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1. Introduction 

The purpose of this note is to prove local Lp-Lv,-estimates for certain Fourier 
integral operators, and to apply these estimates to obtain existence and uniqueness 
results in Lp,, p' > 2, for some semilinear hyperbolic problems. Let us here remark 
that estimates of this type were suggested, and to some extent proved, in a slightly 
different setting, by Littman [8]. See also [ l l .  In the case of semi-linear problems 
for the wave-equation the corresponding results are due to Strichartz [13, 14]. 

The solutions of a large class of hyperbolic initial value problems in 
(x, t)~R" x R, with data on t = 0  may be written as a finite sum of (properly sup- 
ported) Fourier integral operators and of integral operators with C~ 
(see [2-4]). Here the Fourier integral operators are given (for t fixed) by locally 
canonical graphs, and for t = 0  they reduce to pseudo-differential operators 
(for these concepts, and other properties of Fourier integral operators, we refer to 
[3, 4] and [6]). This means that locally, in a neighborhood of t = 0, say, the operators 
may be written 

Q(t) u(x)= ~S eZ~i~(t; x, y, ~) q(t; x, y, 4)u(y) dy d~, (1) 

where ~b is a real non-degenerate operator phase function, depending smoothly 
on the parameter t, and q is a symbol in the class S-~, some v > 0. In addition, 
if qS(0; x, y, 4) = ~b (x, y, 4), then grad~ ~b = 0 for ~ :t: 0 exactly on the diagonal x = y, 
where also grad~ 0 = - grady ~b = 4, so that 

2 I f), x - - , y .  (2) 

In view of this we shall in the following assume that q for small values of t, I t I < 
say, has support in some (sufficiently small) neighborhood of the diagonal x = y, 
adding if necessary an integral operator with C~-kernel to Q(t). Thus Q(t) is 
assumed proper (see [6]). 

In Section 4 below we shall in particular use the phase-function ~b(t; x, y, 4) = 
r y, ~)+tp(y, ~), with ~b satisfying (2) and p(y, ~)4:0 for ~#0.  
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The existence of local Lp-Lp,-estimates, that is estimates /comp__+/!oc for --p --p' 
integral operators with C~ are obvious. It therefore remains to obtain 
such estimates for (properly supported) operators with local representations (1) 
for I tl small, using the oscillatory character of the integral (1). 

As local L p - L f e s t i m a t e s  (with 1 < p < 2 ,  1 / p + l / p ' = l ,  as we shall assume 
from now on) imply local Lp,-Lp,-estimates, the nonexistence of the latter for 
sufficiently large values ofp' for the wave-equation ([9]) shows that some restrictions 
on p will be necessary, say in terms of the size of ~ = 1 / p -  1/2 = 1 /2-  1/p'. 

Assume in addition to the above conditions that the phase functions q~ used 
in (1) satisfy 

d 
(*) the hessian matrix ~- qS~'~(t; x, y, 4) at t =0  has for ~ 4=0 rank at least p on the 
diagonal x = y. 

( /~ ,1/2 
As an example, let p(y,~)= akl(y)~k~z| , where (akl(y))k, l is a real 

k, ~1 
positive definit n x n-matrix for ycR", and let as above 4=O+_tp.  Then p = n -  1. 
In general, the homogeneity of ~b implies that 0 < p < n - 1. 

Under the above assumptions on Q(t), locally represented by (1), we shall 
prove that for each compact set K c R "  there are e>0  and a constant C=  C K 
such that for (2 n - p) 6 < v, 

IlQ(t)ullg~,(K)<CKltl ~ 2~[]ullp, 0< l t l<e ,  u ~ C ~ .  (3) 

The proof of (3), and in fact a slightly more general inequality formulated in 
terms of certain Besov spaces, will be carried out in Sections 2 and 3 below (Theo- 
rems 1 and 2). The method of proof will depend strongly on that used for the 
"constant coefficient" case in [1]. As an application we scetch in Section 4 some 
existence and uniqueness results for a class of semi-linear hyperbolic problems. 
Using (3), these results are obtained by using the known (local) structure of the 
solution of the linear problem (in our case found in [2]) and a strightforward 
application of the ideas used by Strichartz [14] for the corresponding problems 
for the wave-operator. 

2. Some Preliminary Results 

Let q0j(~)=qo(2-J~), j > 0 ,  and q00=l -~qo j ,  where qo~C~(Rn), qo>0, and 
supp qo___ {~; 1/2~1~1<2} is such that 

~, q~(2-Jd): 1, ~=~0. 
j_-oo 

Define the Fourier transform ~ of an L 1-function u by 

~u(~)=~(~)= )" e~ '~u(x )  dx, 
R ~ 
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and then define B~ 'q, s real, as the closure of C~ ~ in the norm 

Itv jlB~,q = (2 js II ~ -  l((pj~) I l y )  t/q, 

with the usual modification for q = oe. Here II �9 lip denotes the Lv-norm. 
With co,(~)=(1 + 1~t2) S/2, we also define Ep as the closure of C O in the norm 

II v I Iv , ,= II v IIg~ = II g - l (COs~) l i p -  

Notice that L ~ = Lp, 1 < p < o9. 
The following inclusion lemma will be useful. 

Lemma 1. Let 1 < p < 2 ,  l /p+ l ip '= 1, and s > O. Then 

(i) n s 'P =L  ' c/~ ~'2 u p  _ _  p _ _  U p  , 

(ii) B;',P' =_ L~,~_ Bp,S' 2. 

Proof See [15, Thin. 15] and [10, 12] and also [16, Thin. 5.2.3]. 
The following asymptotic estimate can be found e.g. in [7] (see also [3] and 

[63, p. 145). 

Lemma 2. Let q5 = ~b(~) be real and C ~ in a neighborhood of the support of vmC~. 
I 

azO Assume that the rank of O'~'~=[ some integer M, \~3{ka{zlk,~ is at least p on the support of v. Then for 

[r~-~(e~4)v)[ro~<C(l +lti) -~p ~ IlD~vlll �9 
[~I<=M 

Here C depends on the bounds of the derivatives of 4) on supp v, on a lower bound 
for the maximum of the absolute values of the minors of order p of q5'~'~ on supp v, 
and on supp v. 

For the general theory of Fourier integral operators, we refer to [3, 4] and [6] 
(for pseudo-differential operators, see also [5]). Here we will only in a very in- 
complete way present some of the main concepts that will be used below: 

Let (2 ~ R" be open and let 1/2 < o-< 1. We say that a~ C ~ (f2 x f2 x R") belongs 
to S~(f2 x f2 x R")= S~ 1 ~((2 x f2 x R") if for any multi-indices c~, fl and ~ and 
compact set K c  f2 x s 

ID~yD~D~a(x,y,~)I<C~,,B,,,~(I +[~]) m-~'l~l+(1-'~(l~l+l't~, for (x,y)eff;. 

We write S m for this space, whenever convenient, and S ~ for S~". 
A Fourier integral operator can locally be represented by an oscillatory 

integral of the form (1) with a phase function ~b and an amplitude q~S m, some m 
and or, 1/2 < a < 1. If the Fourier integral operator is locally defined by a relationwhich 
is a canonical graph, then we may take ~b as a non-degenerate phase function such 

that D(qS)= det [~b~'r ~b~r on the set where grad~qS=0 (cf. [6], Sect. 4.1). 

That ~b is an operator phase function means that q5 is real, homogeneous of degree 1 
in r and C ~ for r and that grad~,e~b and grady,r doesn't vanish for 4+0.  

That ~b is nondegenerate means that d , j = 1, ..., n are linearly independent. 
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From now on we assume that q5 and q are the phase function and amplitude, 
respectively, in the representation (1), having in particular the properties assumed 
in Section 1, so that qeS  m with o-=1 and m =  - v .  

Since an amplitude in S -~  gives an integral operator with C~176 we may 
assume that q = 0  for 14l < 1, say. As gradx,~b#=0 for 44=0, we may assume that 
I gradx qSI > c l 4L, c = c(x, y) > 0, on the support of q (uniformly for I tl < e, e > 0 small 
enough), the contribution from the set where grad~ r is bounded away from zero 
(uniformly in t) being an integral operator with Coo-kernel (cf. [-4]). In the same way 
we may also assume that [grade ~,1> c l x - y l  on supp q, where as a bo ve ~b(x, y, 4)= 
r x, y, 4). 

Remember that the support ofq may be choosen to be contained in any suitable 
neighborhood of the diagonal x = y  for It[<e, ~>0 small enough. In addition, 
q5 and q depend smoothly on t, and qeS -~. 

Let z~C~(R"), Z>0, and with support in the set {4; c<14[<c-1}, for some 
c>0.  Define Zj(4)=Z(2-~), j > 0 ,  and let Zj( t ;x ,y ,~)=zj(gradxr  4)). 
Notice that for any a~(0, 1], 

ID~zj(~)I < C2 -j(1 -~)1~1 (1 +1~1) -" I~1, (4) 

and, since by our assumptions above c l41 < I grad~ qS[ < C l~l on supp q, 

B ~ . ~2-J(1-a) {l~l+l/q +1~1)(1 _F [~l)-m, (5) [DyD~Dezj(t, x, y, ~)t < C~.a, 

with m---alc~l+(1-a)( l /~[+ly[) ,  for (x,y) in compact subsets of f2xf2, and 
(x, y, 4)~supp q. 

Define the Fourier integral operator Qj(t) by the local representation 

Qj(t)u(x)=~eZ~(';~'Y'~162 (6) 

where q5 is as above, and q0 has the same properties as q, but now belongs to S-". 
Hence Qj(t) is given by a locally canonical graph, UuZj.(grad~qS)qosS ~ for 
1 / 2 < a < 1 ,  uniformly for j>0 ,  and qo is a properly supported symbol (i.e. has 
support in a neighborhood I x -  Y l < e', say, of the diagonal x = y). Then Theorem 4.3.1 
in [-6] applies, and proves the following result: 

Lemma 3. Under the above assumptions, for each compact set K cf2, there are 
constants C and ~ > O, such that if f e C~ and supp f ~_ K, then 

IIQj(t)fllz<=C2-J"llfll2, 0< l t l<e ,  j=>0. 

Now, in addition to the above conditions, q5 also satisfies condition (,) of 
Section 1. Choosing the support of qo sufficiently close to the diagonal x=y ,  

we may assume that for y e K ~ f2 compact and 0 < I tl < ~, ~ r has rank at least p 
for ~ :t:0 in the support of qo. Then 

]Qj(t) u(x)] < sup 1~ e z ~ir ('; x' r, r r %) (t; x, y, ~) d 41 II u II1- 
yeK 

By a change of variables 

I - f e  2gi4~(t; j,, - a  ~'" r (zj(grad~ ~b) qo) (t; x, y, 4) d4 

= 2J("-u)~ eE~2Je(t;~' r' r qS) qo(t; x, y, 2 J ~ ) 2 J v d 4 .  
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Since 

~b(t; x, y, ~)= ~(x, y, 4) + t~(x, y, 4)+ O(t 2) 

we obtain in supp qo c~ supp x(grad x qS) for [ x -  y[ __> C[t I, C a suitably large constant, 
that [grade~b[=>c[t], c>0,  and hence repeated partial integrations give that 
Ij,~ is a rapidly decreasing function of U It [, uniformly for y ~ K. On the other hand, 
if Ix-y[ N C[t[, then by (2) 

4,(t; x, y, 4)= < x - y ,  45 + t~b(x, y, 4) + o(t2), 

and thus q~'~ has rank at least p in supp qo nsupp  (gradxq~) for I x - y l <  Cltl, 
y~K, provided Jtl<e , e>0  small enough. We may then apply Lemma 2, with 
u s C~ ~ and supp u _= K, 

IQJ(t) u(x)l < C2J("-u)(2Jltl + 1) -~p II u I[~ 
[2J(~(2"-p)-U)ltl-~p II u II~, 2Jltl> 1, 

<CJ2j(,_~)llul/1 ' "  2Jltl <1, 0<l t l<~.  (7) 

Notice that e = e(K) in the above argument. 
Interpolating between Lemma 3 and (7), we end this section with an estimate 

of Q~(t): 

Proposition 1. Let 1 <=p<2, l/p+ 1/p'= 1, 5=l /p-1/2 .  Assume that Qflt) has the 
local representation (6) in f2 ~ R", with c~, qo and )~j as above. In particular ~b satisfies 
(*) of Section 1, and qo~S-". Then for each compact set K=f2, there are e>0  and 
C= C K such that for u~ C~ with supp u=_K, 

[2~(~2"-o)-u~ltl-o~l[ullp, .2-/Itl > 1, 

HQj(t)u[Ip,<CKIRj(Z,a_u)llul[p ' "  2Jltl <1, 0<l t l<~.  (8) 

Remark. It was suggested by Anders Melin that the above method should apply 
also if qo~S~-" for 1 / 2 < a < l :  By [6], pp. 144-145 (cf. also [3], Sect. 1.2) a more 
precise version of Lemma 2 is expressed by the following inequality: 

k-1 } 

lal=21 1~[_-<2k+a+l 

If qo~S~ ~, we shall apply this to v=z(gradxqS)qo(t, x,y, 2J4)2 ~, so that 

ID~v[_-< C2 s~-~r 

and replace t by 2~t. Thus, as above 

} 
and so 

~2J("-u-o/2)ltl-~ 2 j(z'-l)ltl  > 1, 
IIj, tl <= [2J(n-u), U(Z~-l)[t[<_ 1, 

in the case 1/2<a__ < 1, 0<  It[ <e. 



278 P. Brenner 

By interpolation we obtain under the assumptions of Proposition 1, but now 
assuming that qosS2 ~ for some at(�89 1], 

qf2J(~ Itl -po II Ul[p, 22(~-~>[tl > 1, (83 
]IQ~(t) U l [ p , ~  C~:(2J(2"a-")llull~, 2 ~(=~ ~)ltl_-< 1. 

3. Proof  o f  the Main  Results 

In this section we shall prove a result which in particular implies the estimate (3). 
We keep the notations and assumptions of Section 2. To avoid duplication of 
some computations, we shall frequently refer to [4] and [5]. 

As follows from (4), ~ojeS ~ and 

ID~q)j(~)] < C~2- J(l-~ I~1 (1 + I4l) -~1~1 , 0<~;____ 1. (9) 

Let 4)jf(x)=~ The following is a consequence of (the proof of) 
Theorem 2.16 in [5]. 

Proposition 1. Let q~S -~, v>O, and 0 be as above�9 Then for 1 / 2 < a <  1, 

e-i4)~j(ei6 q) = 2 l !  q~ eie);;(x'''O~l 4_ 2 -  j (1-~)N, .  
1 1 z = x - -  " -  ",,- (,:r = ~-)N, 

I~[<N 

where (10) 

Ox(Z, y, r = ~(z, y, 3)-  4(x, y, O -  ( z -  x, r y, 4)5, 

and r_ M ~ S2 M uniformly for j > O, I tl < ~. 

Proof. By (9) and formula (2.19) in [5], the difference between the left hand side 
and the sum over Ic~]<N on the right hand side of (10) is of the order 
2 J"-~)NI4[" (~-~)N. By an obvious modification of Theorem 2.9 in [5], it 
follows that the left hand side of (10) belongs to S o uniformly for j > 0 ,  and that 
the above difference belongs to So ~-(~-~)N with a bound 0(2 -~(~-~)N) for j > 0  
(this is where a modification of Theorem 2.9 in [5] is used). 

Compare also with the derivation of Lemmas 2.11 and 2.12 in [4J, where the 
case a = 1 is considered. 

By operating under the sign of integration, we find by Proposition 2 that 

q~jQ(t)f= ~. 1 Q ~ ) ( t ) f  +2-j(I-~)NRN~, ~ f s C ~ ,  (11) 
I~l<U " 

where the operators on the right hand side are all locally defined by oscillatory 
integrals with phase functions 0. 

The amplitudes for the oscillatory integrals defining QJ~) are by Proposition 2 

q~)(t; x, y, 4)= q0}~)(grad~ ~b)D~(q(t; z, y, 3) e ~;(~' y' o)[ . . . .  (12) 

where qS" is defined as in Proposition 2 Notice that 2 j(z -,)1< a(~) belongs uniformly 
to Si -~ (r for j>0 ,  Itl<e, and has support in c2J<[~l<C2 j, for some 
C, e > 0. Since we assume that supp f_~ K, a compact subset of s we may as well 
assume that q~)(t; x, y, 3) =0 if (x, y)(~K' x K, for some compact set K'. 
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With f = 2 f ~ ,  f~ = i f -  a(q)z f ) ,  we have 

l = 0  

whenever  the sum is convergent. The estimate 

II II , II Q}~<)(t) f/lip, < cK~2~(2,,a ,, ~1~<1)I15~ lip, 

279 

2Jltl > 1, 
2Jlt[ ~ 1 

(13) 

now follows from Proposi t ion 1. Merely use that the support  of a(. ~) is contained - . t j  

in K ' x  K x R". If for some constant  c, ] l - j[<c,  the estimate (13) will be enough. 
In case I l - i t  > c, the following lemma shows that (13) may be improved~ 

Lemma 4. For each K>0 there is a constant c > 0  such that 

][p,<cZ-J(~+~)~Z-J~llf~_ lip, l<=j-c,  NQ}~)(t) fl 
= ( 2 - ' ~  I[ f l ip,  l>=j+c. (14) 

Proof Write, with 0l =~01-1 +~0~ +qoz+~, (P-, =0 ,  

O}~)(t) f~ (x) -- S ~, e2~i4~(t; ~, y, ~ q~')( t ; x, y, ~) ~ e - 2=i<n' '> (Pl(~) ~(/]) drl d y d ~ 

where (remember that supp q}~)_~ K' x K x R") 

gj(X, tl)----S~ eZ~i(e(t;x'Y'~ x,y,  3) dyd~. (15) 

We claim that there is a constant c such that for each integer A, 

suplgj(X, tl) Ot(rl)I<--CA2J"2-J(~+IZl)i2I--2Ji-~A, [l--jl>=C. (16) 

TO see this, notice that g r a d y ( q S + ( x - y ,  r / ) = g r a d r q S - q ,  and so for the x,y,  
in consideration and for r /esupp q3t, there is a constant  c such that 

I gradr (q5 + ( x  - y, q))l > c 12 J - 2ll. 

Repeated  partial integrations in (15), and observing that q~)eS~ v-~ I~1 ++ I~1, then 
proves (16). 

Now,  

fk(x). 
Since g~(x, t/) @(t/) satisfies (16) and has support  in c21< lq l<  C2 l, we find for 
II-jl>=c, 

1] QJ~)(t)f r 11 ~ < Ca 2(J+~),2-~(~+~ I~1)12 z --2J[ -aA 11 f/Hl" (17) 

An L2-estimate is obtained e.g. in the following way: 

H O}~)(t) fl I1~ =Sdx  lie 2=,<x,,> 0,(t/) gj.(x, q) f~(~) dt/I 2 

=<SS 10,(.) d. d. 
= ~  I(ot(tl) gj(x, r/)l 2 dtldx I[ fz I[ 2. 
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As above, 

(SS i0t(r/)gj(x, ~)l 2 drldx)~< c2U+~0"2 -j~+~ i~i)12 z _ 2JI-~A, 

and hence 

II Q~)(t) ftl[2 = C2(J+~ 2z -2Jl -~ f~ 112- (18) 

Interpolation between (17) and (18), taking A large enough,then proves the lemma. 
Let 

0j( t )= Z ~.Q}~)(t). 
I~I<N 

Adding the estimates of Lemma 4 over 1~] < N and over [l- j l  > c, we obtain 

I[ Qj(t) f ]Iv' < C2j( . . . . .  )11 f [[Bo, 2 

which with (13) implies that if ~:> n - v  and if ( 2 n -  p)6 < v, then 

It Qj(t) f [[ ~, < C[t[ ~- 2 n611 f [[ 20,2. (19) 
j=0 

We still have to consider the error term R N f :  

Lemma 5. Let 1 < p < 2, lip + l ip '= 1 and let R N as above be defined by (11). Then 
there is an N O such that for f ~ C~ with s u p p f _ K ,  

IIRNfll~,<Cllfllno,2, N>-_go, (20) 

where C= C K is independent of  j>_O and of It[<e. 

Proof Let first N be so large that v + ( a - 1 / 2 ) N > n .  Then, here and in the re- 
mainder of the proof suppressing the t-dependence, 

R u f ( x ) =  ~ r(x, y ) f (y)  dy, 

with 

r(x, y)=~e2'~i4"(x'Y'OrN(x, y, r d~. 

As assumed above, there is a compact set K' such that x(~K' implies that 
q(x, y, ~)=0 and q}~)(x, y, ~)=0, that is 

e-2~i~(~'Y'r x~K'.  

Since we only are going to consider functions with support in K, we may (as for q 
and q~)) assume that r N =0 for yCK. By our assumptions on q, we also have rN=0 
for [~[ < 1. With ~ = ~ -  a (~0j), 

~bj(g) = 5 (oj (x -- z) g(z) dz. 

We may as well assume that I xl => 1 on R" "-. K'. Using that c~ is rapidly decreasing, 
we have for any M, x(~2K', 

iDy(e-2=i4~Oj(e2=i4~q)] <= CI~I-~+ I~1 Ixi-M 2-JM. (21) 
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Let q?l= qoz_l +qh+cpl+l , with q)-i =0.  Then 

I RN f~(x) l = I~S f,(z) ~ t (y -z ) r (x ,  y) dy d zl_-<lS f~(z) dz ~ r(x, y) (o,(y-z)  dy[ 

< I I fz I[1 sup 1~ r(x, y) (o z(y - z) dy[. 

By Parseval's formula, 

r(x, y)(oz(y- z) dy = [. P(x, 7I)@(rl) e 2 ~i ~,~. n> drl. 

Since 
rfffi(x, q) = (D~r(x, "))"(17) , 

the estimate (21) implies for M > (1 - a) N + v that 

l~ffP(x, tt)l<= j ](D~rN)(x, tl, g)ldg+ j 

<Clxl -M(l+lx l -~+l=l+")+Clxl  +"+I=I-M-~, x(12K', 

and so, for Ic~l = n +  1, M + v > 2 n + l ,  M > ( 1 - c r ) N + v ,  

sup lSr (x ,Y ) (~  (22) 
z 

for x~2K' .  Clearly (22) also holds for xe2K' .  
Thus, 

supleNf l (x) l<C2-Zl l f t l l l ,  N>NoI ,  
x 

from which, for N > No1 , 

IIRN/II~< IIiNf~lloo<c~2-zl[f~lla<cllfllBo.=. (23) 
l = O  0 

Next, we will prove a corresponding Lz-estimate. We have 

IIRN 2 < ~  IIRNLII~ f l ]2=  
l = 0  

and (as in the proof of Lemma 4), 

II RN f, I1~ _--<j IfI f,(~) ~,(Y--z) r(x, Yt dydz[ ~ dx 

<j I[. r(x, y) dyl 2 dzdxj I f (z)l 2 dz. 
Now,  

z~[. ?(x, rl) (o~(rl) e 2 ~ <~' ~> drl = [. (D~(?(x, 11) (o,(rl)) e 2 ~ <~' ~> drt, 

and 

D; "~(x, t7)= ~ , ( ( -  y)~ r(x, y)). 

Since r =0  for y outside the compact set K, we have the same type of estimate for 
(3/~/) ~ ~(x, t/) as for ~(x, q), and hence for each fi, 

I jr(x, y) ~o~(y-z) dy] < Cp2-'(1 + [zl)-Ipl ((Ix[ + 1)-M+ (Ixl + 1) -M-~+2"+~} 

and so, for [/31 >n/2, M > 2 n +  1 +n/2, M > ( 1  -~r) N+v ,  

I}RN LII~ < C2-2~ li Lll~, N>No2,  
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and hence for N _ ~ N o 2  , 

IIRNfII~<=C ~, 2-2Zllf/LI2__< Cll fll2o,2. (24) 
/=o 

Interpolation between (23) and (24) completes the proof of the lemma. 
Adding the estimates (19) and (20) we obtain for f ~ C ~  with s u p p f ~ K ,  

assuming that �89 < o- < 1 and that (2 n - p) 6 < v, 

IIQ(t)fllBo2= II~b~Q(t)flj~, <Cltl~-2n611f]lBo.2, I t l<a  

We have proved the following theorem. 

Theorem 1. Let l < p <  2, 1/1)+1/1)'=1, c5=1/p-1/2. Let Q(t) be a properly sup- 
ported Fourier integral operator defined by a relation which is locally a canonical 
graph. Assume that locally on f2 ~ R n, in a neighborhood of t = 0, Q(t) is given by (1), 
with phase functions (o which satisfy (*) and, for t=0 ,  (2) of Section 1, and with 
amplitudes q~S -~, v>=O. Then for each compact set K c f 2 ,  there are ~>0 and a 
constant C K such that for f ~ C~ with supp f ~_ K, and for (2n - p) c~ < v, 

iiQ(t)fllBo;=<Cz~ltl~ 2,6 IlfllB9,2, I t l<a  (25) 

Remark 1. If 1 < p < 2, Lemma 1 and Theorem 1 imply that 

IIQ(t)fllp,<C~ltl v-2n611fllp, Itl<~, f ~ C ~ ,  suppf_~K,  

or, since Q(t) is properly supported, for each compact set K ' c  f2, 

[IQ(t)f IIL~,(K,)< CK, IC -2~6 Ilfllp, Itl<e, f e C ~ ,  

which is inequality (3) of Section 1. 

0,2 and B~ '2-norms by Remark 2. As the proof shows, we may replace the Bp - 

B; '2- and B~',2-norms, respectively, in (25). 

Remark 3. Under the assumptions of Theorem 1, however only assuming that 
qeS2 ~ for 1 / 2 < a < l ,  we find with obvious modifications, using (8)' instead 
of (8) in the proofs of the inequalities corresponding to (19) and (13), that provided 
( 2 n - p )  f < v  and 1 / 2 < a < 1 ,  

IIQ(t)fllBo,2< CKItl '~> I1 f IIBo,~, Itl <8, (25') 

where 7(o-)=min { ( v - 2 n ~ 5 - 2 p g ( a - 1 ) ) / ( 2 a - 1 ) ,  (v -2ng)) / (2a-1)} .  Since 
(2 n - p) 6 < v, we have for 1 > o- > 1/2 that 7(a) > - p g/(2 a - 1), with equality if 
( 2 n - p ) b = v .  

In the "constant coefficient" situation we may improve slightly on (25). Let 

_ ~,~-1 ~eitr<r ,,~t" ~) f(~)), (26) Qo(t) f(x)  - ~ x ,  ~ , ,  

where p(r is a phase function satisfying (.) and q~S -~. From [1] (or under slightly 
different assumptions on p, also from [8]), we then have the following estimate. 

Theorem 2. Let Qo(t) be defined by (26). Assume that l < p < 2 ,  1 /p+l /p ' = l ,  
6 = 1/p - 1/2, and that (2n - p) (5 < v. Then 

IlQo(t)fl[BO,~<cltl ~-2~6 [Ifllno, 2, f~C~.  (27) 
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We omit the proof, which is essentially carried out in [1]. Again, the remarks 
to Theorem 1 also applies to Theorem 2, substituting global results for local 
ones. 

4. Applications to Semi-Linear Hyperbolic Equations 

Let P = P(x, Dr, Dx) be a differential operator of order m on R n • R (in the variables 
(x, t)), with C~-coefficients depending on x only and which are constant outside 
some compact set in R n. We assume that P has a principal part p with real coef- 
ficients, and that the coefficient for D r is 1. 

To be more specific, we assume, following Chazarain [2]~ that P is hyperbolic 
in the sense that 

(H) the hyperplanes R ~ • {t}, teR, are non-characteristic for P, and the solutions 
=)~k( x, 4) of p(x, Z, ~)=0 are real and have constant multiplicities rko for ~ + 0, 

k = l ,  ..., K. 
In addition we assume that P satisfies the Levi-condition (again see Chazarain 

[23), 

(L) if ~ is real and satisfies (O/Ot)~-)~k(x, gradx~)=O , then for a~C~ with 
gradx, t ~ + 0  on supp a, 

e-i~Op(ei~Oa)=O()?~ rk), )~-~ +oo, k = l ,  . . . ,K.  

Then by [23 the Cauchy problem 

~Pu= f ~C~(R ~ x R), 
(c) j c ~ ~ ..., (D~ult=o=gjc o (R), j=O, m - l ,  

has a unique solution, which can be written 

r e - -1  

u(x, t)= ~ (Ej(t) + Rj(t)) gj(x) + E(t) ( Wf) (x) (28) 
0 

which is a reformulation of (3.8) in [2]. The operators which appear in (28) have 
the following properties: 

Ej(t): This operator is a sum of properly supported Fourier integral operators 
Ejk(t ), k = 1, ..., K, of the type discussed in Section 1 and Theorem 1 (cf. [2], 
Remarque 2.4). The phase functions of Ejk(t) may be choosen as $~k=~pjk+ t,],k, 
where ~Pjk satisfies (2), since P is translation invariant in the t-variable (cf. [2], 
Lemma 2.1 and H/Srmander [4]). The amplitude of Ejk(t ) belongs to S -~+(~-1). 

E(t): The operator E(t) is given by 

t 

E(t) f =  S E ~ _ ~ ( t -  ~) f ( . ,  ~) dr. (29) 
0 

W: By [2], W = ( 1 -  V) 1, where 

Vf(., t) = i V ( t -  ~) f ( ' ,  z) dz 
0 
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with V(t) an integral operator with C~-kernel; since P has constant coefficients 
for large Ix I, and since the hyperbolic problem (C) has a finite speed of propagation 
of supports (cf. [-2], Remarque 3.10), the support of the kernel of V(t) is contained 
in a compact set of the form {(x, y); I x - y l  < Cltl, x~K"  compact}. In particular, 
V(t) is a bounded operator on B~'2 and hence W= ~ V" is a bounded operator 

n__>0 

B)' ) for each compact interval I c  R and each p > 1, s > 0. Compare with on Lp(I; s 2 
Lemma 3.2 in [23. Further, by [2], p. 193, W: C~~ C~(R"+I). 

Rj(t): R~(t)=E(t) WRy(t), where R}(t) is an integral operator of the same type 
as V(t) above. Since W = I  outside some compact set, and E(t) is properly sup- 
ported, Rj(t) is also an integral operator of the same type as V(t). 

In the present situation, condition (.) takes the somewhat more easily verified 
form 

(.)' the Hessian )~,'~ of 2 k has rank at least p for ~ ~ 0, k = 1, ..., K. 

By Theorems 1 and 2, and Remark 2, it now follows from (28) and (29) with 
g=(g0, -.., g,,-1) =0, that for some e>0 and (2n -p )  3 < m - r ,  where r = m a x  rk, 

t k 

ilu(.,t)llB;,2<__cSlt_~l . . . .  2~llpu(.,z)llB;,2dz, i t l<~.  
0 

If O < l + m - r -  2n6=23 '  < l, then with 1/q + l / q ' = l  and 3 ' = l / q - 1 / 2 ,  1<q<__2, 

from well known estimates for Riesz' potentials. But, as mentioned above, P is 
translation invariant in t, and by translating and adding we obtain for each 
interval I c R that there is a constant C such that for u r C~(R" + ~), 

II u II L~,(~; ~;,,=) =< C II Pu 1I n~(~; nb. ~)" (30) 

In order to simplify the exposition below, we take 1 < p < 2 in (30), and then invoke 
Lemma 1 : 

IlulIL~,a;L~,) < C IIPUIIL41;L~). (30)' 

In particular, if s = 0 and q = p, then 

ItuH~,__< c II Pu I1~. (30)" 

Convention. From now on we assume that 1 < p < 2 ,  I /p+ 1/p'= 1, c~ = l / p -  1/2 
and that with p defined by (*)', ( 2 n - p ) 6  < m - r .  We also assume that 1 < q <2, 
1/q + l/q'= l and 6 ' = 1 / q - 1 / 2  and 2cS'= l + m - r -  2nS. 

Following Strichartz [14], we say that the (vector-valued) tempered distribu- 
tion g belongs to cg;q(I) if the solution of Pu=O with data g=(go, "",gm-1), 
that is D{ul~_o=gj, j = 0 ,  . . . , m - l ,  belongs to Lq,(I; LSp.(R')). Some properties 
of Cg~q(I) is collected in the following lemma. (Cf. Lemmas 2.3 and 4 of [14]). 

Lemma 6. Let I be an interval in R. 
(a) I f  uffLq,(I; I~.) and Pu=O, then there exist g ~ q ( I )  such that 

m--1  

u(x, t) = ~, (Ej(t) + Rj(t)) gj(x), (31) 
j=o 

where Ej(t) and Rj(t) are the operators defined in (28). 
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(b) I f  u~Lr Ur and Pu = f  6Lq(I; I2v), then there exists ge(g;,q(I) such that 
(28) holds. Conversely, if f E Lq(I ; L~p) and g ~ q ( I ) ,  then the solution u of(C) belongs 
to Lq,(I; [2r 

m--1 

(c) Let #=max(m,  2(m--r)). Then I~ BS+U-J-1/v'p~s (l~] p -- ~pp,,--,,. 

j=o 

Proof. (a) By assumption R"x  {t}, t~R, are non-characteristic for P, and since 
Pu=0 ,  it follows that t o u ( . , t ) ~ Y '  is a smooth function of t. In particular, 
gi = D~tu]t = o are well defined, j =  0, ..., m -  1. The uniqueness of the solution of (C) 
completes the proof of (a) (cf. [2], Prop. 3.2). 

(b) Write u o for the solution of P u = f  with zero initial data. Then by (30)', 
uo~Lr and hence also Ul=U-UoELq,(I;LSp,). Since u s satisfies the as- 
sumptions of (a) above, by what we have already proved, u I and so u has data 
gE~q(I).  The converse is proved similarly. 

(c) By the trace theorem, there is a u ~ Bp + ~' v such that O{ult = o = g j, J = O, ..., m -  1, 
if gj~Bp +"-j-1/;'p. Then Pu~B~+U-"'V~_BSp'V~_Lv(R"+l), and by Sobolev's 
embedding theorem, u~BSp +"' v ~_ B;+u- 2(~-~), v _~ B;,p ~_ Lr An application 
of (b) above then proves that gjECF~p(R). In the above inclusions, we have also 
applied Lemma 1. 

Let f= f (x , t ,u )e lYq( I ;L~  -~) for each uELq,(I;l~:~ O<a<_s, O<s<So, 
and each interval I_G_R. Assume that for each s<s o and each e>0  there is a 
c~ > 0 such that if 

then 

[I f(u) -f(v)II  m,(r; L~) < e II U -- V ]l L~,(X; g~,)" (32) 

Example 1. If a=a(x, t)~L~(R "+1) is continuous and f ( x ,  t, u)=a(x, t)lul M, 
then f satisfies the above assumptions for M > 1 and with Mp = p', s = O. 

If we notice that, since by assumption q '<  o% if U~Lq,(I; LSp,)then for each 
6 > 0 there is some interval I~_ I such that the norm of u in Lq,(I~; I~p,) is at most 6. 
Also, notice that the norm of gff~;q(I) is naturally defined as the Lq,(I; L~v,)-norm 
of the corresponding solution of Pu=O. With this observations and inequality 
(30)', the following result is proved in the same way as Theorem 3 in [14]. We 
omit (the, modulo [14], obvious) details of the proof. 

so Theorem 3. With the above conventions and assumptions, assume that g~Cgpq(R) 
and that P as above satisfies (H) and (L) and that f satisfies (32). Then there is an 
interval I o ~ R, I o open and nonempty, such that the Cauchy problem 

(o,, f P u =  f (',u), 
I, = o  = g j ,  = 0 , . ,  m -  1, 

has a solution u~L~,(I; I2~, ~) on each open interval I with ]~Io ,  O<cr<=s o. The 
solution is unique as long as it exists, and if it does not exist globally, then the 
L~,(I ; Id~,-r of u tends to infinity as I tends to the maximal interval of existence. 
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Example 2. Let ak~(X)~ C ~ be constant  outside some compact  set in R ~, and assume 

that (akl(X))k, l is positive definite on R' .  Let P=~?2/Ot2- ~. akl(X) O2/OXkSXl, 
k,l=l 

and let f be as in Example 1 above. Then p = n - 1 ,  m = 2  and r = l .  With M = 3 ,  
the conditions of Theorem 3 are then satisfied for n = 3, with p = q = 4/3 and p' = 4 
and q = p. 

Remark. I fs  o > 1/q' we may take a > 1/q' and by Sobolev's theorem obtain uniform 
bounds  in the t-variable. In order to obtain uniform estimates also in the x- 
variables, we have to require essentially the same amount  of smoothness of the 
initial data as that suggested by the use of L 2-methods (cf. L6fstr/Sm and Thom6e [11]). 
However,  the smoothness  assumptions on f will still in a sense be minimal by the 
use of  the methods of this paper. 
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