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Abstract. Denote by p,.. ; (By, d + m) the probability that the convex hull of d + m
points chosen independently and uniformly from a d-dimensional ball B, possesses
d+i(i=1,...,m) vertices. We prove Miles’ conjecture that, given any integer
m, pyym(Bgd+m)—1 as d— co. This is obvious for m =1 and was shown by
Kingman for m = 2 and by Miles for m = 3. Further, a related result by Miles is
generalized, and several consequences are deduced.

1. Introduction

We shall consider a generalization of Sylvester’s problem which, in
its classical version, asks for the probability p;(C, 4) that the convex
hull of 4 points chosen independently and uniformly from a given
plane convex body C possesses only 3 vertices. It is easy to see (cf., e. g.,
SANTALO [21, pp. 63—64]) that p; (C, 4) is four times the expected area
of the convex hull of 3 points chosen independently and uniformly
from C if the area of Cis 1. BLASCHKE [3], [4, pp. 55—60] proved that
p5(C, 4) attains its minimum if Cis an ellipse and its maximum if Cisa
triangle:

35
5 = ps (ellipse, 4) < p3(C, 4) < p (triangle, 4) = §

T
(Note that p, (C, 4) is invariant under nonsingular affine transforma-
tions of C.) A special case of a recent result [5] gives explicit values of
p3(C,4) for any convex polygon C; cf. [5] also for further references.
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A three-dimensional version of Sylvester’s problem was treated by
HosTINSKY [12, pp. 22—26], who determined the probability that the
convex hull of 5 points chosen from a three-dimensional ball B; is a
tetrahedron:

P4(B;,5) = %3 .

Decades later, KINGMAN [14] calculated the probability that the
convex hull of d + 2 points chosen from a d-dimensional ball B, is a

simplex:
d+2< d+1 >d+1<(d+1)2>1
By,d+2)=——- '
PariBard ¥ D=\ ai ) \@+ 1

(Here as well as throughout the present paper, in the case of even 4, the
binomial coefficients are defined on replacing d! by I'(d + 1).)

GROEMER [9], [10] extended the left hand side of Blaschke’s
inequality by showing that, for any d,p,,,(C,d + 2) attains its
minimum among all d-dimensional convex bodies C if C is an
ellipsoid. Thus the values obtained by Hostinsky and Kingman
provide lower bounds. For d = 3, SoLomMoN [23, p. 125] conjectures
that the maximum is attained if C is a tetrahedron. (BLASCHKE [3,
p.452] asserted that the method used to establish his planar result
works in all dimensions and that this method shows that the maximum
is attained for the d-simplex. However, a proof has apparently never
been published, and it is not obvious how to proceed.)

MiLEs [17, p. 354 and pp. 369—374] generalized Sylvester’s pro-
blem in the sense of finding the probabilities p,. ,(B,, d + m) that the
convex hull of d + m points chosen from a d-dimensional ball B,
possesses d + i(i=1,...,m) vertices. If m =2, Kingman’s result
provides a complete answer, the case m = 3 was solved by Miles. (For
d =2 and d = 3, Miles calculated explicit values, but refrained from
deriving concise formulae for d > 4, although he had definitely solved
the problem in all dimensions. However, LITTLE’s survey [16, p. 105]
only mentions the planar and the three-dimensional case, SANTALO
[21, p. 65] even states that the ‘general’, i.e., the higher-dimensional,
values are unknown.) For m > 4, it seems to be difficult to obtain the
probabilities p,;(B;, d + m) explicitly if i # 1.

Kingman’s result shows that

limp,,(Byd+2) =1,

A0
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and Miles’ result gives

fim py,s(Byd +3) = 1.

d- o

Miles therefore conjectured that, generally,

limpy,,, (Bs,d +m)=1.

d—w
In Section 2 of the present article, Miles’ conjecture is verified for any
integer m. Further, the order of convergence is estimated (Theorem 1).

In Section 3 we first prove that the expected volume of the convex
hull of d + 2 points chosen from a d-dimensional convex body C is
(d + 2)/2 times the expected volume of a random simplex in C
(Theorem 2). This observation is used to express the probabilities
Davi(C,d + 3) (i = 1,2,3)in terms of the first and the second moment
of the volume of a random simplex in C (Theorem 3).

Subsequently (Remarks 6—13), we have a look at some con-
sequences of Theorem 3. If C is a ball (Remark 6), in which case
these moments were derived by Kingman and Miles, we rediscover
Miles’ results avoiding the consideration of ‘m-filled simplices’ which
are Miles’ main tool. (Yet, Miles’ idea is related to Theorem 2.) Apart
from the ball, first and second moments of the volume of a random
simplex are apparently only known for the triangle and for the
parallelogram (Remark 7). However, using a theorem due to Blasch-
ke, we deduce estimates for the probabilities p;(C, 5), p,(C,5) and
ps(C,5), where C is an arbitrary plane convex body (Remark 8).
Further, we give estimates for p,, ;(S;, d + 3) (i = 1, 2, 3), S;denoting
a d-dimensional simplex (Remarks 9—11). Finally, special attention is
paid to the probability p,,,(C,d + m) (Remarks 12—13).

For related results see the monograph by KENDALL and MORAN
[13] and the later surveys by MoraN [18], [19], LitTLE [16], and
BADDELEY [2], as well as the monograph by SANTALO [21]. A list of
references is also contained in [7].

2. Proof of Miles’ Conjecture

Theorem 1. Fori=1,...,m, let p;. ;(B,, d + m) denote the proba-
bilities that the convex hull of d + m points chosen independently and
uniformly from a d-dimensional ball B, possesses d + i vertices. Then

T
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1 \@-2m-2)p2
1—pd+m(Bd,d+m)=o<<——> >asd—>oo,
2nd,

1 \@d—2m-20
Pasi(Bpd+m) =o|| — as d— oo

and

2nd
fori=1,..,m— 1.

Remark 1. In the cases m =2 and m = 3, the exact order of
convergence may be derived from Kingman’s and Miles’ results
mentioned in the introduction:

1 \w-32
l—pd+2(Bd:d+2)=0<<2_';l) )an*OO,

T

1 \@-snr
1—pd+3(Bd,d+3)=0<<—) )asd—»oo.
2nd

Proof of Theorem 1. We denote by S(B,) and V' (B,) the surface
area and the volume of the given ball B, and by P,, S, and V, the
number of vertices, the surface area and the volume of the convex hull
of n points chosen independently and uniformly from B,. The
expected number E(P,,,) of vertices of the convex hull of d + m
points satisfies

E(Ppem) = ), [@d+ ) pasi(Byd +m) <
i=1

<@+m—1)1~pinBsd+m) +(d+mpy,(Bs,d+m)=
=d+m—1+pgy,(Bsd+m).

One of the d + m points is a vertex of their convex hull if it is not
contained in the convex hull of the remaining d + m — 1 points.
Obviously, this event occurs with probability | — E(V,,,,_)/V (B,).
As all points are independently and identically distributed, the
expected number of vertices of the convex hull is given by

{ E(I/d+m—l)>
E(P,,)=(d+ <1 — demm )
(Pyn) = (@ +m) %
Thus we have shown that
E(I/d+m~1)

1 — wm(Bg,d + < (d+
Pa+m(By m) < ( m) V(B)
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The isoperimetric inequality

(V:i+m~1 >d‘1 < (Sd+m—1>d

V(B S(BY

and the relation S, ,,_, < S(B) (which follows from the monotony of
the surface area of convex bodies) yield

Viem—1 < (Sd+m—1>d/(d—1) < Saem—1
V(B) \S(By S(B,) "’

and consequently

E(Sd+m—1)
1 — B, d+ d+m——.
Parm(By m) < ( m) S(B)

A by-product of a recent paper [8, p. 758] is the integral representation

E(gtz;:)ﬁl) - (d ! ’Z ) 1> d +a;)d—1 <Q;1>d'

1 1
(B - gyerag)" gy,

-1 Q4 p
where o, is the volume of the unit ball. As

1
[ (=g rag =24
-1 94—1
it follows that
1
Od—- _
—Q—‘ [ —gH“4D2dg<1,
d p

This yields
1 = puym(Bsd + m) <
d+m— 1) d (9d—1>d Op4d-1
d d+ D'\ g '

From Wallis’ formula (cf., e.g., ABRAMOWITZ and STEGUN [1, p. 258])
we know that

1
a1 _ <i)1/2<1 + 0(—)) as d— oo
Qd 27[ d

<(d+m)<

Qd2+4-2
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and obtain
1 \@—2m-2p
1 —pyym(Bg,d+m) = o\ | — as d— oo .
2nd
For i=1,...,m — 1, the corresponding expressions follow trivi-
ally. [

3. Some Further Results

Theorem 2. The expected volume E (V,)) of the convex hull of n points
chosen independently and uniformly from a d-dimensional convex body
satisfies

d+?2
E(Vd+2) = TE(VdH) .

Remark 2. In spaces of dimensions 2 and 3, this result was
established earlier [6] by completely different arguments.

Remark 3. Even in the planar case, the ratio of E(V,, ) to E(V))
depends on the convex body from which the points are chosenif n > 4.
A table of numerical examples is contained in [6].

Proof of Theorem 2. Clearly, d + 2 points in d-space determine
d + 2 simplices. The expected volume of each such simplex is
E(V,, 1), the expected sum of all volumes thus is (d + 2) E(V;, ). On
the other hand, the convex hull of d + 2 points in d-space may be
considered as a degenerate (d + 1)-simplex being contained in a d-
dimensional hyperplane. Its d-dimensional volume is half of its d-
dimensional surface area, which is the sum of the volumes of its facets.
These facets are exactly those 4 + 2 different d-simplices which are
defined by the considered d + 2 points. []

Remark 4. Note that the proof of Theorem 2 does not make use of
the fact that the points are uniformly distributed.

Theorem 3. Denote by M, the r-th moment of the volume of the
simplex spanned by d + 1 points chosen independently and uniformly
from a d-dimensional convex body C of volume 1. Then, the probabilities
Pari(C,d + 3) (i=1,2,3) are given by
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d+3
Par1(C,d +3) = 5 M,,
d+3
Par2(Cd +3) = 5 (M, —-2M,),

d+3
Pas3(Cd+3)=1— ) (M, — M) .
Remark 5. The first relation may be generalized:

d+m
Pas1(Cd +m) = M,_,.
m—1

Proof of Theorem 3. The convex hull of d + m points is a simplex if
there exists any collection of m — 1 points which are all contained in
the simplex spanned by the remaining d + 1 points. For any m — 1
points, the event that they lie in the simplex spanned by the other d+ 1
+m s

1) possibili-

points occurs with probability M,, ,. As there are <

ties of choosing m — 1 points out of d + m and as, with probability 1,
at most one collection has the desired property, it follows that

d+m
pd+1(C’d+m) = m—1 Mm~1 4 (1)

Analogously to the proof of Theorem 1, we may express the expected
number of vertices of the convex hull of d + 3 points by the expected
volume of the convex hull of d + 2 points which we may again, by
Theorem 2, express by the expected volume of the convex hull of d + 1
points:

3 d+2
Zl(d+i)pd+,-(C,d—I— 3y=(d+3) (1 ——;—M1> . 2

Clearly,
3
Y Pasi(Cd+3)=1. 3)
i=1

Equations (1), (2) and (3) immediately lead to the claimed result. []
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Remark 6. Theorem 3 yields explicit values in the case that Cis a
ball, where, according to KINGMAN [14, p. 671] and M1LEs [17, p. 363],

M= %<(di+1)1/2)> - <(¢(1d:1;z;2> o,

(d+1)? <d+1) 1
22H(J 4 2)? \(d + 1)/2) 2™

Especially, in the planar case M, = 35/48 2%, M, = 3/32x”, and in
the three-dimensional case M, = 9/715, M, = 3/1000 >, whence the
valuesof p,, ;(B;, d +3)(d=2,3;i=1,2,3)calculated by MILEs [17,
p- 354 and p. 373] follow immediately. (These values are also referred
to by SANTALO [21, p. 65].)

2=

Remark 7. Apart from the ball, M, and M, are apparently only
known for the triangle (M, = 1/12, M, = 1/72) and for the parallelo-
gram (M, = 11/144, M, = 1/96). The values of M, already were
known last century, the values of M, are due to REED [20, p. 197], but
cf. HENnzE [11, p. 123]. Thus we obtain for the triangle

_ 5 _ 2 —
D3s=135, Pa=%, Ps=735»

Remark 8. For any plane convex body C, the probabilities p; (C, 5),
p4(C,5) and p;s(C, 5) satisfy

15
0.482 +— 655 (C,5) 45 0.621
A482... = 5 < <3 =0621...,
R B
ST 655

These relations follow from a result due to BLASCHKE [3, p. 453], [4,
p. 60] stating that, among all plane convex bodies C of area 1, the
expected value of any continuous, positive and nondecreasing
function of the area of a random triangle in C attains its minimum if C
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is an ellipse and its maximum if Cis a triangle. The bounds for p,(C, 5)
and ps(C,5) are obtained on considering (M, — 1 M,) — 3 M, and
(M, — 1 M,) — 1 M,. Obviously, these bounds are not attained for
any convex body C, and it seems to be an open problem to find the best
possible bounds.

Remark 9. For a d-dimensional simplex S,;, M, was determined by
REeEeD [20, p. 186]:
d!
S (d+Did+ 27

M,

but M, is not known (cf. KLEE [15]). The Cauchy-Schwarz inequality
implies M, < M}?. TFurther, a higher-dimensional analogue to
Blaschke’s theorem (cf. Remark 8) due to ScHOPF [22] states that,
among all d-dimensional convex bodies C of volume 1, the expected
value of any continuous, positive and nondecreasing function of the
volume of a random simplex in C attains its minimum if C is an
ellipsoid. Thus the corresponding value for the ball (given in Remark
6) provides a lower bound for M, — 7 M,. (It is easy to see that
estimating M, — 1 M,is more profitable than considering merely M, .)
To summarize, the probabilities p,,;(S;, d + 3) (i = 1,2, 3) satisfy

d+3
pd+1(Sdad+3)= o) Yd >

<d+3

d+3
5 )(ad’%ﬁd“%yd)<}’d+z(5dad+3)<< 5 )(}’;/2-2)’(1%

d+3
1 _< > G — ) <Paps(Spd+3) <

2
d+3
<1‘“< 5 )(ad—%ﬂd—‘lz‘)’d),

1 fd+1 \an (d+ 12\ -1
ad‘F((dH)/z) <(d+1)2/2> ’
@+ <d+1> 1
T 22 (g 1 ) \(d + 1)/2) 21

where

d
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d!
T @+ DA+t
Remark 10. Especially, if d = 3,
P4(S5,6)=0.011...,
0.169... < ps(S;,6) <0.388...,
0.600... < ps(S;,6) <0.819....

Yd

By Monte Carlo experiments, REep [20, p.197] obtained
M, =~ 0.01763; similar results are due to Baker and, independently, to
Marsaglia (cf. KLEE [15, p. 287]). Hence, approximately,

ps(S;5,6) =0.241...,
Ps(S;3,6) =0.746.. .. .
Remark 11. As d tends to infinity,

1 —1)2
ool ).
2nd

1 (24—3)/2)
—ol(—

Pa <<2nd) ’
| 1 \@d-np2
ol

Yd ed

Correspondingly, for large d,

1 \@d-s
Par1(Spd+3) =0\ — s
ed

1 \w-s52 1 \@d—9y
Cl( ) < Pys2(Spd +3) < Cz(”“) »

2nd ed
1 \d-52 1 \@d-9y4
€l md <1 —=puy3(Ssd+3)< od ,

where the constants ¢; and ¢, do not depend on d.

Remark 12. Given any integer m, the probability p,,, (C,d + m)
attains its minimum among all d-dimensional convex bodies C if C is
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an ellipsoid. This is an obvious consequence of Remark 5 and of
Groemer’s theorem [9], [10] that M, (defined in Theorem 3) attains its
minimum if C is an ellipsoid.

Remark 13. Given any integer m, the probability p;(C,2 + m)
attains its maximum among all plane convex bodies Cif Cis a triangle.
This follows immediately from Remark 5 and from Blaschke’s result
stated in Remark 8. It would be very interesting to prove a higher-
dimensional version.

Acknowledgement. 1 am indebted to Professor R.SCHNEIDER for calling my
attention to the problem, for carefully reading the manuscript and for valuable
suggestions.
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