behaviour of such an
algorithm consider the slightly modified network of
Fig. 9 with biases only on one hidden layer. Here,
a simplification procedure would perform the
reduction in a somewhat different way. Nodes 3
and 6 are 'degenerate' because they do not receive
any input signal (constant zero output is assumed

Fig. 9. Application of simplification procedure to a feedforward
network with mixed configuration of biased and unbiased nodes.

in both cases). Because their outputs are zero it is
not necessary to modify the biases of nodes 7 and
8. On the other hand, node 9 has deterministic
output sourced from its bias, and therefore this node
can be reduced to a single bias of the output node
11. Because output node 11 did not have a bias
initially, it is then automatically added.

This discussion on feedforward network simplifi-
cation can be summarised in the form of a flowchart
as shown in Fig. 10. The algorithm is presented in
the figure in a rather descriptive manner; its detail
implementation heavily depends on how the neural
network topologies are stored and maintained by the
relevant computer program.

6. Network Training

Here, neural networks are trained in a batch mode
using the RPROP [20,21] algorithm. This method
individually adjusts each weight according to the
sign of the weight gradients evaluated during the
two most recent iterations. The RPROP algorithm
used in our experiments may be summarised as fol-
lows:

1. The first learning iteration is performed using the
gradient decent strategy:

OE
wj(1) = w~(0) + n Owj (0) (4)

Here E is the network error and the learning
parameter 77 is chosen according to the heuris-
tic formula:

Pruning Backpropagation NNs Using Modern Stochastic Optimisation Techniques 85

0.1

J

2. During subsequent iterations, step sizes to modify
connection and biase values are updated accord-
ing to the rules:

~min(A As(i- 1)*u),

. O E OE
if Ows (i) ~wj (i - 1) > 0

max(Ami,, As(/- 1)*d) ,

O f OE (i - 1) < O
As(i) = if Owj (i) O~

As(/- 1),

O E OE (i - 1)= 0 (6)
if Ows (i) O~

In these equations the subscript j refers to the
specific training data sample and i indicates
the current iteration (epoch). In our implemen-
tation of the learning algorithm u = 1.5, d = 0.6,
A m a x = 1 . 0 , Amin = 1 0 -6 .

3. The weights are modified by the Aj parameter
on a regular basis only if the corresponding
element of the gradient vector is non-zero, i.e.:

\owjl

OE
if Owj # 0

OE
wj(i+ l)= wj(i),if = 0

Owj

small random value

(optional, only when

training begins),

if wj(i) = 0 (7)

It is worth noting that the algorithm described by
these formulae cannot affect weights which are
exactly zero without the optional condition shown
in the last equation. When the link weight is zero,
the corresponding gradient vanishes and the algor-
ithm has, in general, two choices: do not alter the
weight or perform a blind trial in any direction. The
occurrence of this situation during the training pro-
cess is extremely unlikely, except when a given
weight is purposely initialised to a null value. This
is equivalent to the situation when the link is effec-

tively removed from the network. However, in the
experiments presented here we have used the simpli-
fication procedure described in the previous subsec-
tion to handle trimmed networks.

Despite its simplicity, the RPROP algorithm is
fast and reliable when compared to other training
methods that utilise gradient information. Performing
a single iteration is relatively uncomplicated: the
main overhead is associated with the evaluation of
weight gradients in the backpropagation scheme.
Because topology optimisation using a genetic algor-
ithm involves the training of several hundred differ-
ent topologies, we have modified the computation
of weight gradients to make training even more
efficient.

As the network error approaches zero, for some
training samples the corresponding gradient is van-
ishingly small. This happens more frequently as the
training progresses and the network becomes able
to learn the desired patterns. At some point back-
propagating very small errors may be counter-pro-
ductive, because the associated updates of the batch
gradient VE are then negligible. In the training
process used here, we have set a threshold for the
data samples which are used to calculate the gradi-
ents; if the relative output error for a given training
point is less than a threshold /3 (typically /3 = 0.5),
the partial update of the batch gradient is assumed
to be zero, i.e.:

/oEA
i=1

x, if Ei >--/3gtrg
q0(x) = 0, if E/ < /3Etrg (8)

In this formula Etrg is the acceptable training error
level.

The approach described typically accelerates
evaluation of the network gradients. As the training
converges, the execution of subsequent iterations
takes less time because the samples for which the
error is already small enough are rejected. We have
found that this method also helps to achieve a better
generalisation, since the training algorithm has the
capability to focus training on samples with the
higher errors and to neglect areas where the network
response surface matches the desired output pat-
tern well.

Although this modified gradient evaluation has
been used in conjunction with the RPROP algorithm,
the same modification may be applied to virtually
any training paradigm that utilises gradients. Our
brief experiments indicate that such training methods
as Super-SAAB, Delta-Bar-Delta, Silvia-Almeida or

86 S. W. Stepniewski and A. J. Keane

CaJculate output of each node~/
for zero network input. �9

Remove all hidden nodes that |
de not participate in creating I network responses.

Remove from the network all
degenerate hidden nodes

(those with permanent zero
output despite network input

and weight conliguration).

l Mark all hidden nodes where t
output does not depend on

network input.
"111

Choose the lirsl orocessino m

I network node.
i

I

I Remove all marked
nodes lrom the

network
i

i
r

Add inputs (scaled by link
weights) from all incoming

mark(~l nodes to the bias of
the currently chosen node.

processing node.

No

Fig. 10. A general flowchart of the simplification routine for feedforward neural networks with biased and unbiased nodes.

adaptive learning with momentum [20,21] are stable
and work well with this modification.

Another important issue associated with network
training is the termination criterion. The main goal
of training is to minimise the learning error while
ensuring good network generalisation. It has been
observed that forceful training may not produce
networks with adequate generalisation ability,
although the learning error achieved is small. The
most common remedy for this problem is to check
the network performance periodically during training
to assure that further training improves generalis-
ation as well as reduces learning error (the so called
cross-validation technique). For this purpose an
additional set of validation data, independent from
the main training pool is used. In a typical training
phase, it is normal for the validation error to
decrease. This trend may not be permanent, how-
ever: at some point the validation error usually
reverses or its improvement is extremely slow. The
training process should then be stopped. Figure 11
presents example traces of learning and validation
errors as they vary during training.

10 o

10 -1

10 -2

10 .3

MSE error

�9 . . \
0 500 1000 1500 2000 4000 4500 5000

epoch

Fig. 11. Changes of the learning (A) and validation (B) errors
during training. Curve C is the sum of traces A and B.

Detecting the point of minimal training and vali-
dation error is not an easy task. Figure 11 shows
that during the learning process we cannot expect
smooth curves that easily allow us to locate the
point of a minimal validation error (curve B) or the
sum of learning and validation errors (curve C).
This is exacerbated by the shifting nature of the

Pruning Backpropagation NNs Using Modern Stochastic Optimisation Techniques 87

validation error. Also, when the RPROP algorithm
is used, the learning error may occasionally increase,
because this algorithm does not check if every iter-
ation causes the learning error to reduce before
accepting a new weight adjustment. Some training
algorithms are more restrictive and discard weight
updates that cause the learning error to rise. Others
may purposely allow an increase in learning error
to some extent, because this helps the learning
procedure to escape from shallow, local minima of
the error surface. This, however, make the changes
of the validation error even more irregular and
difficult to utilise.

Typically, at the beginning of training, the vali-
dation error oscillates rapidly. Later, the training
process stabilises and the changes in validation error
become smaller. Instead of a clear increasing trend
in the validation error, that characterises overfitting,
it may then start to wander around some constant
value. In such a situation the magnitude of the
generalisation error may not be the best indication
of when to stop training. Consequently, we have
used the number of consecutive, unsuccessful train-
ing epochs as a stopping criterion. An unsuccessful
training iteration occurs when:

+ -> + (9)
i i -1

In our implementation of the training algorithm,
network training is stopped when 250 consecutive
iterations are unsuccessful. As with other rank based
methods, this stopping condition is robust and easy
to implement. Of course, setting the number of
unsuccessful iterations to 250 epochs (or more) does
not guarantee that there would not be any successful
steps ahead if training continued. When the learning
process is saturating, new, successful iterations are
typically encountered less and less frequently. Of
course, at some stage a training algorithm may
recover from some local attractor and accomplish
further error minimisation, but we require it should
occur within a certain number of trials. Therefore,
the number of unsuccessful training iterations defines
a cost limit on achieving error minimisation. Obvi-
ously, when training is stopped according to this
criterion, the final set of network weights does not
correspond to the best result found. It is therefore
necessary to store the weight values in a separate
array every time a successful training step is made.
At the end of the training process the best set of
network weights is then recalled.

In some cases the training process may be
obstructed by the total inadequacy of a network
architecture to learn the desired patterns or by satu-

ration of network nodes. If all elements of the
weight gradient are very small, then the training
algorithm cannot obtain reliable indications of where
the search should be directed. This situation is rare
but if it occurs, training may be executed over a
very large number of epochs without any real chance
of obtaining a useful result. To provide early detec-
tion of this problem, the training algorithm evaluates
the L2 norm of the batch gradient every 100 epochs.
If the norm is smaller than 1 0 -6 , the training process
is aborted.

Finally, it is worth emphasising that the RPROP
algorithm is a local optimisation method. In practice,
this means that the final results of training may vary
as the initial weight settings are changed. Typically,
the error surfaces of feedforward networks have
many local minima. This means that the training
process is sensitive to its starting point. Despite
recent progress in finding the most appropriate
weight initialisation that would help a training
method to find near optimal solutions, the most
widely adopted approach still utilises random weight
initialisation. Our experiments with stochastic optim-
isers employed to design neural networks show that
using different random starting points for training a
given network at each stage of the topology search
severely deceives such methods [22]. Under these
circumstances even the best architecture found so
far by a topology optimiser may perform quite
indifferently when trained in the next generation
from another starting point. For this reason a fixed
initial value was assigned to each bias and weight
to reduce fluctuation in evaluation of similar neu-
ral networks.

A rule of thumb for choosing the size of training
set to achieve good neural network generalisation is
to select the number of training patterns to be
between 10*Nw and 20*Nw (where Nw is the total
quantity of weights in the network), although some-
times a smaller number of data samples is sufficient.
Such values are used for fine training of a single
network. Because training using big data sets is
time consuming, in the present work we have used
the substantially reduced number of 25 input/output
pairs for training to estimate the usefulness of a
particular neural network. Then, after completing a
topology optimisation, we trained the best per-
forming network on a larger number of data sampl-
es.

As the number of training samples is one of the
major key issues that determines the time and CPU
resources required to complete the topology search,
for some applications where, more possibly noise
free data are available, the training set could be
reduced (or enhanced) by estimation of the novelty

88 S. W. Stepniewski and A. J. Keane

of each training pattern. Such a technique is for
example discussed in Bishop [23].

In our two experiments, initial unpruned neural
networks with 177 weights (152 link weights, 25
biases) and 183 weights (164 link weights, 19
biases) are used, respectively. All the networks were
allowed to train for a maximum of 5000 epochs.
Learning was stopped earlier if the network achieved
an output error of less than 0.001 per data sample
used during training. For moderately pruned net-
works and 25 training samples, convergence was
usually achieved in many fewer cycles. After com-
pleting the training phase, networks were validated
using 100 previously unseen data points.

7. Fitness Function

In our study, optimal network design corresponds
to the global minimum of a fitness function. When
constructing this function we have tried to avoid
incorporating explicitly parameters that are not
directly associated with neural network topology,
such as the number of cycles required to train the
network or the speed of convergence (these values
can loosely characterise a training algorithm as
well). The main factor used for the fitness function
is the networks ability to generalise unseen patterns.
For this purpose, we have used a relatively large
number of input-output patterns as a validation test
in comparison to the training subset. To create a
strong selective pressure that favours smaller net-
works, a so-called 'effective number of active con-
nections' or 'number of connections in the simplified
network' is also included in the fitness function as
a parameter describing the network size. Throughout
these experiments we utilised two types of fitness
function:

and

Ev) LA (10)

+ L ~ x (11)

where EL and Ev corresponds to sum square error
for learning and verification, respectively, and N
represents the number of data patterns used in each
stage. LA is the number of connections after network
simplification and L is the maximum number of
allowed links (the length of the chromosome used
to encode the initial topology). The purpose of the
constant A in Eq. (10) is to scale the sum square
errors to the same order (10 1) as the component

indicating network complexity (LA/Lmax). In Eq. (11)
the second element (1 + LA/Lm~) may be interpreted
as a penalty coefficient; as the network gets smaller
this factor approaches 1 while for a fully connected
network it is 2. This version of fitness function
avoids the use of the parameter A which has to be
carefully adjusted before launching topology
opfimisation.

For networks that were trained successfully EL
(the network's ability to memorise training data) is
relatively small. In such cases, it is the performance
during verification (its generalisation ability) and the
size of the network that control the value of the
fitness. Only if the network could not be trained is
EL/NL expected to be high; Ev/Nv then further wor-
sens the fitness to ensure that a given solution would
be likely to be rejected by the optimisation pro-
cedure.

Although fitness functions (10) and (11) are rela-
tively simple, their values depend on several 'hid-
den' factors that are not directly associated with
network topology. For example, the choice of learn-
ing algorithm or even its internal parameters influ-
ence the value of fitness. Under one set of circum-
stances the network may be trained successfully
while in another the algorithm may fail to converge
and therefore the network would be considered use-
less. Figure 12 shows the value of fitness function
(11) evaluated for the same set of 200 networks
using different training algorithms (to generate these
networks the chromosome was treated as a binary
number that was simply incremented). Clearly, the
same networks would appear differently to a top-
ology optimiser when different training algorithms
were employed. (It should be noted that the curves
displayed on this figure do not represent the true
function to be optimised which is a problem spanned
over multi-dimensional binary space. This is only a
one-to-one comparison of the fitness function values
calculated for the same neural networks and the
same initial weight conditions.)

Evaluating a given network simply on learning
results and validation tests has several other draw-
backs. For example, using a small number of
samples in both phases speeds up the optimisation
process but may result in removing synaptic connec-
tions too forcefully since the limited number of
measurements might not provide enough evidence
to justify the importance of some links. On the other
hand, using a larger quantity of data to evaluate the
network may mean that bigger networks could be
trained more precisely than smaller ones and there-
fore the pruning process would be reluctant to
remove links. This may especially be the case when
employing cross-validation techniques. Such

Pruning Backpropagation NNs Using Modern Stochastic Optimisation Techniques 89

1 0 0 ~

10"1[, , �9 ,

0 50 I O0 150 200
lO2[, . ,

(B)
E

1 0 1 ~

100

10"I[, , , �9

0 50 100 150 200

10

10

10

10

10

10

10

(c)

0 50 100 150 !00

' ' (D)

�9 i I i

0 50 I00 150 200

Fig. 12. A comparison of fitness values evaluated for 200 neural networks by different training algorithms: A - gradient decent with
adaptive learning rate and momentum, B - Levenberg-Marquardt; C - RPROP, D - RPROP averaged over five independent runs.

methods use more sophisticated strategies during
training: as some, particularly oversized, networks
exhibit a tendency for overtraining which is mani-
fested in an almost perfect fit to the training data
but much larger validation error, it is possible to
perform a periodic check of the overall network
performance during the training phase and terminate
it (even before reaching the desired learning error)
if validation results are continuously deteriorating.
As a result, we may expect to obtain smaller values
of the (EL/NL + Ev/Nv) component of the objective
functions, and consequently abate the selective
pressure against bigger architectures. This could be
balanced by a modification to the penalty factor
representing network relative size as follows:

F(')=(~+Ev)R(I+LA• (12)

where S is a constant parameter (S > 1.0, stronger
tendency to remove synaptic links, 0.0 < S < 1.0 -
weaker selective pressure). The second parameter R
(R - 1) may be also used to scale the network
performance evaluation. In some cases setting these
parameters to other values than assumed here as
default (R = 1, S = 1) may considerably improve the
efficiency of the topology search [22].

Occasionally, when the initial, unpruned network
is small, this penalty factor may be difficult to
adjust precisely using the parameter S. The penalty
function may overly reward very small networks and
remove too many links. Then, a modified complexity
penalty factor (9 can be applied:

= 1) La s

ev ELIR
: N-V "Jr NLJ ~)(tA/tmax) (1 3)

The parameter 7 (Y -> 1) affects the maximum value
of the complexity penalty while the exponent S
controls the shape of the function O: for S approach-
ing unity the penalty is close to linear, but as S
increases a stronger penalty is applied to the biggest
networks leaving smaller and medium size architec-
tures relatively unpenalised. This more sophisticated
objective function is not pursued further here.

8. Stochast ic Opt imisers

The genetic algorithm tested here uses four basic
operations as described in Goldberg [24], i.e. multi-
point crossover (crossover probability. Pc=0.8) ,
mutation (PM=0.005), inversion (/'1=0.6) and
selection. The selection 1 scheme is generational, lin-
ear ranking and extinctive, allowing the best 80%
of the current population to breed and discarding
the remaining 20% of chromosomes. It is also 1-
elitist, so the top performing individual of each
generation is assured of being included in the next
population. To prevent the genetic algorithm from
being dominated by a few moderately good designs

~Terminology used to describe selection follows definitions
presented by Back and Hoffrneister [25].

90 S. W. Stepniewski and A. J. Keane

that may block further exploration of the search
space, a fitness sharing scheme is employed [24,26].
This method performs a cluster analysis of the cur-
rent population and modifies the raw objective func-
tion so that the chances of creating individuals
in overcrowded regions are reduced. A somewhat
opposite operation, inbreeding, is launched if,
despite the niche penalty, a particular cluster
remains numerous.

Here a population size of 50 chromosomes was
used by the genetic algorithm. The method was
initialised with 49 randomly created individuals, in
addition to the one chromosome having all genes
set to one that corresponds to an unpruned network.
The number of generations was set to ten [27].

For the simulated annealing method the same
strong encoding was used, and the unpruned network
architecture was selected as a starting point. The
routine [26] uses fixed rate random mutation with
probability 0.1 to drive the search. If modification
of the current solution is successful then the new
point is always accepted. When the i-th iteration
fails to lower the objective function then the pro-
posed step may be rejected or not. A decision to
switch to the new point is made with a probability
Pi(') defined as follows:

f
91, i f F i ~ Fi_ 1

Pi(')
1 F i - F i - i I

exp - :l.iF--1- - Fo~[]' if Fi > Fi_I

(14)

The probability of accepting an unsuccessful
mutation depends on the relative change of the
objective function Fi(.) and a parameter T (the
annealing temperature) that varies throughout the
search. At the beginning of the search T is relatively
high so that most of the steps are accepted. At this
stage the method is similar to a random walk. As
the search progresses the annealing temperature is
reduced several times to approach a small, positive
value or zero just before termination. Then the
process resembles the random descent strategy. For
500 allowed evaluations of the objective function
the number of annealing temperatures, NT, was
chosen to be eight and the temperature was
decreased at intervals chosen according to the for-
mula:

Tj = r (~r /% -j) , j = 1,...,NT (15)

where % and rc are the control parameters of the
cooling schedule; % regulates the range of annealing
temperatures, while % shifts this range to encompass
lower or higher values. Here % was set to 5 and
% t o 2 .

9. Experimental Results

Figure 13 illustrates the distribution of fitness for
2500 networks derived by randomly pruning the
fully connected architecture 2-8-8-8-1 (fitness func-
tion (10)). A similar type of distribution was encoun-
tered when random pruning was started from the
hyper-connected network 2-6-6-6-1 (fitness function
(11)). It is important to note that, as we search for
a superior network (smaller fitness function), the
expected number of improved solutions grows at
first (!) to reach a maximum; then the number
of excellent topologies is sharply decreasing. This
demonstrates the well known robustness of neural
networks which are able to function even when
partially damaged.

Perhaps surprisingly, the bar graph of Fig. 13
suggests that for a random search it is quite difficult
to find a network with the worst fitness function (or
close to the worst), since the number of networks
with such deteriorated performance decreases in an
exponential fashion. On the other hand, many such
architectures can be readily constructed by hand.

The distribution presented in Fig. 13 shows that
the probability of finding a solution better than the
fully connected, unpruned network is relatively high.
As a result, even a few random samples can be
beneficial. This situation may be misleading when
reviewing the results of optimisation without com-
parison to other methods. One may expect that some
optimisation strategy that is more sophisticated than
a random search works, but only comparison with
the latter reveals if this initial hypothesis is correct.

The difference in value of the fitness function
between the most superior networks found and those
with slightly worse performance, but which form
the most numerous group, is clearly small. This
further justifies the importance of precise evaluation
of network fitness as even a small amount of noise

250

number of
networks

20O

150

100

50

unpruned network

0 ~
0 2 4 6 8

fitness function (eq. 4)

Fig. 13. The performance distribution of 2500 neural networks
obtained by randomly pruning a fully connected MLP 2-8-8-8-1.

Pruning Backpropagation NNs Using Modern Stochastic Optimisation Techniques 91

0.8
fitness ',
function 0.75 i i i ,

0.7 t. RN

o55 / - ,,
........ :-~ ,, GA

0.55 " ~

0.5 --. 100 2()0 3()0 4C)0 500
number of iterations

Fig. 14. Topology pruning of the fully connected neural network
(2-8-8-8-1) using genetic algorithms (GA), simulated annealing
(SA) and random search (RN). Fitness function defined by
Eq. (10).

introduced during training of the best networks may
result in totally erroneous classifications. Inaccurate
training may then potentially mislead the search
being conducted by genetic algorithm or simulated
annealing and produce less reliable results. In the
presence of such noise, it may be expected that
increasing the population size of the genetic algor-
ithm should help to prevent it from being deceived.
For simple measurements, contaminated by uncorre-
lated, zero mean noise, increasing the number of
trials and averaging the results reduces the disturb-
ance. However, here it is arguable that a similar
effect takes place when more, less accurate network
evaluations are used since the character of the noise
introduced during the network training phase is
unknown.

Figures 14 and 15 compare the progress made
during topology pruning of fully and hyper-connec-
ted neural architectures, respectively. All the traces
exhibit initial, rapid changes in the fitness. However,

0.8 -,
fitness ! ' i
function

07 i i RN

"]"i G A 0.6 ,..~

0.5

i

0.4 ' q

- - L

L - - r ,

number of Reretions

Fig. 15. Topology pruning of the hyper-connected neural network
(2-6-6-6-1) using genetic algorithms (GA), simulated annealing
(SA) and random search (RN). Fitness function defined by
gq. (11).

after 50-100 iterations the search becomes more
arduous as the number of better networks sharply
decreases (n.b. these results were averaged over
five independent runs for each optimisation method.
Consequently, the corresponding traces show more
successful steps in searching for better network
structures than a single run which typically ended
with only 2-5 improvements after the first rapid
fall).

The figures suggest that, for our problem, genetic
algorithm or simulated annealing optimisation are,
on average, able to find comparable solutions using
half or less the iterations required by a random
search. A factor of only two increase in convergence
speed over an unguided search may seem disap-
pointing at first, but this result should be interpreted
carefully. The most significant fact is that both
genetic algorithm and simulated annealing were able
to find solutions that could not be discovered by a
random search at all. If we take into account the
fact that the expected number of excellent networks
decreases very rapidly, and that the search was
conducted in a noisy environment, the final optimis-
ation results seem quite encouraging.

Figures 16 and 17 visualise the generalisation
ability of the unpruned fully connected network 2-
8-8-8-1 and the best network found by the genetic
algorithm (Appendix A.1, topology #4). The pruned
network, besides its overall smaller error, offers a
better generalisation than its unpruned counterpart
after training, even with only 25 samples. The gener-
alisation of the pruned network continues to improve
using bigger training data sets, while for the fully
connected network the error surface then shows the
typical attributes of overtraining (i.e. a bumpy
landscape).

Table 1 sumrnarises the best results obtained by
the topology optimisers. It lists square sum errors
averaged over 625 equally spaced points (25 • 25
grid) of the rectangular area, -2 --< u(k- 1) - 2,
-5 <-- y (k - 1) <-- 5, where neural network modeling
(Eq. (3)) is applied. As these points are different
from the training and validation data, so the corre-
sponding errors can be used to make an independent
comparison of the various networks trained with
25 and 100 data samples. The results suggest that
initialising the pruning process from a hyper-connec-
ted architecture may help find better performing
networks than those produced from a standard MLP.

When the pruned network is retrained with more
data, it may be expected that its overall performance
would improve. However, the best network obtained
from a fully connected architecture by simulated
annealing (Appendix A.2, topology #3) behaves in
somewhat different way. Although its structure is

92 S. W. Stepniewski and A. J. Keane

(A) (B)

e(k)

o 1 y(k-U O ~ . U 1

-2

Fig. 16. Difference between the neural network and nonlinear system outputs. A - fully connected neural network 2-8-8-8-1; B - the
best network structure obtained after pruning by genetic algorithm - network #4, Appendix A.1. Both networks were trained using
25 input-output pairs.

10.

5.

O. e(k)

-5.

-10,
5"

(A)

-5 -2

(B)

,0<.._
y(k-U O ~ . U 1

-5 -2

Fig. 17. Evidence of the better results for generalisation ability of the networks found as the result of pruning. The charts show
results for the same networks as in Fig. 16, but their training was performed using 100 data points instead of 25.

Table 1. Performance comparison of the best networks found in each topology
optimisation test (the numbers in the table are averaged validation taken across
625 equally spaced points (25 • 25 grid) of the network input domain after
training from the initial weights used in the optimisation searches).

Method Training Topology: 2-8-8-8-1 Topology: 2-6-6-6-1
data fully connected hyper-connected

Initial Pruned Initial Pruned

GA 25 1.1307 0.2188 a 2.1491 0.1648 c

100 1.0076 0.1202 0.6958 0.1074

SA 25 1.7663 0.2311 b 1.9267 0.2341 d

100 0.2813 0.2452 0.8004 0.0804

"Appendix A.1, network #4,
~Appendix A.2, network #3,
~Appendix A.3, network #4,
dAppendix A.4, network #2.

Pruning Backpropagation NNs Using Modern Stochastic Optimisation Techniques 93

similar to the network found using the genetic algor-
ithm (,Appendix A.1, topology #4), the performance
does not get better when larger numbers of training
data are used. Consequently, the corresponding
response surface (Fig. 18(b)) gradually loses relevant
detail folds and the network 'generalisation'
becomes inaccurate. We have found that further
increasing the number of training data (e.g. to 500
or 1000 samples) may cause a similar effect for the
other pruned architectures. This suggests that the
number of data points used for network testing may
affect the final pruning results. Also, it seems that
the hypothesis: if a given network performs well for
a small number of training points, it will operate
even better after training with more data may not
be extended too far.

10. Conclusions

We have demonstrated that it is possible, using
stochastic optimisation methods, to find neural net-
works with good generalisation features even using
comparatively small numbers of data points for
training and verification. The time consuming nature

of the evaluation of each design considered led us to
use such trimmed data pools. These are, nonetheless,
shown to be sufficient for the experiments carried
out. Moreover, for some neural network applications,
the limited number of available measurements may
well restrict training in this way.

Since the problem under investigation (i.e. non-
linear identification) is closely related to the inter-
polation task, the main measure of a network's
usefulness is its ability to generalise. The total sum
squared training error is less meaningful; a lack of
convergence within a maximum number of epochs
may arise because of the deficiencies of a particular
architecture, but it could also show that the initial
starting point for training was placed too far from
the optimum or the choice of training algorithm was
not suitable for a given shape of error surface, or
the training search was stuck in a saddle point or
shallow local minimum.

To assure that the topology optimisation search
was guided toward smaller networks, we have
explicitly introduced penalty factors that worsen fit-
ness as networks become more complex. In this
way, the criteria of optimality defined here implies
that the best networks should be a compromise

(A) (B)

,! ,!

-I u(k-U (C) (D)

,! ,!

y(k-1) 0 ~ ~ / ~ ~ 1 y(k-1) 0 ~ i) 1
-1 u(k.l) -5 -2

Fig. 18. Response surfaces of the best networks obtained in each topology optimisation test after training with 100 data points. A -
network #4, Appendix A.1 (GA, fully connected start); B - network #3, Appendix A.2 (SA, fully connected start); C - network #4,
Appendix A.3 (GA, hyper-connected start); D - network #2, Appendix A.4 (SA, hyper-connected start).

94 S. W. Stepniewski and A. J. Keane

between size and performance. Other pruning tech-
niques (e.g. OBD or OBS) deal with a similar type
of dilemma: they attempt to estimate the conse-
quences of removing every connection inside a fully
trained network, and accept only those changes that
are least disruptive, but not necessarily beneficial.
In our approach, the balance between complexity
and performance can be regulated at the level of
the fitness definition, .but care must be exercised
when setting values since the network performance
depends also on other 'hidden' aspects of the
optimisation problem, such as the number of training
and validation points, the initial unpruned topology,
the particular training algorithm and the overall
training strategy.

A general simplification procedure for feed-
forward networks (as generated by the stochastic
topology optimisers) has been proposed for three
main reasons: (i) to speed up the training phases,
(ii) to eliminate useless connections or those with
duplicated functions, and (iii)to assess the actual
architecture complexity.

Although the number of tests performed here does
not allow any conclusive, general statement to be
made, a closer examination of the test problem
reveals that, in this case, neural network topology
pruning is basically a two stage process. During the
first period, rapid movement is observed which is
associated with the underlying problem (architecture
robustness rooted in network redundancy) and which
should not be used to judge the efficiency of a
particular optimisation method. The second, less
spectacular, stage of slow and arduous convergence
is the phase when the optimisers are achieving
real gains.

Acknowledgments. We would like to thank Prof.
Andrzej Cichocki from the Warsaw University of
Technology (Poland) and Laboratory of Artificial
Brain Systems FRP R/KEN (Japan) for his encour-
agement and suggestions.

References

1. Bhat VH, Minderman AP, McAvoy T, Wang NS.
Modeling chemical process systems via neural compu-
tation. IEEE Control Systems Magazine 1990; April,
24-29

2. Evans JT, Gomm JB, Williams D, Lisboa PJB, To
QS. A practical application of neural modelling and
predictive control. In: Application of Neural Networks
to Modelling and Control, Page GF, Gomm JB, Willi-
ams D (eds.). Chapman & Hall, 1994

3. Hunt KJ, Sbarbaro D, Tbikowski R, Gawthrop PJ.
Neural networks for control systems - a survey. Auto-
matica 1992; 28 (6): 1083-1112

4. Narendra KS, Parthasarathy K. Identification and con-
trol of dynamical systems using neural networks. IEEE
Trans on Neural Networks 1990; 1 (1): 4-27

5. Beaufays F, Abdel-Mogid Y, Widrow B. Application
of neural networks to load-frequency control in power
systems. Neural Networks 1994; 7 (1): 183-194

6. Wang D, Chai T. Multivariable adaptive control of
unknown nonlinear dynamic systems using neural net-
works. Proc 33rd Conf on Decision and Control, Lake
Buena Vista, FL, 1994, 2500-2505

7. Willis MJ, Massimo C, Montague GA, Tham MT,
Morris AJ. Artificial neural networks in process engin-
eering. IEEE Proc Pt D 1991; 138 (3): 256-266

8. Naidu RS, Zafiriou E, McAvoy TJ. Use of neural
networks for sensor failure detection in a control
system. IEEE Control Systems Magazine 1990; April,
49-55

9. Haykin S. Neural Networks - A Comprehensive Foun-
dation. Macmillan College Publishing, 1994

10. Reed R. Pruning algorithms - a survey. IEEE Trans
on Neural Networks 1993; 4 (5)

11. Eigel-Danielson V, Augustejin MF. Neural network
pruning and its effect on generalization - some experi-
mental results. Neural Parallel & Scientific Compu-
tation 1993; t: 59-70

12. Hassibi B, Stork DG, Wolff GJ. Optimal brain surgeon
and general network pruning. IEEE International Con-
ference on Neural Networks, 1993; 1, 293-299

13. Fahlman SE, Lebiere C. The cascade-correlation learn-
ing architecture. Technical Report CMU-CS-90-100,
Carnegie Mellon University, 1990

14. Kuscu I, Thornton C. Design of Artificial Neural
Networks Using Genetic Algorithms: review and pros-
pect. Cognitive and Computing Sciences, University
of Sussex, 1994

15. Billings SA, Jamaluddin HB, Chert S. Properties of
neural networks with applications to modeling non-
linear dynamical systems. Int J Control 1992, 55 (1):
193-224

16. Jutten C. Learning in evolutive neural architectures:
an ill-posed problem? From natural to artificial neural
computations. Int Workshop on ANN, Springer-Ver-
lag, 1995, 361-371

17. Miller GF, Todd PM, Hegde SU. Designing neural
networks using genetic algorithms. Proc 3rd Int Conf
on Genetic Algorithms. Morgan Kaufmann, 1989,
379-384

18. Whitley D, Starkweather T, Bogart C. Genetic algor-
ithms and neural networks: optimizing connections and
connectivity. Parallel Computing 1990; 14:347-361

19. Yaw-Terug Su, Yuh-Tay Sheen, Neural network for
system identification. Int J Systems Sci 1992; 23 (12):
2171-2186

20. Schiffmann W, Joost M, Weruer R. Optimization of
the Backpropagation Algorithm for Training Multi-
layer Perceptrons. Technical Report, University of
Koblenz, 1992

21. Cichocki A, Unbehauen R. Neural Networks for Opti-
mization and Signal Processing, 4th ed. Wiley, 1994

22. Stepniewski SW, Keane AJ. Topology design of feed-
forward neural networks by genetic algorithms. PPSN
IV, Berlin, 1996

23. Bishop CM. Novelty detection and neural network
validation. IEE Proc Vision, Image and Signal Pro-
cessing 19??; 141 (4): 217-222

24. Goldberg, DE. Genetic Algorithms in Search, Optimiz-
ation and Machine Learning. Addison-Wesley, 1989

25. B~ck T, Hoffmeister F. Extended selection mech-
anisms in genetic algorithms. Proc 4th Int Conf on
Genetic Algorithms, Morgan Kaufmann, 1991, 92-99

26. Keane AJ. The Options Design Exploration System,

Appendix A.1

Reference Manual and User Guide, 1994 (availablc
by Internet, http:www.soton.ac.uk/najk/options.ps)

27. Keane AJ. Experiences with optimizers in structural
design. Proc Conf on Adaptive Computing in Engin-
eering Design and Control, 1994, 14-27

G E N E T I C A L G O R I T H M
INITIAL ARCHITECTURE AND BEST RESULTS IN EACH OF FIVE RUNS

unpruned network

1

10 18 26

a v e r a g e f i tness = 3 . 4 6 1 6

27

2

3

10

f i tness = 0 . 5 1 6 0 (i terat ion 46)

(2)

(4)

1

2 27

lO

lO

f i tness = 0 . 4 8 5 2 (i terat ion 4 7 5)

2

F U L L Y C O N N E C T E D S T A R T

(1)

10 7

fitness = 0.5506 (iteration 420)

Pruning Backpropagation NNs Using Modern Stochastic Optimisation Techniques 95

27

f i tness = 0 . 5 1 6 5 (i terat ion 279)

1 27

2 26

10

f i tness = 0 . 5 5 2 8 (i terat ion 4 5 5)

(3)

(5)

96

Appendix A.2

S. W. Stepniewski and A. J. Keane

SIMULATED ANNEALING
INITIAL ARCHITECTURE AND BEST RESULTS IN EACH OF

unpruned network

1

10 18 26

average fitness = 4.1458

(2)

8 27

2

(4)

10

fitness = 0.4995 (iteration 212)

F,VE RUNS FULLYOONNEOTEOSTAI 1

9 17 I

fitness = 0.5361 (iteration 208) I 1311
1

fitness = 0.4542 (iteration 453)

(6)

1

fitness = 0.4937 (iteration 458)

Pruning Backpropagation NNs Using Modern Stochastic Optimisation Techniques

Appendix A.3

97

GENETIC ALGORITHM HYPER-CONNECTED START
INITIAL ARCHITECTURE AND BEST RESULTS IN EACH OF FIVE RUNS

unpruned network (1)

8 14 20

average fitness = 3.7690

(2)

1

8 19

1

fitness = 0.3453 (iteration 320)

7 14

fitness = 0.3325 (iteration 463)

1

1

fitness = 0.3637 (iteration 380)

1

21

6

fitness = 0.3766 (iteration 344)

(4)

1 21

13

fitness = 0.3346 (iteration 164)

(3)

(s)

98

Appendix A.4

S. W. Stepniewski and A. J. Keane

SIMULATED ANNEALING
INITIAL ARCHITECTURE AND BEST RESULTS IN EACH OF FIVE RUNS

unpruned network

8 14 20

average fitness = 4.3133

1

fitness = 0,3616 (iteration 492)

(2)

1

21

8 13

fitness = 0.4309 (iteration 470)

(4)

HYPER-CONNECTED START

(1)

1 21

14

fitness = 0.3981 (iteration 172)

1

19

fitness = 0.3951 (iteration 392)

8

fitness = 0.3722 (iteration 114)

(3)

(5)

