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Approaches combining genetic algorithms and neu- 
ral networks have received a great deal of attention 
in recent years. As a result, much work has been 
reported in two major areas of neural network 
design: training and topology optimisation. This 
paper focuses on the key issues associated with the 
problem of pruning a multi-layer perceptron using 
genetic algorithms and simulated annealing. The 
study presented considers a number of aspects asso- 
ciated with network training that may alter the 
behaviour of a stochastic topology optimiser. 
Enhancements are discussed that can improve top- 
ology searches. Simulation results for the two men- 
tioned stochastic optimisation methods applied to 
non-linear system identification are presented and 
compared with a simple random search. 
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1. Introduct ion  

Feedforward networks are perhaps the most com- 
monly used among all types of neural networks. 
These networks seem to be an attractive tool for 
control engineering mainly due to the need for the 
flexible, accurate and inexpensive process models 
which they can provide. It should be emphasised that 
creating and validating alternative process models is 
sometimes a rather costly procedure. For example 
Bhat et al. [1] estimate that in the petroleum industry 
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these costs can be as high as 75% of all the expenses 
associated with the development of a control system. 

Neural models may be used in a number of ways 
in control systems. They may be employed as multi- 
step ahead predictors in optimal control systems 
[2,3] or in transportation delay compensators (Smith 
predictors). One step-ahead neural predictors can be 
employed in reference model control schemes or 
related approaches [3,4]. In some cases, neural mod- 
els function as Jacobian approximators of the con- 
trolled plant [5,6]. Such Jacobians are required, for 
example, when the controller is also built using 
neural network techniques, and needs to be trained 
while reflecting the influence of the plant. For these 
tasks, neural models are especially useful when the 
non-linear plant parameters vary in time or its ana- 
lytical description is imprecise [5]. Neural models 
may also be used to estimate otherwise unavailable 
data for use by external controllers. Such problems 
occur, for instance, in technological processes that 
involve biomass fermentation [7]. In such cases, 
laboratory analyses introduce delays in sampling and 
are performed over such long intervals that they 
may cause operability problems for a given control 
system. Neural networks can then estimate unknown 
measurements based on more readily available out- 
puts, e.g. process age, oxygen consumption, carbon 
dioxide production, etc. Besides these basic plant 
models, other specially designed neural networks 
may operate as sensor/actuator failure detectors [8] 
or even function as direct controllers when a stable, 
inverse plant model exists [3]. 

Obviously, in all these applications the maximal 
performance of the neural model is very desirable. 
The capabilities of control schemes generally 
improve as the synthesised model better matches 
the object. Well designed networks should also be 
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as small as possible, especially for applications that 
require on-line model parameter adaption. Poor exci- 
tation or correlation between input signals and dis- 
turbances at the plant output, due to control feedback 
loops, commonly make identification conditions 
more difficult and oversized networks may then be 
prone to overfitting [9]. 

Finding a suitable neural network architecture for 
a particular application is still a challenging task. It 
is possible to experiment with hand crafted designs 
found by trial and error procedures, but a much 
more appealing approach is to employ techniques 
that tune the network topology automatically. 
Methods developed for automated neural network 
topology design can be categorised into three major 
groups according to how they handle the problem 
of constructing network structures; a particular 
method can allow a topology to shrink only, expand 
only, or both shrink and expand. 

A series of methods that attempt to shrink or 
prune some given original architecture are described 
in Reed [10]. For this task, one possible approach 
is to estimate the importance of each individual 
connection or whole node inside the network and 
then gradually to remove unnecessary components. 
A comparison of two such algorithms, Optimal Brain 
Damage (OBD) and skeletonisation is covered, for 
example, in Eigel-Danielson and Augustejin [11]. A 
more general approach than OBD is called Optimal 
Brain Surgeon (OBS) and is presented in Hassibi et 

al. [12]. Reduction in network size can be also 
combined with the process of network training. 
Weight decay and weight elimination approaches 
[9,10] modify the learning law in such a way that 
it tends to lower the absolute values of connection 
weights so the weakest synapses can be removed if 
identified as being redundant. 

Probably the most well known example of a 
method that utilises the expansion strategy is cascade 
correlation, designed by Falhman et al. [13]. This 
method progressively adds hidden nodes until the 
output error of the network decreases to a desired 
level. As a result a special kind of topology is 
created that may be viewed as a layered architecture 
with one node in each hidden layer connected to 
all previous nodes as well as the network input 
and output. 

Stochastic optimisation techniques, such as genetic 
algorithms, have been employed for both network 
pruning and in the schemes that allow networks to 
grow and shrink. They use an objective function 
that reflects the overall performance of a network 
(complexity, accuracy, learning speed, etc.) to guide 
the search toward regions where promising architec- 
tures are more likely to be found. The methods 

often differ in the way they encode solutions and 
also sample the search space. A more comprehensive 
discussion of genetic algorithms applied to designing 
neural networks is carried out in the retrospective 
paper [14]. 

In this paper we focus attention on reducing 
the size of neural networks (without compromising 
network generalisation ability or learning accuracy) 
using stochastic optimisation techniques. We investi- 
gate the problem of pruning feedforward neural 
networks that are used to carry out nonlinear identi- 
fication. The performance of two methods that have 
recently gained a great deal of attention - Genetic 
Algorithms (GA) and Simulated Annealing (SA) - 
are examined. These methods are additionally com- 
pared to a simple random search. As is shown later 
in this paper, such a comparison provides a rather 
severe benchmark for the methods under investi- 
gation. 

Simulated annealing and genetic algorithm 
approaches provide several attractive features for 
developing near optimal network architectures. First 
of all, they offer a true separability between the 
stages of network training and architecture develop- 

m e n t .  This allows hybrid systems to be designed 
for network pruning. Since the pruning procedures 
investigated here utilise only the overall, off-line 
evaluated, network performance to guide the top- 
ology search, the same approach, as for feedforward 
networks, may be used for other network types, e.g. 
boolean or recurrent neural networks. The latter ones 
are better suited to function as multi-step ahead 
predictors, but they are typically more sensitive to 
architecture oversizing [15]. It is also worth noting 
that the cost function used for topology optimisation 
need not be the same as that used for the training 
phase. The proposed methodology allows great 
flexibility in setting up this function, since SA or 
GA do not make any assumptions about continuity 
or differentiability of the problem to be solved. In 
particular, they allow the user to introduce a variety 
of terms that quantify network complexity, generalis- 
ation ability or network performance measured under 
conditions that emulate true working environments. 
Finally, the search may be conducted at various 
levels of detail, especially by a GA. It could be 
used not only for node or synapse removal but, for 
example, it could be extended to assign appropriate 
transfer functions for each node. A GA method 
can also be very easily distributed among several 
processors or computers as it operates on popu- 
lations of solutions that may be evaluated concur- 
rently. 

Besides these features, the GA and SA do not 
suffer from several of the shortcomings for which 
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other pruning techniques are sometimes criticised. 
For example, sensitivity analysis/based methods 
using second order expansion of the cost function 
are valid only if the weight changes are small [16]; 
as the synapse weight grows so does the error in its 
sensitivity estimation. Moreover, for some pruning 
methods (e.g. skeletonisation or OBD), it has been 
observed that they tend to underestimate the impor- 
tance of the elements that are located closer to 
network inputs [11]. These effects are especially 
problematic in 'wide' network architectures due to 
so called derivative dilution. In contrast to stochastic 
optimisers, OBD or OBS attempt to remove one 
link at a time. As was noted in Reed [10], such 
techniques may not estimate correctly the importance 
of some configuration of connections, such as where 
two weights cancel each other exactly. Removing 
either one leads to a significant error increase, so 
their individual importance is then not negligible, 
but in reality the whole pair is useless in performing 
the desired input-output mapping. Another difficulty 
with such methods is associated with the threshold 
definitions that are used to decide which network 
elements are important. This problem is especially 
severe in weight elimination or weight sharing 
schemes, as it should not be assumed that small 
weight value is a reliable indication of redundancy. 

The methodology presented here is similar to that 
described in Miller e t  al .  [17] and Whitley e t  al .  

[18], however, this study focuses on solving another, 
distinct class of problems. In the cited reports, top- 
ology optimisation was tested on such tasks as the 
boolean XOR function, four-quadrant classification 
or the binary adder. On these tests, neural networks 
are expected to simply produce rapid changes in 
response for certain small deviations in their input. 
Therefore, such problems do not examine a very 
important feature of neural networks, i.e. their ability 
to generalise knowledge from examples. Good gen- 
eralisation means that a network is capable of pro- 
ducing smooth approximations of training data: four- 
quadrant classification or the logical XOR do the 
exact opposite. Of course, the different test problems 
investigated here require alternative, more appropri- 
ate methods to train the neural networks and to 
verify their performance. 

As the problem becomes more complicated, so 
the size of the network and training data set 
increases and the training of a single network may 
become very slow. For this reason, most reported 
experiments in the field of combining genetic algor- 
ithms and neural networks have been tested on very 
simple examples. In some cases networks are not 
trained fully, instead their performance evaluated 
after some small number of cycles is used to esti- 

mate the final output error and the usefulness of a 
given design. This, however, may not reflect the 
true result when the network is allowed to train 
over enough epochs for convergence to be reached. 
To ensure more reliable estimates, the neural net- 
works in our survey are trained fully at the expense 
of the greater time needed to complete the topology 
optimisation. Also, we permit the optimisation algor- 
ithm to sample a much bigger space of possible 
solutions by choosing relatively complex networks 
as the starting point for pruning. 

2. Non-linear Identification 

For SISO (single input single output) systems the 
problem of non-linear identification can be generally 
formulated as finding an approximation for a nonlin- 
ear, multivariable function H(.) of the form: 

y ( k )  = H ( y ( k  - 1),...,y(k - n) ,  

u ( k  - 1),...,u(k - m ) )  (1) 

where y ( k )  and u(k )  represent, respectively, system 
output and input measured at a discrete moment k. 

Here the identification is performed off-line on a 
set of data gathered earlier. Because the process of 
searching for optimal neural network topologies is 
relatively slow, the approach cannot be used as an 
on-line scheme, so we assume that the unknown 
system is time invariant. Moreover, the process 
described by Eq. (1) should be stable. Since sig- 
moidal activation functions exhibit saturation, the 
amplitude of the network output for some architec- 
tures (those with no direct connection between the 
input and output) are naturally limited. As all the 
activation functions of the neural networks under 
investigation here are continuous, so are the network 
outputs. Therefore, we suppose that a system 
described by the discrete Eq. (1) is also continuous. 
Figure 1 schematically illustrates the principle of 
modeling a nonlinear SISO system with a neural net- 
work. 

A training algorithm adjusts the weights of the 
neural network to minimise a function 't  r defined as 
a sum of squares: 

1 1 NL 
* = ~ EL = ~ ~'~ e~ (k) 

i=1 

1 NL 

= 2 ~'~ [y;(k) - 3~i(k)]  2 (2) 
i=l 

where the parameter NL denotes the number of 
training patterns and e (k )  is the difference between 
target and actual network output. 
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Fig. 1. Modeling a nonlinear SISO system with a neural network 
(the scheme presented is off-line). 

The process of training is not, however, a pure, 
single objective optimisation problem defined by a 
cost function air. It is desirable that a trained network 
should not only produce a correct response for the 
training patterns, but also for unseen data. Therefore, 
in the simplest case, to assess trained network gener- 
alisation ability we may introduce another parameter, 
say Ev, calculated in the same way as EL but for 
different data points. Usually, it is assumed that the 
unseen patterns are located in the region covered 
by the training data set. In such a case, this problem 
of generalisation is closely related to that of inter- 
polation. 

To verify the performance of genetic algorithm 
and simulated annealing methods in neural network 
topology optimisation, we have used an identifi- 
cation test problem derived from Su and Sheen [19]: 

y(k) -- 2.5y(k - 1) 

sin (Tr exp(-u2(k - 1) - y2(k - 1))) 

+ u ( k -  1)[1 + u2(k- 1)] (3) 

This system was excited by setting u to be a random 
signal with zero mean uniformly distributed between 
-2  and 2. Because the current response y(k) depends 
only on the previous input u ( k - 1 )  and output 
y ( k -  1) the above problem can be easily visualised 
in 3D space, as shown in Fig. 2. 

3. Network Architecture 

Many neural network applications can be treated as 
the approximation of a multivariable function. It has 
been shown theoretically that an architecture with 
one hidden layer is sufficient to approximate with 
a desired accuracy any continuous, bounded value 

y(k-l) 0 ~ . 1 )  1 

Fig. 2. The response surface of the non-linear system (3) to be 
modelled by the neural network. 

function. This kind of approximation makes the 
somewhat impractical assumption that the number 
of nodes in the hidden layer can be increased, if 
necessary, without limits. Therefore, in reality for 
more demanding applications, neural networks with 
multiple hidden layers are used. 

Employing more complicated architectures with 
several hidden layers inevitably raises questions 
about the patterns of synaptic connections that 
should be chosen to fit best a given neural network 
application. Clearly, the number of units in the 
network affects its performance; small networks 
learn slowly or may not learn at all to an acceptable 
error level. Larger networks usually learn better but 
such sizes may lead to generalisation degradation 
which is often known as overtraining or overfitting. 
The correct size of the network is problem depen- 
dent and is a function of the complexity of the 
input-output mapping to be realised by the MLP 
and the required accuracy. As shown in Haykin 
[9, pp. 180], using cross-validation techniques it is 
possible to train oversized networks that generalise 
well and sometimes even better than smaller ones. 
The common goal is, however, to simplify the 
design without sacrificing its performance. Smaller 
networks 'assemble' their response surfaces with 
fewer components coming from each node activation 
function and therefore their outputs tend to be 
smoother. 

As the approach presented in this paper allows 
only shrinkage of the initial topology by removal 
of redundant links and nodes, in our experiments 
we have chosen overdetermined networks as a start- 
ing point for the optimisation procedure. The general 
architecture under investigation here is the Multi- 
Layer Perceptron (MLP). 

Throughout this work we have not restricted our 
tests to traditional MLP structures where only neigh- 
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bouring layers are connected. In general, we assume 
that pruning can be launched from a layered network 
with an arbitrary pattern of synaptic links. The only 
requirement is that an initial network topology must 
not violate the principle of feed-forward architecture, 
so that no closed or self loops are allowed and all 
signals inside the network are transmitted in one 
direction, i.e. from the input to the output layer. An 
example of a modified MLP is shown in Fig. 3 (n.b. 
in general, some connections between nodes may 
skip the intermediate layers). In all the networks 
under investigation here, the hidden nodes have 
the same type of sigmoid ~ x ) =  tanh(x)) activation 
function and the output node has a linear (f(x)= x) 
transfer function. These are asymmetric functions; 
as stated in Haykin [9, pp. 160] using asymmetric, 
sigmoid activations for backpropagation networks 
should ease their training. To increase network capa- 
bility to approximate non-linear mappings, pro- 
cessing nodes are always biased. 

Let us assume the initial architecture to be pruned 
has a full set of links between the nodes of adjacent 
layers only. After pruning, the resulting network 
will typically have some unnecessary nodes removed 
but the number of layers remains unchanged. By 
choosing topologies where some links skip neigh- 
bouring layers we give the pruning algorithm (at 
least theoretically) the chance to remove a whole 
layer. In this paper, we therefore have also investi- 
gated an initial architecture where all possible con- 
nection sets between layers (that do not violate the 
feedforward nature of the network) are allowed. We 
call this architecture a hyper-connected network. In 
such networks, each layer, starting from the network 
input side, is linked to all its predecessors (Fig. 4(0). 
This is an extreme case, since it is very likely that 
we will ask the pruning procedure to remove many 
meaningless connections. One can, of course, also 
consider other choices with less links over neigh- 
bouring layers, e.g. only output nodes have connec- 

processing nodes 

input layer hidden layers output layer 

Fig. 3. An example of the kind of feedforward neural network 
architecture used in the study. 

tions to all other layers. Figure 4 presents various 
layered network topologies that may be used to 
initiate pruning. 

By selecting the topology of an initial network 
to be pruned we can restrict quite precisely the 
search space available for an optimisation algorithm. 
For example, if the configuration of the starting 
network is 2-4-4-1, and connections are allowed 
only between adjacent layers then a genetic algor- 
ithm is able to examine all four layer architectures 
that have the same or a lesser number of nodes in 
each hidden layer. Therefore, such topologies as 2- 
2-2-1 or 2-4-2-1 may be checked because removing 
certain links in the initial topology leads to deacti- 
vation of entire nodes. On the other hand, if for the 
same configuration of nodes we allow the maximum 
number of connections between layers (a hyper- 
connected network), then the search may be also 
carried through such architectures as 2-3-1, or even 
2-1, because it is then possible that whole layers 
may be abandoned. 

Thus far in discussing various initial topologies 
for pruning, we have made the simplifying assump- 
tion that network hidden nodes are permanently 
assigned to particular layers. This is always the 
case for traditional MLPs, but for more complicated 
architectures an association of a given node with a 
layer is more a matter of mutual dependencies 
between nodes inside the network. For example, if 
we remove all links between two hidden layers of 
a hyper connected architecture 2-4-4-1 then we can 
arrange this topology into the three layer structure 
2-8-1. Figure 5 presents some rearrangements in net- 
work topology that are possible after removing cer- 
tain synaptic connections from a hyper-connected 2- 
1-1-1-1 architecture. Although encoding of the 
hyper-connected architecture with one node in each 
hidden layer requires the longest chromosome with 
respect to the number of nodes (for a given frame- 
work of network inputs and outputs) this kind of 
topology has the interesting property of being able 
to form, as a result of pruning, an arbitrary layered 
structure with the same or smaller number of orig- 
inally established hidden nodes. 

As has been shown, for some architectures, where 
more connections between layers exist, with some 
of them skiping adjacent layers, the pruning pro- 
cedure may cause certain nodes to migrate from one 
layer to another. Then, the term 'layer' has no 
precise meaning. We can still use this concept, 
however, to visualise architectures found by stochas- 
tic optimisers. We need an algorithm that is able to 
arrange nodes into layers automatically, since man- 
ual inspection of encoded solutions is a rather labori- 
ous task, even for small scale problems (the results 
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Fig. 4. Different feedforward architectures that may be used to initiate pruning. A - only adjacent layers are connected; B - layered 
architecture with auxiliary, direct links between network input and output; C - layered topology with extra coupling to network 
output; D - layered topology with extra coupling to network input; E - layered structure with direct links of  each hidden layer to 
network input and output; F - hyper-connected network (all possible connections are allowed). 

(connection 4-5 is removed) 

hyper-connected: 2-2-I-I 
(connection 3-4 is removed) 

hyper-connected network 2-1-1-1-1 % 

hyper-connected: 2-3-1 
(connections 3-4, 4-5 and 3-5 

are removed) 

Fig. 5. Various topologies derived from a hyper-connected network 2-1-1-1-1 by pruning some of its connections. 

presented in this paper involved training 15,000 
different networks). Such an algorithm is presented 
in the form of a flowchart in Fig. 6. The basic idea 
behind this method is very simple: assuming that 
for any node it is possible to obtain a list of units 
connected to its input at any time, the algorithm 
recursively invokes all dependent nodes starting suc- 
cessively from the output nodes and assigns 
incremented layer numbers to nodes as it proceeds 
deeper into the hierarchically organised feedforward 
structure. After completing this process the algor- 
ithm ensures that the nodes of the input layer 
(network sensors) are all assigned the highest 
layer number. 

The algorithm presented in Fig. 6 arranges net- 
work units into layers, but the particular locations 
of nodes inside any one layer remain undefined. In 
our approach we label each node with an integer 
number. This number is then used to sort nodes 
belonging to each layer. 

Using a modified initial architecture may be also 
beneficial in other ways. For example, it was 
observed [18] that if direct connections exist 
between the network input and output, the process 
of training was usually subtantially shorter and 
therefore the whole pruning procedure may be com- 
pleted in less time. 
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Fig. 6. A flowchart for the computer routine that arranges nodes of a feedforward network with an arbitrary pattern of connections 
into layers. 

4. Topology Encoding 

For neural network topology optimisation performed 
by genetic algorithms, two main types of encodings 
(weak and strong) have been used to convert net- 
work structures into the form of a chromosome. The 
weak paradigms require 'interpreters' to translate 
chromosomes into networks. Such encodings usually 
store some kind of instruction sets about how to 
build a neural network rather then direct information 
about connections. Weak encodings have been 
reported as being able to produce successful results 
for constructing large neural networks. Unfortu- 
nately, they suffer from several constraints such as 
search spaces being limited to certain architectures 
or difficulties in representing detail connections. 
Such methods usually also require a modification of 
the standard genetic algorithms operators because 
different literals in the chromosome string may have 
different meanings, so, for example, crossover may 
not be permitted everywhere in the string. Also, the 
intermediate step of building a network topology 
from a weak representation makes the relationship 

between the fimess function and the corresponding 
chromosome more complicated, and it is therefore 
harder to analyse its impact on the topology search. 

A strong encoding of the network connections 
establishes a direct relation between synapses and 
genes in the chromosome string. For this type of 
representation it is very natural to use a binary 
alphabet (e.g. 1 - link exists, 0 - no connection). 
A strong encoding of the connectivity pattern of a 
multilayer perceptron can then be represented by a 
N x N matrix (N - number of network nodes includ- 
ing the input layer; in our study the diagonal 
elements of the matrix refer to the biases of pro- 
cessing nodes and the remaining part encodes synap- 
tic links). 

It is possible to create the chromosome used by 
the genetic algorithm directly from such a connecti- 
vity matrix by concatenating all its elements (more 
preferably rows, since each one encodes full infor- 
mation about incoming links and the bias of a 
particular node) in one binary vector. However, 
this representation is overdetermined because some 
connections that may be encoded using this scheme 
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are not allowed in feedforward networks. For 
example, input nodes do not process signals and 
they cannot have incoming links or biases so the 
corresponding rows of the connectivity matrix are 
always zero. Also, within one layer there should be 
no connections between nodes. This fact, together 
with the unidirectional transmission of signals from 
input to output requires at least half the non-diagonal 
elements of the connectivity matrix to be zero. 
Violation of these rules leads to obviously invalid 
topologies. The simplest method to overcome this 
problem is just to neglect genes whose values cannot 
be used for some reason. This in fact produces a 
shortened chromosome with only genes that are 
significant for the network topology to be pruned. 
In our experiments we assumed that all processing 
nodes had biases, so this allows a further exclusion 
of genes representing these elements. Figure 7 illus- 
trates how the chromosome is built for the case of 
a simple 3-layer neural network. 

The final chromosome representation has several 
desirable properties. Because all bits are treated 
uniformly, all genetic operators designed for binary 
strings can be applied without modification. The 
chromosome can be used to encode any initial archi- 
tecture, even with some irregularities. Also, by sim- 
ply treating the whole chromosome as a series of 
binary numbers, this encoding can be used with 
other optimisation methods such as simulated 
annealing. The cost of such flexibility is that, despite 
the sparse structure of the connectivity matrix, the 
chromosome length grows rapidly as the network 

becomes more complicated. For some hyper-connec- 
ted architectures with one output node, this length 
may be as long as (N(N-1)-M(M-1))/2, where 
M is the number of network sensors. 

5. Simplification 

Networks created by genetic algorithms or simulated 
annealing usually contain unconnected nodes or con- 
nections that are not used when calculating network 
responses. A simple example is a 'degenerate' net- 
work with no connections to the output layer but 
fully connected elsewhere so that no signals can be 
transmitted from the network input to its output. In 
such a situation the network architecture could be 
reduced to two, separate layers, one input layer and 
one output layer; all existing synaptic connections 
inside the network are redundant and can be 
removed. Therefore, in this work a simplification is 
carried out automatically (before launching the train- 
ing process), which leaves the input-output mapping 
unchanged. To explain the method of simplification 
first we demonstrate how it works for the case of 
the particular topology shown in Fig. 8. 

Obviously, in this example node 10 is not func- 
tional as it is not used in creating network output, 
and therefore it can be removed together with the 
connections from node 6. The response of node 3 
does not depend on network input because it sources 
its input signal from bias only, and is further modi- 
fied by a node transfer function and weighted by 

1 

2 

3 

4 

5 

1 2 3 4 5 

0 0 0 0 0 ~  

0 0 0 0 

~,, z~,~ 83 o 

L4a L4a 0 B 4 

I~176176176176176176176176176 I~176 I I ~ I~ I ,4 

I I I I I I I 
Fig. 7. Chromosome construction using strong encoding of the neural network connections. 
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Fig. 8. Application of simplification procedure to a feedforward 
network with biases on all processing nodes. 

an outgoing connection before transmitting to node 
8. In this situation node 3 behaves as a secondary 
bias for node 8, and therefore can be combined 
with it. This results in omitting two redundant para- 
meters (one for the bias and one for the connection 
weight to node 8) in the network definition. The 
same procedure might be applied to connections 
between nodes 6-7 and 6-8 because node 6 has no 
links from other nodes. A rather different situation 
is encountered in node 9. Although this node has 
incoming connections from node 6, its output is 
also independent from the network input. Therefore, 
node 9 can be removed from the network without 
sacrificing its functionality (after correcting the bias 
of node 11), so finally, the resulting network has 
only 14 weights (9 connections and 5 biases) instead 
of 24 weights (15 connections and 9 biases). This 
reduction in problem dimensionality significantly 
eases the learning process. 

In our experiments we have investigated neural 
networks with all processing nodes biased. In such 
cases simplification leads to occasionally correcting 
bias values. However, the method of network simpli- 
fication can be easily extended to architectures with 
any configuration of biases. The simplest version 
can be obtained if we allow the addition of biases 
to unbiased nodes whenever this kind of action is 
necessary. To demonstrate the behaviour of such an 
algorithm consider the slightly modified network of 
Fig. 9 with biases only on one hidden layer. Here, 
a simplification procedure would perform the 
reduction in a somewhat different way. Nodes 3 
and 6 are 'degenerate' because they do not receive 
any input signal (constant zero output is assumed 

Fig. 9. Application of simplification procedure to a feedforward 
network with mixed configuration of biased and unbiased nodes. 

in both cases). Because their outputs are zero it is 
not necessary to modify the biases of nodes 7 and 
8. On the other hand, node 9 has deterministic 
output sourced from its bias, and therefore this node 
can be reduced to a single bias of the output node 
11. Because output node 11 did not have a bias 
initially, it is then automatically added. 

This discussion on feedforward network simplifi- 
cation can be summarised in the form of a flowchart 
as shown in Fig. 10. The algorithm is presented in 
the figure in a rather descriptive manner; its detail 
implementation heavily depends on how the neural 
network topologies are stored and maintained by the 
relevant computer program. 

6. Network Training 

Here, neural networks are trained in a batch mode 
using the RPROP [20,21] algorithm. This method 
individually adjusts each weight according to the 
sign of the weight gradients evaluated during the 
two most recent iterations. The RPROP algorithm 
used in our experiments may be summarised as fol- 
lows: 

1. The first learning iteration is performed using the 
gradient decent strategy: 

OE 
wj(1) = w~(0) + n Owj (0) (4) 

Here E is the network error and the learning 
parameter 77 is chosen according to the heuris- 
tic formula: 
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2. During subsequent iterations, step sizes to modify 
connection and biase values are updated accord- 
ing to the rules: 

~min(A . . . .  As(i- 1)*u), 

. O E OE 
if Ows (i) ~wj (i - 1) > 0 

max(Ami,, As(/-  1)*d) , 

O f  OE ( i - 1 )  < O 
As(i ) = if Owj (i) O~ 

As(/-  1), 

O E OE ( i -  1)= 0 (6) 
if Ows (i) O~ 

In these equations the subscript j refers to the 
specific training data sample and i indicates 
the current iteration (epoch). In our implemen- 
tation of the learning algorithm u = 1.5, d = 0.6, 
A m a  x = 1 . 0 ,  Amin = 1 0  -6 .  

3. The weights are modified by the Aj parameter 
on a regular basis only if the corresponding 
element of the gradient vector is non-zero, i.e.: 

\owjl 

OE 
if Owj # 0 

OE 
wj(i+ l)= wj(i),if  = 0  

Owj 

small random value 

(optional, only when 

training begins), 

if wj(i) = 0 (7) 

It is worth noting that the algorithm described by 
these formulae cannot affect weights which are 
exactly zero without the optional condition shown 
in the last equation. When the link weight is zero, 
the corresponding gradient vanishes and the algor- 
ithm has, in general, two choices: do not alter the 
weight or perform a blind trial in any direction. The 
occurrence of this situation during the training pro- 
cess is extremely unlikely, except when a given 
weight is purposely initialised to a null value. This 
is equivalent to the situation when the link is effec- 

tively removed from the network. However, in the 
experiments presented here we have used the simpli- 
fication procedure described in the previous subsec- 
tion to handle trimmed networks. 

Despite its simplicity, the RPROP algorithm is 
fast and reliable when compared to other training 
methods that utilise gradient information. Performing 
a single iteration is relatively uncomplicated: the 
main overhead is associated with the evaluation of 
weight gradients in the backpropagation scheme. 
Because topology optimisation using a genetic algor- 
ithm involves the training of several hundred differ- 
ent topologies, we have modified the computation 
of weight gradients to make training even more 
efficient. 

As the network error approaches zero, for some 
training samples the corresponding gradient is van- 
ishingly small. This happens more frequently as the 
training progresses and the network becomes able 
to learn the desired patterns. At some point back- 
propagating very small errors may be counter-pro- 
ductive, because the associated updates of the batch 
gradient VE are then negligible. In the training 
process used here, we have set a threshold for the 
data samples which are used to calculate the gradi- 
ents; if the relative output error for a given training 
point is less than a threshold /3 (typically /3 = 0.5), 
the partial update of the batch gradient is assumed 
to be zero, i.e.: 

/oEA 
i=1 

x, if Ei >--/3gtrg 
q0(x) = 0, if E/ < /3Etrg (8) 

In this formula Etrg is the acceptable training error 
level. 

The approach described typically accelerates 
evaluation of the network gradients. As the training 
converges, the execution of subsequent iterations 
takes less time because the samples for which the 
error is already small enough are rejected. We have 
found that this method also helps to achieve a better 
generalisation, since the training algorithm has the 
capability to focus training on samples with the 
higher errors and to neglect areas where the network 
response surface matches the desired output pat- 
tern well. 

Although this modified gradient evaluation has 
been used in conjunction with the RPROP algorithm, 
the same modification may be applied to virtually 
any training paradigm that utilises gradients. Our 
brief experiments indicate that such training methods 
as Super-SAAB, Delta-Bar-Delta, Silvia-Almeida or 
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Fig. 10. A general flowchart of the simplification routine for feedforward neural networks with biased and unbiased nodes. 

adaptive learning with momentum [20,21] are stable 
and work well with this modification. 

Another important issue associated with network 
training is the termination criterion. The main goal 
of training is to minimise the learning error while 
ensuring good network generalisation. It has been 
observed that forceful training may not produce 
networks with adequate generalisation ability, 
although the learning error achieved is small. The 
most common remedy for this problem is to check 
the network performance periodically during training 
to assure that further training improves generalis- 
ation as well as reduces learning error (the so called 
cross-validation technique). For this purpose an 
additional set of validation data, independent from 
the main training pool is used. In a typical training 
phase, it is normal for the validation error to 
decrease. This trend may not be permanent, how- 
ever: at some point the validation error usually 
reverses or its improvement is extremely slow. The 
training process should then be stopped. Figure 11 
presents example traces of learning and validation 
errors as they vary during training. 

10 o 

10 -1 
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MSE error 

�9 . . \  
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epoch 

Fig. 11. Changes of the learning (A) and validation (B) errors 
during training. Curve C is the sum of traces A and B. 

Detecting the point of minimal training and vali- 
dation error is not an easy task. Figure 11 shows 
that during the learning process we cannot expect 
smooth curves that easily allow us to locate the 
point of a minimal validation error (curve B) or the 
sum of learning and validation errors (curve C). 
This is exacerbated by the shifting nature of the 
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validation error. Also, when the RPROP algorithm 
is used, the learning error may occasionally increase, 
because this algorithm does not check if every iter- 
ation causes the learning error to reduce before 
accepting a new weight adjustment. Some training 
algorithms are more restrictive and discard weight 
updates that cause the learning error to rise. Others 
may purposely allow an increase in learning error 
to some extent, because this helps the learning 
procedure to escape from shallow, local minima of 
the error surface. This, however, make the changes 
of the validation error even more irregular and 
difficult to utilise. 

Typically, at the beginning of training, the vali- 
dation error oscillates rapidly. Later, the training 
process stabilises and the changes in validation error 
become smaller. Instead of a clear increasing trend 
in the validation error, that characterises overfitting, 
it may then start to wander around some constant 
value. In such a situation the magnitude of the 
generalisation error may not be the best indication 
of when to stop training. Consequently, we have 
used the number of consecutive, unsuccessful train- 
ing epochs as a stopping criterion. An unsuccessful 
training iteration occurs when: 

+ -> + (9) 
i i -1  

In our implementation of the training algorithm, 
network training is stopped when 250 consecutive 
iterations are unsuccessful. As with other rank based 
methods, this stopping condition is robust and easy 
to implement. Of course, setting the number of 
unsuccessful iterations to 250 epochs (or more) does 
not guarantee that there would not be any successful 
steps ahead if training continued. When the learning 
process is saturating, new, successful iterations are 
typically encountered less and less frequently. Of 
course, at some stage a training algorithm may 
recover from some local attractor and accomplish 
further error minimisation, but we require it should 
occur within a certain number of trials. Therefore, 
the number of unsuccessful training iterations defines 
a cost limit on achieving error minimisation. Obvi- 
ously, when training is stopped according to this 
criterion, the final set of network weights does not 
correspond to the best result found. It is therefore 
necessary to store the weight values in a separate 
array every time a successful training step is made. 
At the end of the training process the best set of 
network weights is then recalled. 

In some cases the training process may be 
obstructed by the total inadequacy of a network 
architecture to learn the desired patterns or by satu- 

ration of network nodes. If all elements of the 
weight gradient are very small, then the training 
algorithm cannot obtain reliable indications of where 
the search should be directed. This situation is rare 
but if it occurs, training may be executed over a 
very large number of epochs without any real chance 
of obtaining a useful result. To provide early detec- 
tion of this problem, the training algorithm evaluates 
the L2 norm of the batch gradient every 100 epochs. 
If the norm is smaller than 1 0  -6  , the training process 
is aborted. 

Finally, it is worth emphasising that the RPROP 
algorithm is a local optimisation method. In practice, 
this means that the final results of training may vary 
as the initial weight settings are changed. Typically, 
the error surfaces of feedforward networks have 
many local minima. This means that the training 
process is sensitive to its starting point. Despite 
recent progress in finding the most appropriate 
weight initialisation that would help a training 
method to find near optimal solutions, the most 
widely adopted approach still utilises random weight 
initialisation. Our experiments with stochastic optim- 
isers employed to design neural networks show that 
using different random starting points for training a 
given network at each stage of the topology search 
severely deceives such methods [22]. Under these 
circumstances even the best architecture found so 
far by a topology optimiser may perform quite 
indifferently when trained in the next generation 
from another starting point. For this reason a fixed 
initial value was assigned to each bias and weight 
to reduce fluctuation in evaluation of similar neu- 
ral networks. 

A rule of thumb for choosing the size of training 
set to achieve good neural network generalisation is 
to select the number of training patterns to be 
between 10*Nw and 20*Nw (where Nw is the total 
quantity of weights in the network), although some- 
times a smaller number of data samples is sufficient. 
Such values are used for fine training of a single 
network. Because training using big data sets is 
time consuming, in the present work we have used 
the substantially reduced number of 25 input/output 
pairs for training to estimate the usefulness of a 
particular neural network. Then, after completing a 
topology optimisation, we trained the best per- 
forming network on a larger number of data sampl- 
es. 

As the number of training samples is one of the 
major key issues that determines the time and CPU 
resources required to complete the topology search, 
for some applications where, more possibly noise 
free data are available, the training set could be 
reduced (or enhanced) by estimation of the novelty 
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of each training pattern. Such a technique is for 
example discussed in Bishop [23]. 

In our two experiments, initial unpruned neural 
networks with 177 weights (152 link weights, 25 
biases) and 183 weights (164 link weights, 19 
biases) are used, respectively. All the networks were 
allowed to train for a maximum of 5000 epochs. 
Learning was stopped earlier if the network achieved 
an output error of less than 0.001 per data sample 
used during training. For moderately pruned net- 
works and 25 training samples, convergence was 
usually achieved in many fewer cycles. After com- 
pleting the training phase, networks were validated 
using 100 previously unseen data points. 

7. Fitness Function 

In our study, optimal network design corresponds 
to the global minimum of a fitness function. When 
constructing this function we have tried to avoid 
incorporating explicitly parameters that are not 
directly associated with neural network topology, 
such as the number of cycles required to train the 
network or the speed of convergence (these values 
can loosely characterise a training algorithm as 
well). The main factor used for the fitness function 
is the networks ability to generalise unseen patterns. 
For this purpose, we have used a relatively large 
number of input-output patterns as a validation test 
in comparison to the training subset. To create a 
strong selective pressure that favours smaller net- 
works, a so-called 'effective number of active con- 
nections' or 'number of connections in the simplified 
network' is also included in the fitness function as 
a parameter describing the network size. Throughout 
these experiments we utilised two types of fitness 
function: 

and 

Ev) LA (10) 

+ L ~ x  (11) 

where EL and Ev corresponds to sum square error 
for learning and verification, respectively, and N 
represents the number of data patterns used in each 
stage. LA is the number of connections after network 
simplification and L .... is the maximum number of 
allowed links (the length of the chromosome used 
to encode the initial topology). The purpose of the 
constant A in Eq. (10) is to scale the sum square 
errors to the same order (10 1) as the component 

indicating network complexity (LA/Lmax). In Eq. (11) 
the second element (1 + LA/Lm~) may be interpreted 
as a penalty coefficient; as the network gets smaller 
this factor approaches 1 while for a fully connected 
network it is 2. This version of fitness function 
avoids the use of the parameter A which has to be 
carefully adjusted before launching topology 
opfimisation. 

For networks that were trained successfully EL 
(the network's ability to memorise training data) is 
relatively small. In such cases, it is the performance 
during verification (its generalisation ability) and the 
size of the network that control the value of the 
fitness. Only if the network could not be trained is 
EL/NL expected to be high; Ev/Nv then further wor- 
sens the fitness to ensure that a given solution would 
be likely to be rejected by the optimisation pro- 
cedure. 

Although fitness functions (10) and (11) are rela- 
tively simple, their values depend on several 'hid- 
den' factors that are not directly associated with 
network topology. For example, the choice of learn- 
ing algorithm or even its internal parameters influ- 
ence the value of fitness. Under one set of circum- 
stances the network may be trained successfully 
while in another the algorithm may fail to converge 
and therefore the network would be considered use- 
less. Figure 12 shows the value of fitness function 
(11) evaluated for the same set of 200 networks 
using different training algorithms (to generate these 
networks the chromosome was treated as a binary 
number that was simply incremented). Clearly, the 
same networks would appear differently to a top- 
ology optimiser when different training algorithms 
were employed. (It should be noted that the curves 
displayed on this figure do not represent the true 
function to be optimised which is a problem spanned 
over multi-dimensional binary space. This is only a 
one-to-one comparison of the fitness function values 
calculated for the same neural networks and the 
same initial weight conditions.) 

Evaluating a given network simply on learning 
results and validation tests has several other draw- 
backs. For example, using a small number of 
samples in both phases speeds up the optimisation 
process but may result in removing synaptic connec- 
tions too forcefully since the limited number of 
measurements might not provide enough evidence 
to justify the importance of some links. On the other 
hand, using a larger quantity of data to evaluate the 
network may mean that bigger networks could be 
trained more precisely than smaller ones and there- 
fore the pruning process would be reluctant to 
remove links. This may especially be the case when  
employing cross-validation techniques. Such 
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Fig. 12. A comparison of fitness values evaluated for 200 neural networks by different training algorithms: A - gradient decent with 
adaptive learning rate and momentum,  B - Levenberg-Marquardt; C - RPROP, D - RPROP averaged over five independent runs. 

methods use more sophisticated strategies during 
training: as some, particularly oversized, networks 
exhibit a tendency for overtraining which is mani- 
fested in an almost perfect fit to the training data 
but much larger validation error, it is possible to 
perform a periodic check of the overall network 
performance during the training phase and terminate 
it (even before reaching the desired learning error) 
if validation results are continuously deteriorating. 
As a result, we may expect to obtain smaller values 
of the (EL/NL + Ev/Nv) component of the objective 
functions, and consequently abate the selective 
pressure against bigger architectures. This could be 
balanced by a modification to the penalty factor 
representing network relative size as follows: 

F(')=(~+Ev)R(I+LA• (12) 

where S is a constant parameter (S > 1.0, stronger 
tendency to remove synaptic links, 0.0 < S < 1.0 - 
weaker selective pressure). The second parameter R 
( R -  1) may be also used to scale the network 
performance evaluation. In some cases setting these 
parameters to other values than assumed here as 
default (R = 1, S = 1) may considerably improve the 
efficiency of the topology search [22]. 

Occasionally, when the initial, unpruned network 
is small, this penalty factor may be difficult to 
adjust precisely using the parameter S. The penalty 
function may overly reward very small networks and 
remove too many links. Then, a modified complexity 
penalty factor (9 can be applied: 

= 1) La s 

ev ELIR 
: N-V "Jr NLJ ~)(tA/tmax) ( 1 3 )  

The parameter 7 (Y -> 1) affects the maximum value 
of the complexity penalty while the exponent S 
controls the shape of the function O: for S approach- 
ing unity the penalty is close to linear, but as S 
increases a stronger penalty is applied to the biggest 
networks leaving smaller and medium size architec- 
tures relatively unpenalised. This more sophisticated 
objective function is not pursued further here. 

8. Stochast ic  Opt imisers  

The genetic algorithm tested here uses four basic 
operations as described in Goldberg [24], i.e. multi- 
point crossover (crossover probability. Pc=0.8) ,  
mutation (PM=0.005), inversion (/'1=0.6) and 
selection. The selection 1 scheme is generational, lin- 
ear ranking and extinctive, allowing the best 80% 
of the current population to breed and discarding 
the remaining 20% of chromosomes. It is also 1- 
elitist, so the top performing individual of each 
generation is assured of being included in the next 
population. To prevent the genetic algorithm from 
being dominated by a few moderately good designs 

~Terminology used to describe selection follows definitions 
presented by Back and Hoffrneister [25]. 
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that may block further exploration of the search 
space, a fitness sharing scheme is employed [24,26]. 
This method performs a cluster analysis of the cur- 
rent population and modifies the raw objective func- 
tion so that the chances of creating individuals 
in overcrowded regions are reduced. A somewhat 
opposite operation, inbreeding, is launched if, 
despite the niche penalty, a particular cluster 
remains numerous. 

Here a population size of 50 chromosomes was 
used by the genetic algorithm. The method was 
initialised with 49 randomly created individuals, in 
addition to the one chromosome having all genes 
set to one that corresponds to an unpruned network. 
The number of generations was set to ten [27]. 

For the simulated annealing method the same 
strong encoding was used, and the unpruned network 
architecture was selected as a starting point. The 
routine [26] uses fixed rate random mutation with 
probability 0.1 to drive the search. If modification 
of the current solution is successful then the new 
point is always accepted. When the i-th iteration 
fails to lower the objective function then the pro- 
posed step may be rejected or not. A decision to 
switch to the new point is made with a probability 
Pi( ')  defined as follows: 

f 
91, i f  F i ~ Fi_ 1 

Pi( ' )  
1 F i - F i - i  I 

exp - :l.iF--1- - Fo~[]' if Fi > Fi_I 

(14) 

The probability of accepting an unsuccessful 
mutation depends on the relative change of the 
objective function Fi(.) and a parameter T (the 
annealing temperature) that varies throughout the 
search. At the beginning of the search T is relatively 
high so that most of the steps are accepted. At this 
stage the method is similar to a random walk. As 
the search progresses the annealing temperature is 
reduced several times to approach a small, positive 
value or zero just before termination. Then the 
process resembles the random descent strategy. For 
500 allowed evaluations of the objective function 
the number of annealing temperatures, NT, was 
chosen to be eight and the temperature was 
decreased at intervals chosen according to the for- 
mula: 

Tj  = r (~r /%  -j) , j = 1,...,NT (15) 

where % and rc are the control parameters of the 
cooling schedule; % regulates the range of annealing 
temperatures, while % shifts this range to encompass 
lower or higher values. Here % was set to 5 and 
% t o 2 .  

9. Experimental Results 

Figure 13 illustrates the distribution of fitness for 
2500 networks derived by randomly pruning the 
fully connected architecture 2-8-8-8-1 (fitness func- 
tion (10)). A similar type of distribution was encoun- 
tered when random pruning was started from the 
hyper-connected network 2-6-6-6-1 (fitness function 
(11)). It is important to note that, as we search for 
a superior network (smaller fitness function), the 
expected number of improved solutions grows at 
first (!) to reach a maximum; then the number 
of excellent topologies is sharply decreasing. This 
demonstrates the well known robustness of neural 
networks which are able to function even when 
partially damaged. 

Perhaps surprisingly, the bar graph of Fig. 13 
suggests that for a random search it is quite difficult 
to find a network with the worst fitness function (or 
close to the worst), since the number of networks 
with such deteriorated performance decreases in an 
exponential fashion. On the other hand, many such 
architectures can be readily constructed by hand. 

The distribution presented in Fig. 13 shows that 
the probability of finding a solution better than the 
fully connected, unpruned network is relatively high. 
As a result, even a few random samples can be 
beneficial. This situation may be misleading when 
reviewing the results of optimisation without com- 
parison to other methods. One may expect that some 
optimisation strategy that is more sophisticated than 
a random search works, but only comparison with 
the latter reveals if this initial hypothesis is correct. 

The difference in value of the fitness function 
between the most superior networks found and those 
with slightly worse performance, but which form 
the most numerous group, is clearly small. This 
further justifies the importance of precise evaluation 
of network fitness as even a small amount of noise 
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Fig. 13. The performance distribution of 2500 neural networks 
obtained by randomly pruning a fully connected MLP 2-8-8-8-1. 
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Fig. 14. Topology pruning of the fully connected neural network 
(2-8-8-8-1) using genetic algorithms (GA), simulated annealing 
(SA) and random search (RN). Fitness function defined by 
Eq. (10). 

introduced during training of the best networks may 
result in totally erroneous classifications. Inaccurate 
training may then potentially mislead the search 
being conducted by genetic algorithm or simulated 
annealing and produce less reliable results. In the 
presence of such noise, it may be expected that 
increasing the population size of the genetic algor- 
ithm should help to prevent it from being deceived. 
For simple measurements, contaminated by uncorre- 
lated, zero mean noise, increasing the number of 
trials and averaging the results reduces the disturb- 
ance. However, here it is arguable that a similar 
effect takes place when more, less accurate network 
evaluations are used since the character of the noise 
introduced during the network training phase is 
unknown. 

Figures 14 and 15 compare the progress made 
during topology pruning of fully and hyper-connec- 
ted neural architectures, respectively. All the traces 
exhibit initial, rapid changes in the fitness. However, 
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Fig. 15. Topology pruning of the hyper-connected neural network 
(2-6-6-6-1) using genetic algorithms (GA), simulated annealing 
(SA) and random search (RN). Fitness function defined by 
gq. (11). 

after 50-100 iterations the search becomes more 
arduous as the number of better networks sharply 
decreases (n.b. these results were averaged over 
five independent runs for each optimisation method. 
Consequently, the corresponding traces show more 
successful steps in searching for better network 
structures than a single run which typically ended 
with only 2-5 improvements after the first rapid 
fall). 

The figures suggest that, for our problem, genetic 
algorithm or simulated annealing optimisation are, 
on average, able to find comparable solutions using 
half or less the iterations required by a random 
search. A factor of only two increase in convergence 
speed over an unguided search may seem disap- 
pointing at first, but this result should be interpreted 
carefully. The most significant fact is that both 
genetic algorithm and simulated annealing were able 
to find solutions that could not be discovered by a 
random search at all. If we take into account the 
fact that the expected number of excellent networks 
decreases very rapidly, and that the search was 
conducted in a noisy environment, the final optimis- 
ation results seem quite encouraging. 

Figures 16 and 17 visualise the generalisation 
ability of the unpruned fully connected network 2- 
8-8-8-1 and the best network found by the genetic 
algorithm (Appendix A.1, topology #4). The pruned 
network, besides its overall smaller error, offers a 
better generalisation than its unpruned counterpart 
after training, even with only 25 samples. The gener- 
alisation of the pruned network continues to improve 
using bigger training data sets, while for the fully 
connected network the error surface then shows the 
typical attributes of overtraining (i.e. a bumpy 
landscape). 

Table 1 sumrnarises the best results obtained by 
the topology optimisers. It lists square sum errors 
averaged over 625 equally spaced points (25 • 25 
grid) of the rectangular area, -2  --< u(k-  1) - 2, 
-5 <-- y (k -  1) <-- 5, where neural network modeling 
(Eq. (3)) is applied. As these points are different 
from the training and validation data, so the corre- 
sponding errors can be used to make an independent 
comparison of the various networks trained with 
25 and 100 data samples. The results suggest that 
initialising the pruning process from a hyper-connec- 
ted architecture may help find better performing 
networks than those produced from a standard MLP. 

When the pruned network is retrained with more 
data, it may be expected that its overall performance 
would improve. However, the best network obtained 
from a fully connected architecture by simulated 
annealing (Appendix A.2, topology #3) behaves in 
somewhat different way. Although its structure is 
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Fig. 16. Difference between the neural network and nonlinear system outputs. A - fully connected neural network 2-8-8-8-1; B - the 
best network structure obtained after pruning by genetic algorithm - network #4, Appendix A.1. Both networks were trained using 
25 input-output pairs. 
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Fig. 17. Evidence of the better results for generalisation ability of the networks found as the result of pruning. The charts show 
results for the same networks as in Fig. 16, but their training was performed using 100 data points instead of 25. 

Table  1. Performance comparison of  the best networks found in each topology 
optimisation test (the numbers in the table are averaged validation taken across 
625 equally spaced points (25 • 25 grid) of  the network input domain after 
training from the initial weights used in the optimisation searches). 

Method Training Topology: 2-8-8-8-1 Topology: 2-6-6-6-1 
data fully connected hyper-connected 

Initial Pruned Initial Pruned 

GA 25 1.1307 0.2188 a 2.1491 0.1648 c 

100 1.0076 0.1202 0.6958 0.1074 

SA 25 1.7663 0.2311 b 1.9267 0.2341 d 

100 0.2813 0.2452 0.8004 0.0804 

"Appendix A.1, network #4, 
~Appendix A.2, network #3, 
~Appendix A.3, network #4, 
dAppendix A.4, network #2. 
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similar to the network found using the genetic algor- 
ithm (,Appendix A.1, topology #4), the performance 
does not get better when larger numbers of training 
data are used. Consequently, the corresponding 
response surface (Fig. 18(b)) gradually loses relevant 
detail folds and the network 'generalisation' 
becomes inaccurate. We have found that further 
increasing the number of training data (e.g. to 500 
or 1000 samples) may cause a similar effect for the 
other pruned architectures. This suggests that the 
number of data points used for network testing may 
affect the final pruning results. Also, it seems that 
the hypothesis: if a given network performs well for 
a small number of training points, it will operate 
even better after training with more data may not 
be extended too far. 

10. Conclusions 

We have demonstrated that it is possible, using 
stochastic optimisation methods, to find neural net- 
works with good generalisation features even using 
comparatively small numbers of data points for 
training and verification. The time consuming nature 

of the evaluation of each design considered led us to 
use such trimmed data pools. These are, nonetheless, 
shown to be sufficient for the experiments carried 
out. Moreover, for some neural network applications, 
the limited number of available measurements may 
well restrict training in this way. 

Since the problem under investigation (i.e. non- 
linear identification) is closely related to the inter- 
polation task, the main measure of a network's 
usefulness is its ability to generalise. The total sum 
squared training error is less meaningful; a lack of 
convergence within a maximum number of epochs 
may arise because of the deficiencies of a particular 
architecture, but it could also show that the initial 
starting point for training was placed too far from 
the optimum or the choice of training algorithm was 
not suitable for a given shape of error surface, or 
the training search was stuck in a saddle point or 
shallow local minimum. 

To assure that the topology optimisation search 
was guided toward smaller networks, we have 
explicitly introduced penalty factors that worsen fit- 
ness as networks become more complex. In this 
way, the criteria of optimality defined here implies 
that the best networks should be a compromise 

(A) (B) 

,! ,! 

-I u(k-U (C) (D) 

,! ,! 

y(k-1) 0 ~ ~ / ~  ~ 1 y(k-1) 0 ~ i )  1 
-1 u(k.l) -5 -2 

Fig. 18. Response surfaces of the best networks obtained in each topology optimisation test after training with 100 data points. A - 
network #4, Appendix A.1 (GA, fully connected start); B - network #3, Appendix A.2 (SA, fully connected start); C - network #4, 
Appendix A.3 (GA, hyper-connected start); D - network #2, Appendix A.4 (SA, hyper-connected start). 



94 S. W. Stepniewski and A. J. Keane 

between size and performance. Other pruning tech- 
niques (e.g. OBD or OBS) deal with a similar type 
of dilemma: they attempt to estimate the conse- 
quences of removing every connection inside a fully 
trained network, and accept only those changes that 
are least disruptive, but not necessarily beneficial. 
In our approach, the balance between complexity 
and performance can be regulated at the level of  
the fitness definition, .but care must be exercised 
when setting values since the network performance 
depends also on other 'hidden' aspects of  the 
optimisation problem, such as the number of  training 
and validation points, the initial unpruned topology, 
the particular training algorithm and the overall 
training strategy. 

A general simplification procedure for feed- 
forward networks (as generated by the stochastic 
topology optimisers) has been proposed for three 
main reasons: ( i ) to  speed up the training phases, 
(ii) to eliminate useless connections or those with 
duplicated functions, and (iii)to assess the actual 
architecture complexity. 

Although the number of  tests performed here does 
not allow any conclusive, general statement to be 
made, a closer examination of the test problem 
reveals that, in this case, neural network topology 
pruning is basically a two stage process. During the 
first period, rapid movement  is observed which is 
associated with the underlying problem (architecture 
robustness rooted in network redundancy) and which 
should not be used to judge the efficiency of a 
particular optimisation method. The second, less 
spectacular, stage of slow and arduous convergence 
is the phase when the optimisers are achieving 
real gains. 
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G E N E T I C  A L G O R I T H M  
INITIAL ARCHITECTURE AND BEST RESULTS IN EACH OF FIVE RUNS 
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SIMULATED ANNEALING 
INITIAL ARCHITECTURE AND BEST RESULTS IN EACH OF 

unpruned network 

1 

10 18 26 

average fitness = 4.1458 

(2) 

8 27 

2 

(4) 

10 

fitness = 0.4995 (iteration 212) 

F,VE RUNS FULLYOONNEOTEOSTAI  1 

9 17 I 

fitness = 0.5361 (iteration 208) I 1311 
1 

fitness = 0.4542 (iteration 453) 

(6) 

1 

fitness = 0.4937 (iteration 458) 



Pruning Backpropagation NNs Using Modern Stochastic Optimisation Techniques 

Appendix A.3 

97 

GENETIC ALGORITHM HYPER-CONNECTED START 
INITIAL ARCHITECTURE AND BEST RESULTS IN EACH OF FIVE RUNS 
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SIMULATED ANNEALING 
INITIAL ARCHITECTURE AND BEST RESULTS IN EACH OF FIVE RUNS 
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