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1. Introduction

The purpose of this note is to prove local L,— L -estimates for certain Fourier
integral operators, and to apply these estimates to obtain existence and uniqueness
results in L, p'>2, for some semilinear hyperbolic problems. Let us here remark
that estimates of this type were suggested, and to some extent proved, in a slightly
different setting, by Littman [8]. See also [1]. In the case of semi-linear problems
for the wave-equation the corresponding results are due to Strichartz [13, 14].

The solutions of a large class of hyperbolic initial value problems in
(x, HeR"x R, with data on =0 may be written as a finite sum of (properly sup-
ported) Fourier integral operators and of integral operators with C®-kernels
(see [2-4]). Here the Fourier integral operators are given (for ¢ fixed) by locally
canonical graphs, and for t=0 they reduce to pseudo-differential operators
(for these concepts, and other properties of Fourier integral operators, we refer to
[3, 4] and [6]). This means that locally, in aneighborhood of t =0, say, the operators
may be written

QM) u(x)=[f 2™ ¢E=»q(t; x, y, &) u(y) dydé, (1)

where ¢ is a real non-degenerate operator phase function, depending smoothly
on the parameter ¢, and ¢ is a symbol in the class S~ some v=0. In addition,
if $(0;x,y, )=y (x, y, &), then grad, iy =0 for £+0 exactly on the diagonal x=y,
where also grad, = —grad ¢ =¢, so that

Y(x, 3, &)=<x =y, E+O0(x~yIP[&]),  x—. )

In view of this we shall in the following assume that g for small values of ¢, |t| <&
say, has support in some (sufficiently small) neighborhood of the diagonal x=y,
adding if necessary an integral operator with C%-kernel to Q(t). Thus Q(r) is
assumed proper (see [6]).

In Section 4 below we shall in particular use the phase-function ¢(¢; x, y, &)=
vix, y, &) £1py, &), with ¢ satisfying (2) and p(y, £)+0 for £=+0.



274 P. Brenner

The existence of local L,~L -estimates, that is estimates L°l;’mp—>L1;,°, for
integral operators with C*®-kernels are obvious. It therefore remains to obtain
such estimates for (properly supported) operators with local representations (1)
for |¢| small, using the oscillatory character of the integral (1).

As local L,— L -estimates (with 1 <p=2, 1/p+1/p'=1, as we shall assume
from now on) imply local L~ L -estimates, the nonexistence of the latter for
sufficiently large values of p’ for the wave-equation ([9]) shows that some restrictions
on p will be necessary, say in terms of the size of 0=1/p—1/2=1/2-1/p".

Assume in addition to the above conditions that the phase functions ¢ used
in (1) satisfy

. d
(¥} the hessian matrix m ¢7eAt; x, y, &) at t=0 has for £+0 rank at least p on the
diagonal x=y. t

1/2
As an example, let p(y, §)=< Y an) ékfl\ , where (a,(y)),, is a real

k=1
positive definit n x n-matrix for yeR” and let as above ¢ =y +tp. Then p=n—1.
In general, the homogeneity of ¢ implies that 0<p<n—1.
Under the above assumptions on Q(t), locally represented by (1), we shall
prove that for each compact set K <R" there are ¢>0 and a constant C=Cy
such that for 2n—p)o =y,

1@ ully, S Celt 2 lull,, 0<ltl<e ueCy. €

The proof of (3), and in fact a slightly more general inequality formulated in
terms of certain Besov spaces, will be carried out in Sections 2 and 3 below (Theo-
rems 1 and 2). The method of proof will depend strongly on that used for the
“constant coefficient” case in [1]. As an application we scetch in Section 4 some
existence and uniqueness results for a class of semi-linear hyperbolic problems.
Using (3), these results are obtained by using the known (local) structure of the
solution of the linear problem (in our case found in [2]) and a strightforward
application of the ideas used by Strichartz [14] for the corresponding problems
for the wave-operator.

2. Some Preliminary Results

Let @J(é):@(Z_Jé)a ]>0’ and (pozl_chja where (pGCBO(Rn)a (p_Z_O, and
supp ¢ = {&; 1/2<|&| <2} is such that

Y eQia=1, &+0.

j=—0
Define the Fourier transform # of an L,-function u by

Fu@=0)= | ™ *Pulx)dx,
i
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and then define B}, s real, as the closure of C3 in the norm

W 1/q
Iolago= (S 17 Ho0),0)
0
with the usual modification for g=co. Here | - ||, denotes the L -norm.
With w (&)=(1+|&[>)*%, we also define I, as the closure of CZ in the norm
loll,, s=lvlL= 7" w0,
Notice that [,=L,, 1<p<oo.
The following inclusion lemma will be useful.

Lemmal. Let 1<p<2 1/p+1/p'=1, and s=0. Then
(i) By’sL,=B;?,
(i) By? 2L, 2857
Proof. See [15, Thm. 15] and [10, 12] and also [16, Thm. 5.2.3].

The following asymptotic estimate can be found e.g. in [7] (see also [3] and
[6], p. 145).

Lemma 2. Let ¢ = ¢(£) be real and C* in a neighborhood of the support of ve Cg.

2
Assume that the rank of qbgéz (a—a(;i
some integer M, £10¢)

|7 ) S CA+It)* Y D],

[l SM

) is at least p on the support of v. Then for
k,1

Here C depends on the bounds of the derivatives of ¢ on supp v, on a lower bound

Jor the maximum of the absolute values of the minors of order p of ¢7, on supp v,
and on supp v.

For the general theory of Fourier integral operators, we refer to [3, 4] and [6]
(for pseudo-differential operators, see also [5]). Here we will only in a very in-
complete way present some of the main concepts that will be used below:

Let Q<R" be open and let 1/2 <o < 1. We say that ae C*(2 x Q x R") belongs
to SP2xQxRMN=S87, (@xQxR" if for any multi-indices o, f and y and

compact set KcQx Q,
|DIDED%a(x, y, OIS C, 5., g1 +]ENmolx U= WD for (x, y)eK.

We write S7 for this space, whenever convenient, and S™ for S7.

A Fourter integral operator can locally be represented by an oscillatory
integral of the form (1) with a phase function ¢ and an amplitude geS™, some m
and 6,12 < o <1.If the Fourier integral operator is locally defined by a relation which
is a canonical graph, then we may take ¢ as a non-degenerate phase function such

that D(¢)=det (iﬁf:ﬁf*)#o on the set where grad.¢=0 (cf. [6], Sect.4.1).
& xy

That ¢ is an operator phase function means that ¢ is real, homogeneous of degree 1

in ¢ and C* for {+0, and that grad, ,¢ and grad,, ¢ doesn’t vanish for £+0.

. 0 . .
That ¢ is nondegenerate means that ¢ ((%f), j=1, ..., nare linearly independent.
&j
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From now on we assume that ¢ and g are the phase function and amplitude,
respectively, in the representation (1), having in particular the properties assumed
i Section 1, so that geS™ with 5 =1 and m= —v.

Since an amplitude in $~* gives an integral operator with C*-kernel, we may
assume that ¢=0 for [{[ <1, say. As grad_,$+0 for {40, we may assume that
|grad, ¢|=c|€|, c=c(x, y)>0, on the support of g (uniformly for |t| <e, £>0 small
enough), the contribution from the set where grad,¢ is bounded away from zero
(uniformly in ¢) being an integral operator with C®-kernel (cf. [4]). In the same way
we may also assume that {grad. | =c|x— y| on supp g, where as above ¥(x, y, &)=
$(0; x, v, &)

Remember that the support of g may be choosen to be contained in any suitable
neighborhood of the diagonal x=y for |t|<e, £>0 small enough. In addition,
¢ and g depend smoothly on ¢, and geS~>.

Let xe C3(R"), =0, and with support in the set {&; c<|&]<c™!}, for some
¢>0. Define 3(&)=x(277¢), j20, and let y,(t; x,y, &) =y;(grad, ¢(1; x, y, &)).
Notice that for any o€(0, 1],

IDEx )< 273t = el (1 (g~ 1o, (4)
and, since by our assumptions above ¢|&|<|grad, ¢| < C|é| on supp g,
IDZ,DQDEXJ-U; x,y, &)< Cm’ﬁ,yzﬂ'(l—a)(lal+lﬂl+lyl)(1 +EN, (5)

with m= —ola|+(1—0)(|f|+|y]), for (x,y) in compact subsets of Qx €, and

(x, y, {)esupp ¢.
Define the Fourier integral operator Q (f) by the local representation

Q) u(x)= [ iG>y (grad, (t; x, y, &) qo(t; x, v, &) u(y) dydé, (6)

where ¢ is as above, and ¢, has the same properties as ¢, but now belongs to §~*.
Hence Q(t) is given by a locally canonical graph, 2/*y (grad, ¢) q,€8S;, for
1/2<g =1, uniformly for j=0, and ¢, is a properly supported symbol (ie. has
supportina neighborhood |x — y| < ¢, say, of the diagonal x = y). Then Theorem 4.3.1
in [6] applies, and proves the following result:

Lemma 3. Under the above assumptions, for each compact set K = Q, there are
constants C and >0, such that if fe C3 and supp f <K, then

12,0 fl,sC27 I fll,, O0=lti<e, j2O0.

Now, in addition to the above conditions, ¢ also satisfies condition (%) of
Section 1. Choosing the support of g, sufficiently close to the diagonal x=y,

d
we may assume that for ye K = compact and 0 <|t| <, ’n ¢7, has rank at least p
for £+0 in the support of ¢,. Then t

1Q,(8) u(x)] éSUII? |Je2m¢ =20y (grad, ¢) qo) (t; X, y, &) d&] [lul); .

By a change of variables

L =fe? i@ 9y (grad, d) qo) (3 x, y, ) d¢
=2/ [ 225D y(grad, §) go(t; X, y, 278) 27 dE.
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Since

¢t %, y, O =y(x, y, )+ 1d(x, y, O+ 0(?)

we obtain in supp g, Nsupp y(grad, ¢) for |x — y| = C|t|, C a suitably large constant,
that |grad.¢|=clt|, ¢>0, and hence repeated partial integrations give that
I, ,is a rapidly decreasing function of 2/[¢|, uniformly for ye K. On the other hand,
if |[x—y| = CJt|, then by (2)

¢t %, y, &)= x—y, & +1(x, 3, H)+0(?),

and thus q;’é’é has rank at least p in supp g, nsupp (grad, ¢) for |x—y|< Clt],
yeK, provided |t|<s, ¢>0 small enough. We may then apply Lemma 2, with
ue Cy and suppu <K,

1Q7(0) u(x)| < C2=0Q2I|e|+ 1)~ ¥ ||u],
2j(%(2n—p)—u)|t|~%p||qu, 2j|t|>1,
=C O<|t|<e. (7
20wy, V=1,
Notice that e=¢(K) in the above argument.
Interpolating between Lemma 3 and (7), we end this section with an estimate
of Q(1):
Proposition 1. Let 1<p<2, 1/p+1/p'=1, 6=1/p—1/2. Assume that Q (1) has the
local representation (6) in QS R", with ¢, q, and y; as above. In particular ¢ satisfies
(%) of Section 1, and q,eS~*. Then for each compact set K <Q, there are >0 and
C=Cyg such that for ue C§ withsuppuc K,
2HOCR=P= D=3 ] 2]e]> 1,
1) ull, =Cgy ' O<|t|<e. (8)
2B ], 2| =1,
Remark. Tt was suggested by Anders Melin that the above method should apply

also if g,€S, * for 1/2<a <1: By [6], pp. 144-145 (cf. also [3], Sect. 1.2) a more
precise version of Lemma 2 is expressed by the following inequality:

k-1
IIﬁ‘I(e”"’v)llméCltl"’/z{z (L' Y D%+l Y. D% }
0 laf=21 el 2k+p+1
If g4€S,* we shall apply this to v=y(grad, ¢)q,(z, x, y, 2 &) 27*, so that
|D§U[§ C2j(1—a)la|,
and replace ¢ by 2/t. Thus, as above
k—1
Uj,,| < Czj(n—u)(zjm)—%p{z (2j(2”‘1)|t|)" _I_2j(p+1)(2j(20—1)]t])—k},

0
and so

|I |< 2j(n~u—p/2)|t,—p/2’ 21’(20~1)'t|>1’
tl= 2j(n—u), 2j(2a—1)ltl§1,

in the case 1/2<o=<1,0<|t|<e.



278 P. Brenner

By interpolation we obtain under the assumptions of Proposition 1, but now
assuming that g,€S;* for some ge(3, 1],

2C@n=p =m0 Iy I g5, p
HQ,-(I)““péCK{zﬂW-m;qu, T per s )

3. Proof of the Main Results

In this section we shall prove a result which in particular implies the estimate (3).
We keep the notations and assumptions of Section 2. To avoid duplication of
some computations, we shall frequently refer to [4] and [5].

As follows from (4), queS and

IDip ()< C, 2710l (1 (gl 0<o<I. 9)

Let @, f(x)=% (¢, F)(x). The following is a consequence of (the proof of)
Theorem 2.16 in [ 5].

Proposition 1. Let geS™, v=0, and ¢ be as above. Then for 1)2<a =1,

. . 1 .
e hg)= T o (erad, ) D,lge N, _ 427N

| |<N

where (10)
¢;cl(z’ 2 é):¢(2, Vs é)_ ¢(X, Vs é)——<Z—X, ¢/x(x= Y, C)>7

and r_ €S, M uniformly for j=0, |t|<e.

Proof. By (9) and formula (2.19) in [5], the difference between the left hand side
and the sum over |¢|<N on the right hand side of (10) is of the order
27 iU-aN g G0N By an obvious modification of Theorem 29 in [5], it
follows that the left hand side of (10) belongs to S° uniformly for j=0, and that
the above difference belongs to S, "~ #¥ with a bound 0277 ~#%) for j=0
(this is where a modification of Theorem 2.9 in [5] is used).

Compare also with the derivation of Lemmas 2.11 and 2.12 in [4], where the
case o =1 is considered.

By operating under the sign of integration, we find by Proposition 2 that

2000 f= Y, Q(“> () f+27IU=NR f, feCP, (11)
1zx|<N
where the operators on the right hand side are all locally defined by oscillatory
integrals with phase functions ¢.
The amplitudes for the oscillatory integrals defining Q{® are by Proposition 2

49t x, v, &)= @\ (grad, ¢) DX(q(t; z, y, &) 45 E» )| _ (12)

where ¢ is defined as in Proposition 2 . Notice that 2/¢ ="l 4@ belongs uniformly
to Sy @l for j>0, |t|<e, and has support in c2’<|£|< C2/, for some
C, ¢>0. Since we assume that supp f = K, a compact subset of Q, we may as well
assume that ¢{(t; x, y, £)=0 if (x, y)¢ K’ x K, for some compact set K.
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With =Y, , =F (¢, [), we have
0P f= IZO (1) 1,

whenever the sum is convergent. The estimate

{21'((2"ma—v—%'“')ltl“"’lﬁlp’ 2> 1,

A _ 13
Kloi@ni—v=slab | o | 2t|£1 (13

1990 £, =C

now follows from Proposition 1. Merely use that the support of 4% is contained
in K’ x K xR”. If for some constant ¢, |[—j|<c¢, the estimate (13) will be enough.
In case |[—ji=c, the following lemma shows that (13) may be improved.

Lemma 4. For each x>0 there is a constant ¢ >0 such that

W 1 <o O 2L, IS,
17Oy =2 {2 “Ifily  IZjte (14

Proof. Write, with &, =¢@,_; +¢, +¢, 1, ¢_,; =0,

00 £, (0= [ 202> 0gD (1t x, y, &) fe= 272 &, (n) f, (1) dndydé
=[e=2mm G (n) g (x, ) £, () dn,
where (remember that supp g%’ <= K’ x K x R")

gj(x 7’1) ”ezvn(qﬁ(t Xy, O+<{x—y, ">)q(“)(t X, ¥, 5) dydf. (15)
We claim that there is a constant ¢ such that for each integer 4,
~i(v+ 1)

sup |g;(x, ) @, (| < C, 272 2 =274 l=jlze. (16)
xn

To see this, notice that grad (¢ +{x—y,n)=grad,¢—#, and so for the x,y, ¢
in consideration and for nesupp @,, there is a constant ¢ such that

|grad, (¢ +(x—y, np)|=c|2/=2!|.

Repeated partial integrations in (15), and observing that ¢{¥eS; >~ 11412l then
proves (16).
Now,

09() f; () =F,Z e > =™ g (x, 1) i) S0, - =(F (g%, ) ) f) (x).
Slince g/x,n) @,(n) satisfies (16) and has support in ¢2'<|p|< C2', we find for
l=jlzc,

19 (0) fill = C, 20 Dm2 I 31=D 28 2I| o4 | £, 17)
An L,-estimate is obtained e.g. in the following way:

109 £ill3=Fdx|[e 2" &) g (x, n) fin) dn|?

= §1¢:0n) g,(x, M dndx | fin)* dn
= [§19:(n) g,Ce, I dndx || £i113.
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As above,
(1§13 g;(x, n)? dndx)t < C2U+ 3D+ 1ab |l pj| =04,
and hence
1Q9(1) fil, £ C2UImp 01D ol _2i|=oA | £ (18)

Interpolation between (17) and (18), taking 4 large enough,then proves the lemma.
Let

~ 1
0= 0.
la] <N %
Adding the estimates of Lemma 4 over |a| <N and over |I—jj2c, we obtain
10,6, £C2"9 £ |y
which with (13) implies that if k>n—v and if 2n—p) 5 <v, then

‘ZO 1046 15 = CleP =2 f 3. (19)

We still have to consider the error term Ry, f:
Lemma 5. Let 1<p<2,1/p+1/p'=1 and let Ry as above be defined by (11). Then
there is an N, such that for fe Cy with supp f< K,

IRy [l =Cll fligg2s N2ZNp, (20)
where C=Cy is independent of j=0 and of |t|<e.

Proof. Let first N be so large that v+ (6 —1/2) N>n. Then, here and in the re-
mainder of the proof suppressing the t-dependence,

Ry f(x)={r(x,y) f(y) dy,
with

r(x, y)=[e?™ &2 Iy (x, , &) dE.
As assumed above, there is a compact set K’ such that x¢ K’ implies that
q(x, y,&)=0 and ¢(x, y, £)=0, that is

e‘z’”‘ﬁ("’y’f’@j(ez"i¢"’y’5)q(~,y, ) () =ry(x, 3,8, x¢K.

Since we only are going to consider functions with support in K, we may (as for g
and q}“’) assume that r, =0 for y¢ K. By our assumptions on g, we also have ry=0
for [¢]<1. With ¢;=F (o)),

(pj(g) = _w)j (x—2) glz) dz.

We may as well assume that |x| =1 on R"~.K'. Using that ¢ is rapidly decreasing,
we have for any M, x¢2K’,

Di(e™ 20 (> e )| < C¢| =1 x|~ M2 M, 1
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Let §,=¢,_, +¢,+ ¢, ,, with ¢_, =0. Then

IRy i1 =I§§/12) $,(y = 2) r(x, y) dydz| S| fi(2) dz[r(x, y) Gi(y—2) dy|

<Al sup Ifr(x, ) 6.y —2) dyl.
By Parseval’s formula,
§r(x, ) @iy —2) dy = [f(x, 1) §,(n) ™= dy,
Since
n°P(x, 1) =(Dyr(x,*) (),
the estimate (21) implies for M >(1 —¢) N + v that

e Feemls | DSy (e, Ol dE+ |
11| 1€z x|

S Clx|=M (1 +]x| v *lelem 4 Cpx|+n+lal=M=v  yargr

and so, for |u|=n+1, M+v>2n+1, M=(1—06) N+,
sup|r(x, y) §,(y—2) dyl £ C27H{(L+ %]+ =M= 4 (1 +|x])~ M},

for x¢2K". Clearly (22) also holds for xe2K'.
Thus,

sup [Ry f()ISC27H A, N2Nyy,

from which, for N> N, ,

HRNfHooélZo IRy fill o CZ2 NAILSCUS g

Next, we will prove a corresponding L,-estimate. We have

IRy fl3= 2. IRy £,
1=0

and (as in the proof of Lemma 4),

IRy AI2SFI(] £i(2) (v —2) r(x, y) dydz|? dx

< lf@; y—2)r(x, y) dyl> dzdx{| f{z)|* dz.
Now,

2 [#(x, 1) @y(n) ™= dy = [ (DXF(x, n) §,(m) 2™ <= dy,
and

=2 (=) r(x, y).

281

22)

(23)

Slnce r=0 for y outside the compact set K, we have the same type of estimate for

(0/on)* #(x, n) as for #(x, n), and hence for each f,

706, ) G,y = 2) dy| < Cp2 7 (L + 2~ {(x] + 1) M4 (x| 4 1)~ M-+ 2ne 1)

and so, for |B|>n/2, M>2n+1+n/2, M=(1—0) N +v,
IRy A3 C2720 A3, NZNy,,
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and hence for N = N,
IRy fI3=C 3 272 I AIZ=CI S 13- (24)
1=0

Interpolation between (23) and (24) completes the proof of the lemma.
Adding the estimates (19) and (20) we obtain for feCy with supp fe K,
assuming that £<o<1 and that 2n—p) o=y,

1

100)f Iy == (S 1200 f13) SCIE 271 £y, Iel<
]
We have proved the following theorem.

Theorem 1. Let 1<p=<2, 1/p+1/p'=1, 6=1/p—1/2. Let Q(t) be a properly sup-
ported Fourier integral operator defined by a relation which is locally a canonical
graph. Assume that locally on Q =R”, in a neighborhood of t =0, Q(¢) is given by (1),
with phase functions ¢ which satisfy (x) and, for t=0, (2) of Section 1, and with
amplitudes qeS~", v=0. Then for each compact set K<=Q, there are ¢>0 and a
constant Cy such that for fe CY with supp f €K, and for 2n—p)d=v,

1) fllgg,2 S CiltP 2" I fllpgo» It <. (25)
Remark 1. If 1<p=2, Lemma 1 and Theorem 1 imply that

10O f I, SCele 2N £, ltl<e, feCF, supp fSK,
or, since Q(t) is properly supported, for each compact set K'< Q,

10 flle, ay S Ca 2N S 1, ltl<e, feCF,
which is inequality (3) of Section 1.

Remark 2. As the proof shows, we may replace the BY:2- and B9 *-norms by
B3?2- and B}’-norms, respectively, in (25).

Remark 3. Under the assumptions of Theorem 1, however only assuming that
qeS;” for 1/2<o=1, we find with obvious modifications, using (8) instead
of (8) in the proofs of the inequalities corresponding to (19) and (13), that provided
(2n—p)d<vand 12<0c=1,

1Q() g2 S Crlt N fllgg.2n Nt <, (259

where  y(o)=min {(v—2n6—2pd(c—1))/(26—1), (v—2nd)/(2c—1)}. Since
(2n—p)o=<v, we have for 120>1/2 that y(c)= —pd/20—1), with equality if

2n—p)o=v.
In the “constant coefficient” situation we may improve slightly on (25). Let
Qo(1) f (x)=FZ1(* 7D q(1; &) [ (2)), (26)

where p(¢) is a phase function satisfying () and geS™*. From [1] (or under slightly
different assumptions on p, also from [8]), we then have the following estimate.

Theorem 2. Let Q,(t) be defined by (26). Assume that 1<p<2, 1/p+1/p' =1,
0=1/p—1/2, and that 2n—p)d=v. Then

1Qo(®) fllgg 2= CI" 2" fllgg2, fECF. @7
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We omit the proof, which is essentially carried out in [1]. Again, the remarks
to Theorem 1 also applies to Theorem 2, substituting global results for local
ones.

4. Applications to Semi-Linear Hyperbolic Equations

Let P=P(x, D,, D,) be a differential operator of order m on R" xR (in the variables
(x, 1), with C®-coefficients depending on x only and which are constant outside
some compact set in R". We assume that P has a principal part p with real coef-
ficients, and that the coefficient for DY is 1.

To be more specific, we assume, following Chazarain [2], that P is hyperbolic
in the sense that

(H) the hyperplanes R” x {1}, teR, are non-characteristic for P, and the solutions
1=2(x, &) of p(x,1,£)=0 are real and have constant multiplicities r,, for £=+0,
k=1,...,K.

In addition we assume that P satisfies the Levi-condition (again see Chazarain
[21),
(L) if ¢ is real and satisfies (6/8t) ¢ — 2,(x, grad, ¢)=0, then for ae Cy with
grad, ,¢+0 on supp q,

e—il¢p(eil¢a):0um—rk), A=+ o0, k=1,...,K.
Then by [2] the Cauchy problem

(C){Puzfecg"(R”xR),
D{u|t:0:gj€C80(Rn)a j:()y"'9m_1,

has a unique solution, which can be written

m—1

u(x, )=, (E;()+R(1) g(x)+E@) (W) (x) (28)
0

which is a reformulation of (3.8) in [2]. The operators which appear in (28) have
the following properties:

E(t): This operator is a sum of properly supported Fourier integral operators
E (0, k=1, ..., K, of the type discussed in Section 1 and Theorem 1 (cf. [2],
Remarque 2.4). The phase functions of E;(t) may be choosen as ¢, =y, +t4,,
where ;, satisfies (2), since P is translation invariant in the ¢-variable (cf. [2],
Lemma 2.1 and Hormander [4]). The amplitude of E (1) belongs to §7/% =1,

E(t): The operator E(t)is given by

E()f=(E,_ (t—1) f(-,7)dx 29)

W: By[2], W=(1—V)"!, where
t

Vf(" [): jl V(t—T)f(', T) dr

0
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with V(¢) an integral operator with C*®-kernel; since P has constant coefficients
for large | x|, and since the hyperbolic problem (C) has a finite speed of propagation
of supports (cf. [2], Remarque 3.10), the support of the kernel of V(¢) is contained
in a compact set of the form {(x, y); |x—y| = Cjt|, xe K” compact}. In particular,
V(z) is a bounded operator on B> and hence W= ) V" is a bounded operator

nz0

on L,(I; By?) for each compact interval IcR and each p21, s=0. Compare with
Lemma 3.2 in [2]. Further, by [2], p. 193, W: C*(R"*!) —» C*(R"*?).
Ri0): R(t)=E(t) WR(t), where R(1) is an integral operator of the same type
as V() above. Since W=1I outside some compact set, and E(t) is properly sup-
ported, R (?) is also an integral operator of the same type as V/(¢).

In the present situation, condition (x) takes the somewhat more easily verified
form

(¥) the Hessian 4/, of 4, has rank at least p for £+0, k=1, ..., K.

By Theorems 1 and 2, and Remark 2, it now follows from (28) and (29} with
g=(g¢>---» &n_1)=0, that for some ¢>0 and 2n—p) 6 Sm—r, where r=maxn,
t

e, Dllgs, = C e =" 2" | Pu(*, 1) py2dr, [t <.
0

fO0<l+m—r—2n8=25<1, then with 1/g+1/¢=1and & =1/g—1/2,1 <q=<2,
”uHqu((O,t); B;,,Z)é CHPu”Lq((o,z);Bff 2)» lt]<e,

from well known estimates for Riesz’ potentials. But, as mentioned above, P is
translation invariant in ¢, and by translating and adding we obtain for each
interval I =R that there is a constant C such that for ue C(R"*1),

fJu ”Lq,(r; B3,2) < C|Pu HLq(I; By 2)" (30)

In order to simplify the exposition below, we take 1 < p <2 in (30), and then invoke
Lemma 1:
HMHLQ/(I;Lf,,)éC”PuHLq(I;Lls,)- (30

In particular, if s=0 and g=p, then
[ull, =< CliPul,. (30y"

Convention. From now on we assume that 1<p<2, I/p+1/p'=1, 6=1/p—1/2
and that with p defined by (x), 2n—p) 6 <m-r. We also assume that 1 <g=<2,
1/g+1/9'=1 and 6'=1/g—-1/2 and 20'=1+m—r—2nd.

Following Strichariz [14], we say that the (vector-valued) tempered distribu-
tion g belongs to ,,(I) if the solution of Pu=0 with data g=(go, ..., gm_1),
that is Djul,_,=g;, j=0,...,m—1, belongs to L (I; I, (R")). Some properties
of 6;,(I) is collected in the following lemma. (Cf. Lemmas 2.3 and 4 of [14]).

Lemma 6. Let I be an interval in R.
(@) IfuelL,(I; L) and Pu=0, then there exist ge%; (I) such that

m—1

ulx, )= .ZO (E;(1)+R (1) g(»), (31)

where E (1) and R (t) are the operators defined in (28).
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(b) IfueL,(I;L,) and Pu=feL (I; L), then there exists ge%, (1) such that
(28) holds. Conversely, if feL,I; D)and ge®, (1), then the solution u of( C) belongs
to L,(I; ).

m—1

(¢) Let p=max (m, 2(m—r)). Then ‘]_!] Bytu-i-librcgs (R).
=

Proof. (a) By assumption R"x {t}, tcR, are non-characteristic for P, and since
Pu=0, it follows that t—u(:,f)e¥” is a smooth function of . In particular,
g J=D{u|t=0 are well defined, j=0, ..., m—1. The uniqueness of the solution of (C)
completes the proof of (a) (cf. [2], Prop. 3.2).

(b} Write u, for the solution of Pu=/f with zero initial data. Then by (30Y,
ugeL,(I; L), and hence also u,=u—uyeL (I;L,). Since u, satisfies the as-
sumptions of (a) above, by what we have already proved, «, and so u has data

€%, ,(I). The converse is proved similarly.

(c) By thetrace theorem, thereisaue B;** P such that Diu|,_,= g;,j=0,...,m—1,
if g;eByr#~/"1PP Then PueBy* ™P<ByPcL (R™!), and by Sobolev’s
embeddmg theorem, ue By** "CB;“‘ 2(m—r). ”CB; I’CL AR**1). An application
of (b) above then proves that g;€%,,(R). In the above 1nc1us1ons we have also
applied Lemma 1.

Let f=f(x,t,u)el(I; L °) for each uelf (I;L,°), 0<o<s, 0=<s<s,,
and each interval I=R. Assume that for each s<s, and each ¢>0 there is a
>0 such that if

”u”Lq/(I;LIS,r)<59 HUHLH,(I;LIS,,)<57

then
1 fw)—f(v) I,z Sellu—v ”Lq:(I; L$)° (32)

Example 1. If a=a(x,t)eL (R"*!) is continuous and f(x,t,u)=a(x,t) |ul™,
then f satisfies the above assumptions for M > 1 and with Mp=p’, s=0.

If we notice that, since by assumption ¢'< oo, if ue L (I; L)) then for each
0 >0 there is some interval I, = I such that the norm of u in Lq (Iy; D ) is at most 6.
Also, notice that the norm of ge % (I) is naturally defined as the L A1; L, )-norm
of the corresponding solution of Pu=0. With this observations and mequahty
(30), the following result is proved in the same way as Theorem 3 in [14]. We
omit (the, modulo [14], obvious) details of the.proof.

Theorem 3. With the above conventions and assumptions, assume that ge%;5(R)
and that P as above satisfies (H) and (L) and that f satisfies (32). Then there is an
interval I, R, I, open and nonempty, such that the Cauchy problem

Pu={(-u)
cy: ,
( ){D{ult_ozgja ]‘—‘0,...,1”’1—-1,

has a solution ue L5, (I; L‘;"’) on each open interval I with Icl,, 0<o<s,. The
solution is unique as long as it exists, and if it does not exist globally, then the
L5,.(I; L5~ )-norm of u tends to infinity as I tends to the maximal interval of existence.
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Example 2. Let a,,(x)e C* be constant outside some compact set in R”, and assume

that (a,(x)),; is positive definite on R” Let P=0%/0t>— ) a,,(x)3%*/dx,0x,,
k=1

and let f be as in Example 1 above. Then p=n—1, m=2 and r=1. With M =3,

the conditions of Theorem 3 are then satisfied for n=3, with p=g=4/3 and p'=4

and g=p.

Remark. If sq>1/g' we may take ¢ > 1/¢’ and by Sobolev’s theorem obtain uniform
bounds in the t-variable. In order to obtain uniform estimates also in the x-
variables, we have to require essentially the same amount of smoothness of the
initialdataas thatsuggested by the useof L -methods (cf Lofstromand Thomée [11]).
However, the smoothness assumptions on f will still in a sense be minimal by the
use of the methods of this paper.
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