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The eigenvalues for the Brownian motion in a periodic potential with an additive 
constant force are investigated in the low friction limit. First the Fokker-Planck equa- 
tion for the distribution function in velocity and position space is transformed to energy 
and position coordinates. By a proper averaging process over the position coordinate a 
differential equation for the distribution function depending on the energy only is 
obtained. Next the eigenvalues and eigenfunctions are calculated from this equation by 
a Runge-Kutta method. Finally the problem is formulated in terms of an integral 
equation from which the lowest non-zero eigenvalue is obtained analytically in the 
bistability region in the zero temperature limit. 

I. Introduction 

The Brownian motion of particles in the periodic 
potential f ( x ) = f ( x + 2 ~ z )  with an additional con- 
stant force F i.e. with an additional potential - F x  
is described by the Langevin equation 

2 " + 7 2 + f ' ( x ) = F + F ( t  ) (1.1) 

(F( t ) )  = 0; {F(t )F( t ' ) )  = 2 7 0 c S ( t - t '  ). (1.2) 

In (1.1,2) 7 is the damping constant and O the noise 
power (or normalized temperature) of the Langevin 
force F(t). This Brownian motion problem arises in 
a number of fields in physics, chemical physics and 
electrical engineering [1-19]. Usually the simplest 
periodic potential, i.e. that of a cosine potential 

f ( x )  = - d cos x (1.3) 

appears in these applications. The equations (1.1, 2) 
are equivalent to the Fokker-Planck equation [20, 
21] 

8 W/8 t = Lye W (1.4) 

0 8 3 2 
LFe = - ~ x V + ~ v ( v v + f ' ( x ) - - F ) + Y O  Sv 2 . (1.5) 

Here v = 2  is the velocity and W= W(x,v , t )  is the 
distribution function in position - velocity space. To 

specify the solution, boundary conditions must be 
added. Here we require natural boundary conditions 
for v (i.e. W must go to zero for ]vl~c~) and per- 
iodic boundary conditions in x 

W(x,  v, t) = W(x  + 2 ~, v, t). (1.6) 

If x is an angle variable and if we do not distinguish 
whether an additional full rotation has been made 
or not the boundary condition (1.6) is appropriate. 
For further discussion, see [22]. As discussed else- 
where [5, 22-27] there exist bistable solutions, a 
locked and a running one, for certain parameters 7, 
d, F if the noise F(t) is neglected. With the addition 
of the noise term F(t) transitions between these two 
solutions are possible [26]. The transition rates be- 
tween these two solutions follow from the eigenval- 
ues of the Fokker-Planck operator (1.5) and from 
the stationary solution of (1.4) as discussed recently 
[22]. In that paper the eigenvalues have been de- 
termined by the matrix continued fraction method. 
This method was first used to determine the sta- 
tionary mobility [28] and the stationary distribution 
function [29] of the above Brownian motion prob- 
lem and then was applied to the determination of 
the eigenvalues of the Fokker-Planck operator [22, 
30-33]. 
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The matrix continued fraction method, however, 
does not work in the limit of low friction 7. The low 
friction case is the main topic of the present paper. 
As we know from classical mechanics the energy is a 
constant of motion if the damping is absent. There- 
fore in the limit of small damping the energy will 
become a slow or relevant variable, which should 
then be used instead of x and v to describe the 
motion. The energy-variable was already introduced 
in [34] to describe the Brownian motion for low 
damping constants (for a general discussion of slow 
and fast variables see [35]). The transformation of 
the Fokker-Planck equation to energy and position 
variables will be made in Chap. 2. In this chapter we 
also perform a proper averaging process of the fast 
variable x leading finally to an ordinary second or- 
der differential equation for the energy dependent 
distribution function. From this equation the eigen- 
values and eigenfunctions are calculated in Chap. 3 
by a Runge-Kutta method. The main result for the 
eigenvalues is the following: For  low noise strength 
O a sharp transition to nearly degenerate eigenval- 
ues occurs for those forces, where bistable solutions 
are possible. This will be discussed in terms of a 
potential model in this chapter too. In Chap. 4 we 
apply a boundary layer theory, by which an x-de- 
pendence of the distribution function near the criti- 
cal trajectory in phase space is used. By including 
the boundary layer the validity of the method can be 
extended to somewhat higher friction constants as it 
was shown [36] for the stationary problem. Finally 
in Chap. 5 the ordinary second order differential 
equation for the energy-dependent distribution func- 
tion is transformed to an integral equation. In the 
bistability region the kernel degenerates to a pro- 
duct-kernel for low temperatures. For this reason we 
obtain an analytic expression for the lowest non- 
zero eigenvalue in the bistability region and in the 
zero-temperature limit. 
Transition rates between the locked and the running 
solutions have been investigated recently. In [26] the 
transition rate out of the running solution was cal- 
culated for the zero-temperature limit whereas in 
[27] the transition rate out of the locked state was 
determined in the zero-temperature limit. Though 
the last reference has practically the same title as the 
present paper, some results are different as will be 
discussed in detail in Chap. 6. 

2. Transformation to Energy- and Position-Variables 

As already discussed in Chap. 1 the energy/~ defined 
by 

E, = v2/2 + f ( x )  - F .  x (2.1) 

o "  i i { i 
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Fig. L The lines of constant energy for the cosine potential f (x)= 
-cosx. The critical trajectory E=E0= 1 is shown by the solid line 

will become a slow or relevant variable for small 
friction 7. If the friction is small the external force F 
must also be small, because otherwise the energy 
gain of the particles due to the external force F 
cannot be compensated by energy dissipation and 
no stationary solution would exist in the low-friction 
limit for final forces F. If 

F = Y" Fo (2.2) 

it turns out that in the low-friction limit a stationary 
solution does exist for finite F o. Therefore we may 
approximately neglect the potential - F . x  of the 
additional force in (2.1) i.e. we use the energy vari- 
able [36] 

E = v2/2 + f ( x ) .  (2.3) 

This energy variable has the advantage that a func- 
tion of E strictly fulfills the periodicity condition 
(1.6). The lines of constant energy are shown in 
Fig. 1. 
A transformation to an energy variable for particles 
moving in an arbitrary potential was already made 
in [34]. However, in order to retain the full infor- 
mation of the distribution function the method of 
[34] has to be modified so that two separate energy 
distribution functions, one for each sign of the veloc- 
ity, have to be taken into account: 

W+(x, E, t) = W(x, v(x, E), t), 

l /V(x,  E, t) = W(x,  - v(x, E), t), 
(2.4) 

v(x, E)= + ] / 2 ( E - f ( x ) ) .  (2.4a) 

For further calculations the sum (S) and the differ- 
ence (D) of W+ and W are sometimes more suitable: 

ws (x, E, t) = W+(x, E, t) +_ W_(x, E, t). (2.5) 
D 
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Fig. 2. The periodic potential f (x) ,  Eo, Emi n and xl(E), x2(E ) for 
E<=E o. In the following xl(E)=zr , xz(E)=Tz is used for E > E  o 

For simplicity we assume that the potential has only 
one maximum and therefore only one minimum in 
the period length 27c. Assuming further that the max- 
ima E o of the periodic potential are located at -~z 
and ~z and that x l = x l ( E  ) and x2=x2(E ) a r e  the 
minimum and maximum values for the space coor- 
dinate for E < E  o in the region - r c _ < x < g  (see 
Fig. 2) we require the following continuity con- 
ditions for the distribution functions 

W+(-~,E,t)=W+(TLE, t) for E > E  o 

W+(Xl,E,t ) =W_(x l ,E , t  ) for E < E  o 
2 2 

o r  

(2.6) 

w~(-~,e,t)= W~(~,e,t) 
D D 

w ~ ( ~ ,  E, t) = % ( x 2 ,  E, t) = o 

for E > E o 

for E < E o. 
(2.7) 

The Fokker-Planck equation (1.4, 5) now reads for 
the functions (2.4) 

a~ w_+ =v(x,E) -7- ~x w_+ 

.28. 

and for (2.6) 

0 

+ ~  

where F o is defined by (2.2). It should be emphasized 
that W• are the distribution functions in (x, v)-space. 
The distribution function 17V in (x, E) - space is ob- 
tained by multiplying W_+ with the Jacobian 

8(x, v) dv 1 1 
(2.10) 

~(x, E) - dE - v(x, E) - 1 /2 (E  - f ( x ) ) "  

The distribution i.e. 

1 
[?f+ (x, E, t )= W+(x, E, t) (2.11) 

V(X~ E) 

in (x,E)-space is not introduced because the equa- 
tion for W_+ and Ws have a simpler form. 

D 

Averages over Trajectories 

For small damping constants the particles stay a 
long time on the trajectories E=cons t ,  see Fig. 1. 
We therefore expect that the distribution function 
depends on E only i.e. 

w•  (~, E, t) = ~r (E, t), WD(x, E, t )= 17r (E, t) (2.12) 
S S 

(The ansatz (2.12) will be modified near the critical 
trajectory, see Chap. 4). The dependence of W• on 
energy is determined by the small change of energy. 
The Langevin equation (1.1) transforms for the en- 
ergy variable (2.3) to 

/~ = - 2 7 (E - f  (x)) _+ 7 v (x, E) F o 

v > 0  
+ v(x, E)V for (2.13) 
- v < 0  

where v(x,E) is defined by (2.4a). For the distribu- 
tion function the energy change is described by the 
right-handside of (2.8). As best seen from (2.13), the 
small energy gain 7v(x,E)F o due to the external field 
for v > 0  cancels the small energy loss - 7v(x,E)F o 
for v < 0  if the motion is closed, i.e. for E < E  o. 
Therefore the distribution functions W+(E) and 
W ( E )  are identical (and W o is zero), in agreement 
with the second boundary condition in (2.6 or 2.7). 
For E > E o the motion of the particles for v > 0 and 
v <0  is separated. Therefore the particles may gain 
(lose) energy by the external field F 0 for v > 0  
(v<0) and the distribution functions W e will be 
different for E > Eo, compatible with the first bound- 
ary condition in (2.6). 
We now insert the ansatz (2.12) into (2.8) and (2.9) 
respectively and average over the time T (this time 
should be small compared to the time ~1/7 in 
which ITV(E,t) changes its value appreciably). Be- 
cause of 

d x  
S . . . d t = ~ . . . v ( ~ ,  E )  ( 2 . 1 4 1  
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we may as well divide (2.8) and (2.9) by v(x,E) and 
take an x-average. We thus obtain 

E < E  o 

#(E, t)= #+(E, t)= t) 
(2.14a) 

E > E  o 

T ,_  OI7V+(E,t) 
(~) ~7 - 

(2.14b) 
E < E  o 

L o 
(2.14c) 

E > E  o 

T(E)  

: 7 ~  [I(E, (I+ O ~ E  ) I7V~(E,t)-27rF o I?Vs(E, t)] 

(2,14d) 

where t(E) and T(E) are defined by 

xz(E) 

,(e) = 5 E) d 
xt (E) 

x2(s 

S 
x~ (E) 

(2.15) 

Here xl(E ) and x2(E) are the minimal and maximal 
x-values in the potential, see Fig. 2. For E > E  o we 
have x t = - r c ,  x2=+Tz and the averaged velocity 
used in [36] is then given by the first part of (2.15) 
divided by 2re i.e. 

FCE)=ICE)/(2=) for E > E  o. (2.16) 

It should be noted that the usual definition [ of an 
action integral for E < E  o is twice the value (2.15) 

I'(E) =~v(x, E)dx = 2I (E). (2.17) 

We do not use the definition (2.17) because the ac- 
tion integral would then be discontinuous at E = E  o. 
The time for one cycle for E < E  o is twice the de- 
rivative of the action integral I '(E)=T(E). For the 
potential - d  cos x, I(E) and T(E) are given by: 

i i , i I , i , , I . . . .  I i , . , l . . . .  

a 

C D  . . . .  t . . . .  l . . . .  l . . . .  I . . . .  

0 . 0  0 . 5  1.0 1.5 2.0 2 . 5  
E + d  

2,t 

i i + , 1  . . . .  

l ~ b 
, , , , I  . . . .  1 . . . .  

0.0 O.5 1.0 1.5 E.a .0 .5 

2d 

Fig. 3a  and b. The action integral I(E) a and its derivative T(E) 
=I ' (E)  b for the potential - d c o s x  (solid line). The expressions 
(2.18) for E+d~d and E>>d are shown by the broken line 

Emi n = - d < E _< E o = d 

I (E) = 8 ] fd  {E [(E + d)/(2 d)] - [1 - (E + d)/(2 d)] K [(E 
+d)/(2d)]} 

~(n/l /a)(E+d)[1 +(E+d)/(16d)] for E>Emi,, 

I' (e) = T(E) = (2l/d) K [(E + d)/(2 d)] 

~(rc/1/d)[l +(E +d)/(Sd)] for E> Emt . (2.18 a) 

E > E o = d  

I(E) = 4]/2(E + d) E [2d/(E + d)] 

~ 2 r c l f Z ( E + d ) - 2 n d ~  for E>>a 

I'(E) = T(E) = (4/]/2 (E + d)) K [2 d/(E + d)] 

~2n/] /2 (E+d)+27zd / l f2 (E+d)  3 for E>>d. (2.18b) 

Here K(m) and E(m) are the complete elliptic inte- 
grals of first and second kind [37]. The action in- 
tegral (2.18) and its derivative are plotted in Fig. 3. 
At E=Eo, T(E) has a weak logarithmic singularity 
of the form 

/ ' (E l=  T(E)=(2/ l /d) ln{32d/IE-dl  } for E ~ d .  
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Eigenvalue Equation 

The separation ansatz 

17V o (E, t) = ~b~ ) (E) e- ;~,t 
s s 

leads to the following equation for the eigenvalues 

A, = 2./7 

and the eigenfunctions ~ ) ( E ) :  
s 

E < E  o 

d~ l ( E) ( l + O ~ ) ~(s") + A, l' ( E) ~b(s~) = O 

~bD=0 

E > E  o 

(2.19) 

(2.20) 

(2.21 a) 

0 ~d )~b(~,_2~FoCbs]+A,i,(E)~(~)=O.s DJ s 

(2.21b) 

Boundary Condition at E = Emi n 

Because I(E) vanishes at E=Emin, we obtain from 
(2.21a) for E=Emi ~ 

0 d 
/ '(Emin) (1 + ~)CI)(n)(E)E=Emi~ 

+ AnI' (Emi.)@(s")(Emln)=O 

i.e. 

Od~(s")(E)/dEIE=E=, +(A,+ I)qr (2.22) 

Thus the derivative of ~(s ") can be expressed in terms 
of ~ )  and A, at E = Eml n. 

Continuity Conditions at E = E o 

Without the boundary layer we can require the con- 
tinuity of ~b~ ) and its derivative and the continuity 
of ~0~), but not the continuity of the derivative of 
~b~ ) as explained in Chap. 4, i.e. we have 

#~~ o) = ~.~~ + o) (2.23) 

d,Q")(E)/dEl~=Eo_o=d~s")(E)/dgl~=~o__O (2.24) 

(b~)(E o + 0) = 0. (2.25) 

The eigenvalues A,=2 , /7  are thus determined by 
(2.21-25) and the requirement that ~ )  and ~(s ") van- 
ish for E~oo .  The weak logarithmic singularity of 
F(E) at E = E  o does not lead to serious difficulties. 

d+V- 
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i 
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d+V + 
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I/,75 / / . ,  
I/,/ / / ,.'/ .,/ 

, . /  l, 

2d ~ ~ / / /  E ~ 

Fig. 4. The effective potential (2.30) as a function of E+d for 

various external forces Fo/~d and for the cosine potential f (x)=  
-dcosx .  The effective potential V + (V-) for positive (negative) 
velocities is plotted to the right (left). The effective potential for 

the critical force Fol/1/d=4rc is shown by a broken line and for 

the critical force Foz/~d=3.3576 by a broken line with dots 

Stationary Solution 

Because the probability current in E - direction is 
zero the stationary solution (Ao=2o/7=0)  follows 
immediately from (2.21) [36] 

ITV+ = N exp( -E /O)  for E <E o 
(2.26) 

17V• ] for E > E  o 

N-'=l/2~O i e-1(x)/~ 
o o  

�9 ~ T(E) e- E/o [cosh (Fo g(E)/O) - 1] dE. (2.27) 
Eo 

where g(E)is defined by 

E 
g(E) = 2  rc 5 dE'/I(E'). (2.28) 

Eo 

The function (2.26) may be written in the form 

17v~+ (E)= N exp( - V + (E)/O) (2.29) 

where the effective low friction potential V+(E) is 
given by 

{E E E<E~ (2.30) 
V-+(E) = T F0 g(E ) for E>Eo. 

This potential is needed in Chap. 3 for the interpre- 
tation of the eigenvalues. A plot of the potential is 
shown in Fig. 4. As explained in [25] we may define 
a critical force Fol/ljd=4/rc above which a running 
solution of the equation (1.1) without noise is possi- 
ble in the zero-friction limit. As further explained in 
[25] a second critical force Fo2 exists, above which 
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the running solution becomes globally stable. As 
seen in Fig. 4 for forces F o above the first critical 
force Fo~ , a second minimum corresponding to the 
running solution occurs. For forces F o in the range 
Fol <Fo<F02 , this minimum is higher than the mini- 
mum at E + d - - 0  corresponding to the locked so- 
lution and therefore the running solution is not glo- 
bally stable in this region. For  forces Fo>F02 the 
minimum corresponding to the running solution is 
the lowest one and the running solution then be- 
comes globally stable. The energy /~ at which a 
minimum of V + for E>E o occurs is given by 

dV+CE)/dEI~=E= 1 - F0/bCJ~) = 1 - 2~Fo/I(/~) --- 0 (2.31) 

3. Calculation and Results of the Eigenvalues and 
Eigenfunctions 

The eigenvalues and eigenfunctions are obtained in 
E38] by the following numerical integration method. 
First the equation (2.21a) is integrated by a Runge- 
Kutta method from E ~  to E o. The derivative of ~s 
at Emi n is determined by (2.22). Thus we have 
Cbs(E,nm)=a as the only integration constant. Next 
(2.21b) is integrated by the Runge-Kutta method 
from E 0 to E~. The starting values of ~s and of its 
derivative at E = E 0 are given by (2.23, 24). For  the 
difference equation however only q~D(Eo) is given, 
see (2.25) whereas the value ~b~(Eo)=b must still be 
determined. To be more precise the ratio b/a must 
be determined, the constant a respectively b follows 
from the normalization. Finally the ratio b/a and the 
eigenvalue A,=2J? follow from the requirement 
that both functions ~s and 4) o vanish for sufficiently 
large E~ i.e. 

~sCE~,b/a,A,)=O, ~D(E~,b/a,A,)=O. (3.1) 

To find the roots b/a and A, of (3.1) a two dimen- 
sional regula falsi method was used in [38]. The 
cutoff energy Eoo was chosen in such a way, that an 
increase of E~ did not alter the results beyond a 
given accuracy. The results for the eigenvalues as a 
function of the applied force F = F o ?  are shown in 
Fig. 5 for two d/O values. As seen the eigenvalues 
for small and large F o are essentially given by 
?Jy~n(n=O, 1, 2 ...) for low noise powers O; they 
are not degenerate for low F o but nearly twofold 
degenerate for large F o. This can be interpreted as 
follows. For low F o the effective potential in Fig. 4 
has only one well whereas for large F o two wells 
occur. For  low noise powers O the wells are sepa- 
rated by a high barrier. The eigenvalues in the left 
and right well nearly coincide and are given by 
2,/? ~ n for small O as may be derived by expanding 

. . . .  I . . . .  I , , t t I 
a 

L 

0 1 4 2 3 
I L  

A - . . ?  

I 
I 
l 

>-  
\ 
,..4 ~ 

l l l l l l l l l l l  i 

b 

. . . . .  4 
" " - , .  

' d/8=10 3 ""  . . . . . . . . . . . . . .  . 

c,4 _ 2  . . . .  ~ . . . . . . . .  ,~.~ ......................... 

\ 

0 I 
0 . . . .  I , I  , ' I 

Fol / (a 0 1 2 

F 0 / / - d - ~ _  _ > 

Fig. Sa and b. The eigenvalue divided by the friction constant in 
the low friction limit for the cosine potential (1.3) as a function of 

Fo/]/d for d/O=5 a and d/O=lO b. The critical force F0t/]/? 
=4/= is also indicated. In Fig. 5a we have also plotted the values 
of 2/7 according to the boundary layer theory of Chap. 4 with ? 
=0.01 (broken line) 

I(E) around the minima. Thus in the bistability re- 
gion Fo>Fol a degeneracy occurs. In the plot the 
transition of the nondegenerate eigenvalues to the 
degenerate ones by changing F o from low to large 
values is clearly seen. This transition at Fol is similar 
to the transition at F1 in Fig. 3 of [22]. Notice the 
interesting intermediate plateau of 23/7 and 24/? 
near the critical force Fol. In Chap. 5 an analytical 
value for the lowest non-zero eigenvalue in the bista- 
bility region Fo>Fot is derived. In Fig. 6 the sta- 
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Fig. 6a  and b. Eigenfunctions ~+ =(45(s')+~))/2 plotted to the 
right and �9 = (~b~s " ) -  ~b~))/2 plotted to the left as a function of E 
for d / O = 2  and Fo/] /d=0.42a  and 2.83b (arbitrary units). The 
stationary solution is shown by the broken line 

tionary solution and the eigenfunction belonging to 
the lowest non-zero eigenvalue are shown for some 
typical forces. Whereas for Fo<Fol values the sta- 
tionary solution and the eigenfunction belonging to 
the first non-zero eigenvalue are different, they agree 
approximately for Fo>F01 for small energies and 
have opposite signs for larger energies in accordance 
with (2.13, 14) of [22]. 

Zero External Force 

For the special case of zero external force F o = 0  the 
equations (2.21b) for 45 D and ~b s are no longer cou- 
pled. The eigenvalues for the sum function ~s agree 
quite well with the eigenvalues obtained in [33] with 
the matrix continued fraction method for small 7. 
The first non-zero eigenvalue for the cosine potential 
with d / O = 2  according to the present method is 
given by 2(ls)/7=0.848 whereas the matrix continued 
fraction for 7=0.2 leads to 2~s)/7=0.868. The eigen- 
values for the difference function ~b D do not agree so 
well as those for the sum functions. The first eigen- 
value for d/O =2  according to the present theory is 
2~D)/7=3.19 whereas the matrix continued fraction 

leads to 2(~D)=2.64 for 7 = 0.2. If however a boundary 
layer is considered (Chap. 4) the agreement is again 
quite good. 

4. Boundary Layer Theory 

By the ansatz (2.12) we have assumed that the distri- 
bution function depends on energy only. Near the 
critical trajectory E = E  0 (see Fig. 1) this assumption 
cannot be valid for finite damping constants as seen 
as follows: Particles moving along closed trajectories 
near E < E  o are confronted at each turn with two 
different groups of particles; in one group the par- 
ticles move to the right (v >0) along trajectories near 
E > E  o and in the other they move to the left (v<0) 
along trajectories near E > E  o. If the probability of 
these two groups is different (which is always the case 
for F o + 0) one therefore expects for finite 7 a strong 
diffusion perpendicular to the E = E  o trajectory lead- 
ing to an x-dependence of the distribution function. 
The process takes place in a boundary layer around 
the E = E  o trajectory. To describe the x-dependence 
in this boundary layer we make the following ansatz 
for Ws(x ,g , t  ) and WD(X,E,t): 

Ws (x, E, t) = 17V s (E, t) + Ws (x, E, t). (4.1) 
D D D 

Here Ws (E, t) are slowly varying functions in E not 
D 

depending on x. The Ws(X, E, t) are rapidly varying 
D 

functions in E and slowly varying functions in x that 
contribute only in a thin boundary layer (skin) around 
E = E  o. As shown below, the thickness of the skin 

is of the order of magnitude of lf~. As it turns out 

the amplitudes of w s are also of the order 1//?-. For 
w s only terms in lowest order will be taken into 

D 
account. In accordance with this approximation we 
put xl(E)=-T-n in w+_(xt,E, t). Thus the continuity 

2 
conditions (2.7) simplify for small 7 values to 

Ws(~z,E,t) = W s ( - ~ , E , t )  for E > E  o, 
D D 

wD(+_rc, E,t)=lTVD(E,t)=O for E < E  o. 
(4.2) 

Because of the assumptions made for Ws, the first 
D 

derivatives in E are neglected compared with the 
second derivatives in E. Furthermore the velocity 
need to be considered for E = E o only. If we consider a 
time scale of the distribution functions of order 1/7 , 
this time-dependence for the functions Ws(X,E, t  ) 

D 
need not be taken into account inside the very thin 
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boundary layer of thickness ]/?,  where a quasista- 
tionary distribution is rapidly established. Therefore 
the equations (2.9) for x-dependent solutions reduce 
to 

terms with n = 0  must be excluded, because they 
would give x-independent functions, which are al- 
ready included in Ws (E, t). 

D 

0 w s /0  x = Y 0 v (x, Eo) 0 2 wolfE 2. (4.3) 
D S 

Instead of the space coordinate x we introduce the 
variable u defined by 

u = u (x) = - ~ + 2 7z i v (3, Eo) d 3 / I  (Eo), (4.4) 

For the cosine potential (1.3) we have (E 0 = d) 

u = 7r sin(x/2), (4.5) 

I (Eo)  = 8 ]/-d. (4.6) 

Using (2.16, 4.4) (4.3) simplifies to 

~3Ws/OU = 7 (9 ff(Eo) ~ 2 WD/~3E 2. (4.7) 
D S 

Solutions of (4.7) consistent with (4.2) and different 
from zero only in the vicinity of E o are (-~_< u < 7 0 

E>Eo:  

w o = W o ( t  ) ~ Im{anexp[-(1  +i)c~]/n(E 
n = l  

- Eo) /O ] } cos n u, (4.8) 

w s = w o (t) ~ Re {a n exp [ -  (1 + i)a]/n(E 
n = l  

- Eo)/O ] } sin n u (4.9) 

E<Eo:  

w D = w o (t) ~ Im {b, exp [(1 + i) c~]/n + 1/2 (E 
n = 0  

- Eo) /O ] } cos (n + �89 u, (4.10) 

w s = w o (t) ~ Re {b, exp [(1 + i) c~ ] / ~  1/2 (E - Eo) /O]  } 
n = 0  

�9 sin (n +�89 (4.11) 

Here ct is given by 

= ]/69/(2 7 v-(E o)) (4.12) 

and the imaginary and real parts are indicated by 
Im and Re. The prefactor 

Wo(t ) = o ITV~(E o + O, t)/a (4.13) 

is chosen so that the complex amplitudes a, and b n 
are of the order of magnitude one. In (4.8, 9) the 

Cont inui ty  Condit ions at E = E o 

We now require that at E =  E0, Ws (x, E, t) and their 
D 

derivatives with respect to E are continuous 

Ws (x, E o - O, t) = VV s (x, E o + O, t) (4.14) 
D D 

8Ws (x ,E ,  t)/SEIE=Eo o = S W s  (x, E, t)/SE[~=eo+o. (4.15) 
D D 

Because Ws(X, E, t) and OWs(X, E, t)/OE is antisymmet- 
ric in u(x)  we obtain by inserting (4.1) and using 
17Vo(E,t)=O for E < E  o 

Ws(X, E o - O, t) = Ws(X, E o + O, t) (4.14a) 

wD(x, E o - O, t) = ITVo(E o + O, t) + wD(x, E o + O, t) (4.14b) 

0 Ws(X, E, t)/SEIE= ~o- o = OWs(X, E, t)/0EIE= Eo+ 0 (4.15 a) 

0 w o (x, E, t)/O E IE = eo- o = ITV;~ (Eo + O, t) 
+ 0 wo(x,  E, t)/OEIE_ Eo+ o" 

(4.15b) 

The derivative of ITVo(E,t) with respect to E is de- 
noted by a prime. The x-independent part of (4.14) 
for Ws(x, E, t) leads to 

I7Vs( E o - 0 ,  t )=  ITVs(E o +0,  t )=  17Vs( E o, t) (4.16) 

whereas the x-independent part of (4.15) for 
Ws(x, E, t) gives 

I?r t)= 17V~(E0 + 0, t ) + O ( ] / 7 ) .  (4.17) 

Because l?V s is slowly varying in E and w s is rapidly 
varying in E, (4.15, 15a, b, 17) are only correct in the 

lowest order term ]/7 0 . Therefore the correction 

term in (4.17) is of the order ] /7 [(4.16) is correct up 

to terms of the order ]/7]. To find the correction 
term to (4.17) we use the continuity of the probabili- 
ty current for I?V s [see (2.14c, d)] at E = E  o. It follows 
from this condition and (4.16) that the jump con- 
dition 

r162 t)= r162 (E0 +0, t) 
- r  + o, t) fo/E~(G) o] (4.18) 

holds even in terms of the order ]//7. Introducing the 
constant ~c by 

I~D(Eo + 0 , t )=KWo( t )=KoITV~(Eo+O,  t)/c~ (4.19) 
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and inserting (4.8-11) into the continuity conditions 
(4.14a-15b) and using (4.13) we have 

b~)sin(n+�89 = ~ a(,~)sinnu (4.20a) 
n = 0  n - 1  

b~ ) cos(n+�89 + ~ a(: ) cosnu (4.20b) 
n = O  n ~ l  

(b(~ ~) - b(. ')) ~ 1/2 sin (n + �89 
n = O  

: ~ (-a(.~176163 (4.21a) 

Y, ( b 7  + b?) Cn + 1/2 cos (n + 
n = 0  

= 1 + ~ (-a~)-a(~i))]//ncosnu. (4.21b) 
n = l  

Here the amplitudes with an upper index r(i) are the 
real (imaginary) parts of the corresponding ampli- 
tudes. From (4.20a-21b) the amplitudes a~), ",-(i), b~), 
b~ ~ and the constant K have to be determined. For 
the determination of the slowly varying functions 
Ws(E,t) we only need the constant to. In [36] K 

D 

=0.859 was obtained. More accurate recent calcu- 
lations [39] lead to the value 

tc = 0.855 (4) . . . .  (4.22) 

By inserting (2.19) into (4.16, 18, 19) we obtain the 
following continuity conditions for the eigenfunc- 
tions ~s : 

D 

4~(s ") (E o - 0) = q~(s ") (E o + 0) (4.23) 

dq~(s")(E)/dEIE=Eo - o 

=dCb(s")(E)/dEle=Eo+O - q~D(Eo +O)2nFo/[I(Eo) O] 
(4.24) 

�9 + O) = o 

(4.25) 

Because of the closed motion ~,(E) must be zero for 
E < E 0 (see (4.2)) 

q~,(E)=0 for E < E  o. (4.26) 

Without the boundary layer, i.e. for 7~0  (4.23-25) 
simplify to (2.23-25). With the boundary layer the 
results of eigenvalues and eigenfunetions depend on 

]/?/0 because @~)(E0+0 ) depends on it. For small 
values of ]//7-/O one expects that the eigenvalues are 
a linear function of ]//7/0 

A,(7) = A, (0) + B, ]/?/0.  (4.27) 

Zero External Force 

Without the force F o the equation for q~(s ") and ~(,") 
are decoupled. The equation for the sum function ~s 

then does not contain any 1/7-/O term and the eigen- 
values 2~ ) should therefore not depend very much 
on 7, in agreement with the results mentioned at 
the end of Chap. 3. Because for the difference function 

�9 ~) l/~-/O enters in the boundary conditions, the 
eigenvalues 2~ ) for the difference functions should 
be of the form (4.27) 

= 2d (0)/7 + & l/v/ 

for small ~,. For the cosine potential with d/O = 2 the 
numerical integration of (2.21a, b) with (4.23-25) 
leads to 2(~")(7=0.2)/7=2.56 for the first eigenvalue. 
The last expression agrees again fairly well with the 
matrix continued fraction result 2]")(0.2)/7=2.64 
found in [33]. 

Arbitrary External Force 

For arbitrary external force the stationary solutions 
as well as the drift velocity and mobility have been 
obtained in [36] for the general continuity con- 
ditions (4.23-25). As shown in that paper the results 
agree very well with the results of the matrix con- 
tinued fraction method. Some non-zero eigenvalues 
with the boundary condition (4.23-25) are shown in 
Fig. 5 a. 

5. Lowest Non-Zero Eigenvalue in the Bistability 
Region for the Zero-Temperature Limit 

Transformation to an Integral Equation 

The differential equations (2.21a, b) for the sum and 
difference functions (we now suppress the index n) 

~l) ++_ __-- ! (  ~,x.. S '.-a- ~ ,n(,hj (5.1) 

take the form 

E< E o 

(b = (b+ ---(b_ 

~b + A T(E) q~ = 0 (5.2 a) 

E > E  o 

ddE [l(E) (l 0 d _ _ _ + ~)cb+-T-2nFoq)+]+AT(E)q)+=O 

(5.2b) 
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At E = Emi n we have to require (2.22), i.e. 

"d~ t = train O + (A + 1) r (Emin) = 0. (5.3) 

The continuity conditions (2.23-25) at E=E o take 
the form 

2 4~ (E 0 - 0) = 4~+ (E o + 0) + ~b (E 0 + 0) (5.4) 

2 d ~(E) _ d [g ,+(E)+#_(E)] t=to+O '(5"5) 
u~ le=to-O dE 

At E ~  ~ we have to require 

~b_+ (E)~0 for E ~  ~ .  (5.6) 

Formal integration of (5.2a, b) subject to the bound- 
ary conditions (5.3-5.6) leads to 

E< E o 

~ A t e ~ 1 7 6  e i 
~(E)=Ce-a+ O e-a { I - ~  t i n  

T(E") ~b(E")dE"] dE' 

(5.7a) 

E>E o 

V:~(E) A V~(E) E eV~( t ' ) /o  

eb+_(E)=Ce o + ~ e  o ~ I (E '~  
Eo 

In (5.7a, b) C is an integration constant and V+-(E) 
the effective low friction potential (2.30). By inserting 
(5.7a, b) into the boundary condition (5.5) we obtain 

EO oo 

2 ~ T(E)q~(E)dE+ ~ T(E)[q)+(E)+q~_(E)]dE=O. 
E m i n  EO 

(5.8) 

This condition says that the function ~ (E)=#+(E)  
= #_ (E) for E < E o and #,+ (E) for E > E o is orthogo- 
nal to the stationary (A=0) solution 45=1 of the 
adjoint equation to (5.2a, b) with the weight factor 
T(E). By using proper partial integrations (5.7a, b) 
can be cast into the following standard integral 
equations 

E<E o 
E Eo 

q~(E)=Ce-~+A ~ K(E,E')q~(E')dE' (5.9a) 
E m i n  

E> E o 
V ~ (E) eo 

~P+_(E)=Ce o +A ~ K•162 
to 

(5.9b) 

where the kernels K and K-+ are given by 

K(E, E ' ) = ~  e [y(E') for E ' < E < E  o (5.10a) 
E < E ' < E  o 

~,, T(E') v~ (~) ( E o < E' < E K+(E, l z j = ~ - e  o ~Y+(E') for 
y-+_(E) Eo<E <E'. 

(5.10b) 

Here y(E) and y+ (E) are defined by 

Eo et ' /O 

y(E)= j" I~E~dE' for E<E o (5.11b) 

E eV~(E')/o 

y+(E)= ~" - - d E '  for E>E o. (5.11b) 
~o I(E') 

From the integral equations (5.9a, b) together with 
the orthogonality condition (5.8) the eigenvalues A 
and the eigenfunctions 4~(E), ~b+(E) have to be de- 
termined. If we use the functions 

~p(E) =]//T(E) e t/(2o)r 

~t+_ (E) = / T ~  e - v~(E)/(2~ c~ + (E) 
(5.12) 

instead of q~(E) and 45+ (E) the integral equations for 
0(E) and 0+(E) will have symmetric kernels. 
Though symmetric kernels are usually much more 
convenient than nonsymmetric ones, we do not need 
the transformation (5.12) for the following conside- 
rations. 

Approximate Solution of the Integral Equation 

We now want to calculate the eigenvalue A = 2/7 in 
the zero temperature limit O ~ 0  for forces in the 
bistability region Fo>Fol=g(Eo). Because of the 
large values of V-(E), see Fig. 4, we do not need to 
consider 4~ (E). Next we observe that ~b(E) will be 
concentrated near E = E m i  n and ~b+ (E) near E, where 
E is the energy corresponding to the minimum of 
V + (E). Therefore we only need to consider y(E) and 
y+(E) for small E -Emi  n and small E - E  respective- 
ly. In this case y(E) and y+ (E) may be approximated 
by constants in the limit O ~ 0  

Eo eE'/o Oet~176 =yO (5.13a) 
y(E)= ! /5 dE'  I(Eo) 

E eV+(E')/O eV+(to)/O E 
y+(E)= ~ - - d E '  ~ - -  ~ e-~(e'-t~176 dE' 

to I(E') I(Eo) Eo 
0 e e~176 

_ o (5.13 b) 
fi I(Eo) - y+" 



P. Jung and H. Risken: Eigenvalues for the Extremely Underdamped Brownian Motion 367 

In (5.13b) fi is the negative derivative of V+(E) at E 
= E o i.e. 

= - d  V+/dEl~_~o = Vo g ' (Eo)-  1 =Vo/~(Eo) - 1 

= 2 re Fo/I(Eo) - 1. (5.14) 

The constant fi is positive in the bistability region 

F o > Fo~ = g(Eo) = I (E o)/(2 re). (5.15) 

Because y ( E )~y  ~ and y+(E)~y  ~ is constant, the 
kernels K and K+ are degenerate. Multiplying 
(5.9a, b) by T(E) and integrating (5.9a) from Em~ . to 
E o and the + equation of (5.9b) from E o to infinity 
we obtain 

x = N C + [AyO N/O] x (5.16 a) 

x+ = iV+ C + [A yO N+/O] x+ (5.16b) 

where we have used the abbreviations 

Eo 

T(E) Ob(E)dE= x (5.17a) 
E m i n  

T(E) ~b + (E) d E = x + (5.17 b) 
Eo 

Eo 
r(E)e-~/~ d E = N  (5.18a) 

~ r (E)e  v+(e)/~ (5.18b) 
Eo 

Because we have neglected ~b, (5.8) takes the form 

2 x + x +  =0.  (5.19) 

Equations (5.16a, b, 5.19) are 3 linear homogeneous 
equations for the 3 unknowns x ,x§  C. Therefore 
the corresponding determinant must vanish, i.e. 

1 - A y ~  0 - N  

20 1 -  A y~ - N +  

=N+ (1 - A y ~  - A y  ~ N+/O)=O. (5.20) 

From this equation we obtain the eigenvalue 

- = A  - - -  + ~  . 7 yO +2yO (5.21) 

In the low temperature limit O-~0 we only need to 
consider energies near Em~ . and E. Then the integrals 
(5.18a, b) can be approximated by 

I 

Fig. 7. The energies A, el, A and the transition rates r(R--+L) and 
r(L-*R) in the effective potential. 

~ O  T(E) e (5.22b) V + (E)/O. 

The second derivative of V+(E) at E = E  is denoted 
by 6. It can be connected to the mobility (?#)a of 
the running solution without noise 

6 = d 2 V +/d E 2 [E = E = - Fog" (E) = Fo ~' (E)/g(E) 2 

=f/(E)/Fo=I'(E)/(2reFo)=l/[(7#)eFd]. (5.23) 

In (5.23) we have used (2.31) and (3.9) of [25]. By 
inserting (5.13a, b) and (5.22a, b) in (5.21) and by 
using (2.16, 30, 5.14, 23) we finally obtain (Fo=F/7) 

2 = ?A = r(L--+R) + r(R--+C) (5.24) 

A 
r ( L ~ R ) = ?  [2reF~176176 e-~ (5.25a) 

[2 reFo + I(Eo)] OI'(Emin) 

r(R--+L)='/ [2reF~176 I(E~ e-~.  (5.25b) 
[2 re Fo +I(Eo).]]/ZreO re 

Here A and d are the energies between the maxi- 
mum and the two minima of the potential V(E) and 
v + (E) 

A= Eo - Emi  .,  A = E o - V + ( E ) = E o - E + F o g ( E ) .  
(5.26) 

In (5.24) r (L~R)  can be interpreted as the transition 
rate from the locked to the running state and vice 
versa for r (R~L)  (see Fig. 7). 

Special Values for the Cosine Potential 

For the cosine potential (1.3) we have 

Emin = - d ,  E o =d,  A = 2 d  

I'(Emi.) = re/i/d, l (Eo)  = 8 l id  N ~,~ 19 Y(Emin) e -  Emilio (5.22 a) (5.27) 
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Fig. 8. The values (7#) R (broken line) and zl/(2d) for the cosine po- 

tential (1.3) as a function of Fo/lfld 

and we thus obtain (F 0 = Fly) 

r(L~R)=y 8_ d Fo/]/d-4/yz 2d e o (5.28 a) 
o F0a/a + 

8_ l ~ d  Fo/]/d-a/yt 2, 
r(R~L)=YYr I/ z~zt~ Fo/ff'd+4/rc e o 2~ (5.28b) 

The values of (?#)R and of zt/(2d) are shown in 
Fig. 8. 
For E>E o we may approximate I(E) by 

I (E)= 2 r c ] / ~  (5.29) 

leading to 

zt/(2 d) = (1/4)(Fo/ff~ - ]/2) 2. (5.30) 

Figure9 shows the exact expression (5.26), the 
analytical expression (5.30) and the analytic form of 
Ben Jacob et al. [26] in our notation 

,d/(2 d) = (1/4)(Fo/]/d - 4/re)2 (5.31) 

In Fig. 10 we compare the analytic expression for 
the eigenvalue 2/7 (5.24,28a, b) with those from the 
numerical integration procedure. As seen the agree- 
ment is quite good for Fo/] /d>l .8 .  The deviations 
for smaller Fo/l/~ occur, because the energy differ- 
ence z~ is not large compared to O, 

Connection to the Stationary Mobility 

As it was explained in [22] the stationary mobility 
(~ - -  , /#)st-y(v)/F=@)/Fo, the mobility of the running 

/ 

0"4 
z r 

o i i i i t 
2 t., 6 8 10 

F o / ] - a '  = 
Fig. 9. The exact expression (5.26)(a) and the approximations 
(5.30)(b) and (5.31)(c) 
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Fig. 10. Comparison of the lowest non-zero eigenvalue obtained 
by numerical integration as explained in Chap. 3 and the asymp- 
totic expression (5.25a, b) (curve with the maximum) 

solution without noise (y#)R, the eigenvalue 2 and 
the transition rates (5.28a, b) are connected by (see 
(2.17a, b) of [22]) 

r(R--,L) = , t  [1 - (,,,~)s,/(y ~)R)] 

r (L--* a)  = ,,t. (7 ,U)st/(7 #)a. (5.3 2) 

Thus we may express (7,U)s t by 

r(L~R)]" (5.33) 

Insertion of (5.25a, b) yields 

(7/~)s~ = (7/4R/{ 1 

+ ]/(7 #)R 0/(2 ~) [I' (Em,n)/yr] exp (A/O)} (5.34) 

where J is the energy difference between the minima 
at E = Emi n and E = E 
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3 : A - -  zJ = E - e m i  n - -  F 0 g ( g ) .  ( 5 . 3 5 )  

For  the cosine potential (5.34, 35) specialize to 

(7 #)s~ = (7 #)R/[ 1 + ]/(7 #)R 0/(2 ~C d) exp (A/O)] 

3 = d + E -  F 0 g(E). (5.36) 

This result was already obtained in [25], Eq. (4.11). 

6. Discussion and Conclusion 

In the present paper we have shown how to calcu- 
late the real eigenvalues and eigenfunctions for the 
Brown]an motion in an inclined periodic potential in 
the low friction limit. The numerical method works 
very well for not too low temperatures O. These 
results agree with the results obtained by the matrix 
continued fraction method for low friction constants. 
As shown in Chap. 3 for the cosine potential (1.3), 
this numerical method works fine even for d/O 
=1/10. In the limit 0 4 0 ,  the numerical method 
cannot be applied. In this low temperature limit we 
have derived an analytic expression for the lowest 
non-zero eigenvalue in the bistability region. We 
want to stress that this expression is valid for 7-~0, 

O--+0 and 1 /7 /O~0 ,  i.e. 7 must be much smaller 
than the temperature O. Otherwise the additional 
terms to due to the boundary layer of Chap. 4 can- 

not be neglected or, for 1/7~O>O(1) cannot be used 
at all. (The expression (25) of [40] is not valid for 

l / ~ 0 . )  The analytic expression (5.25a, b) should 
be compared with the results of Ben-Jacob etal. 
[26] and Btittiker et al. [27]. In [26], the lifetime z 
= 1/r (R~L)  of the running solution was calculated 
in the low temperature limit, see (4.5) of [26]. 
The term A W in the exponential factor in (4.5) of 
[26] approximately agrees with our zl (compare 
Fig. 9) and the dependence of the prefactor on 7, O 
and A W also agrees. The other prefactor however, is 
different. Putting (7/1) R = 1 and zt = A W the ratio of 
the rate rB.j.= 1/~ s of Ben-Jacob et al. [26] and our 
rate out of the running state is given in our notation 
by 

rB.j./r(R-,L) = 1 + (~z/8)(Fo/lfd- 4/~). (6.1) 

This ratio is only 1 at the beginning of the bista- 

bility region, for forces F/7 larger than (4/rc)l/d it is 
larger than one. An expression for the rate out of 
the locked state was obtained in [27] (Eq.(3.11)) in 
the zero temperature limit. The energy E b in the 
exponential factor in (3.11) of [27] is the same as 
our energy A in (5.25a) for finite F/V, i.e. for F ~ 0 .  
The last two prefactors in (3.11) of [27] also appear 

in our prefactors the other prefactor, however, is 
different. Though no distinction between the sum 
and the difference equations was made in [27], their 
eigenvalue equation (3.3) resembles our eigenvalue 
equation (2.21 a,b). As it was remarked in [27], their 
parameter  c~ was not obtained by the eigenvalue 
equation but was treated as an adjustable parameter  
(adjusted to the results of a numerical similation). 
Probably, because the boundary conditions are not 
exactly specified in [27], they could not obtain 
by only using the eigenvalue equation (our eigen- 
functions ebs(E ) and 4~D(E ) are strictly periodic in x 
because we have used the energy (2.2) without the 
additional potential due to the external force). In 
[26] the method was also applied to finite friction 
constants in the zero temperature limit 0 4 0 .  In 
[26] the WKB approximation 

W(x, v)= A (x, v) exp [ -  S (x, v)/O] (6.2) 

was used. Though this ansatz is valid in the zero 
friction limit (without any boundary layer region) it 
is not valid for small friction on the boundary layer 
region, compare (4.1, 8-12). 
Finally we would like to remark that the eigenvalues 
for the Brown]an motion problem in a double well 
potential as well as in other potentials in the low 
friction limit can be obtained similarly. The eigen- 
values for the double well potential will be treated 
elsewhere [39]. 
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