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Abstract. Charmonium cO and bottomonium bb are in- 
vestigated in the framework of a constituent quark model. 
A scalar confining and a one-gluon exchange (OGE) po- 
tential are used in a nonrelativistic reduction to order 
(p/m) 2. Therefore the model includes spin dependent as 
well as spin independent terms. Their influence on the 
meson mass spectra and decay widths is analysed. We find 
that the experimental spectra can be reproduced by using 
a full model as well as by using a reduced version neglect- 
ing the spin independent terms. For both versions we 
calculate leptonic and radiative decay widths including 
relativistic corrections for the current operators. We find 
that for leptonic decays inclusion of all terms of the OGE 
potential gives better results than the non-relativistic for- 
mulas. For radiative transitions relativistic corrections are 
important. 

I Introduction 

Since the discovery of J/~b- [1] and Y-resonances [-2] 
many models have been studied to relate the spectra of 
charmonium c~ and bottomonium bb to the underlying 
quark-antiquark (q~/) structure. Among them non-relativ- 
istic models [3 11] have been particularly successful in 
describing the mass spectra. This is mostly due to the fact 
that the masses of the constituents are relatively large. 
Those models lead to very similar results, since for 
0.1 fm < r < 1 fm, which is the typical scale for c~ and bb 
mesons the various q~/potentials used are nearly identical. 
For recent reviews see [12, 13] and references therein. 

The various models however differ both in the long- 
range part and the short-range part of q~/potential. The 
long-range part is responsible for the confinement of 
quarks. Since the problem of confinement has not yet been 
solved one has to rely on phenomenology for a reasonable 
ansatz. Results from lattice QCD as well as the Regge 
trajectories in light meson spectroscopy and their inter- 
pretation in terms of the flux tube model suggest a linear 
confining potential see e.g. [-6]. The short-range part 

should reflect the concept of asymptotic freedom, which in 
most models is realized by one-gluon exchange (OGE). In 
early modeling, a short-range Coulomb-like 1/r-potential 
was used [3, 4], which later was modified e.g. by taking 
into account that as is a running coupling constant [7]. 
Alternatively, the central potential has been approximated 
altogether by a logarithmic potential [5]. 

In addition, these models have to account for the 
spin-dependence of the q~/interaction as reflected by the 
mass splitting of the spin triplet states Zcs, Zbs (J = 0, 1, 2) 
and in the hyperfine splitting of r/c and J/~b. In the frame- 
work of OGE this can be done in a straightforward 
manner: A non-relativistic expansion in powers of p/m 
leads in addition to the 1/r-potential in lowest order to 
spin dependent terms in next order. Note, that it also leads 
to spin independent terms in the same order. In analogy to 
QED the sum of all these terms will be referred to as 
Fermi-Breit interaction. This model leads to a reasonable 
agreement with experimental data (see also next section). 

Nevertheless, the spin dependent terms alone yield 
mass splittings, that are already in quite good agreement 
with experiment. In the past this reduced version has been 
used in most of the quark models describing heavy quar- 
konia. For comparison, we therefore use both versions to 
investigate decay and transition observables, which are 
much more sensitive to details of the wave function than 
the spectra alone. 

In Sect. 2 the model is introduced and the resulting 
mass spectra are shown. In Sect. 3 we calculate leptonic 
decay widths, El-  and M 1-transition rates and investigate 
various approximations of the transition operators. Our 
results are discussed in Sect. 4. 

2 The quark model 

In the constituent quark model presented here, char- 
monium and bottomonium are treated as quark-anti- 
quark states, i.e. we do not take into account any gluonic 
admixtures, which, presumably, should be small. Also no 
coupled channel effects are included although these might 
be relevant [4]. 
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Confinement is implemented by a potential ~ c  as- 
sumed to a Lorentz scalar and thus giving rise to a Dar- 
win and a Thomas precession term in addition to a linear 
confining potential. Furthermore, we assume that there is 
a residual short-range quark interaction from one-gluon- 
exchange UR. A nonrelativistic reduction of these interac- 
tions is done up to order (p/m) 2 as explained in the 
following. 

Spectra and wave functions are obtained by solving 
the Schr6dinger equation with the hamiltonian given by 
[13] 

H = M  + T+  Y/'c+ f R (1) 

where M is the sum of the constituent quark masses, 
mq = ms= m, and T the kinetic energy of relative motion in 
the center of mass system. We define the potential through 
f =  V+ W, where W denotes the order (p/m) 2 and V the 
lower orders in a p/m expansion, for confining and resi- 
dual interactions, respectively. For the lowest order in p/m 
the q0-interactions read 

Vc = a + br (2) 

4 1 
vR= -~Sr"  (3) 

The terms of order (p/m) 2 are given by 

Wc = WLs + Wg ~ c (4) 

w .  = w~  ~ + w ~ +  w~ + w ~ +  w~" (5) 

They are sorted according to their spin dependence, viz. 
spin-spin, spin-orbit, tensor, Darwin, and orbit-orbit in- 
teraction, in obvious notation. The explicit forms are 
given by 

1 1 
W~: s = - - -  L " S - V'c (6) 

2m 2 r 

1 
W g " -  (2p2Vc+ 2VcpZ + AVc) (7) 

4m 2 

2 wSS_ - 3 m  2 Sq s~AVR (8) 

w ~ S _  2 1 
-~5m2 L ' S - r  Vi (9) 

~ 1 ( ! v l - v ; ~ )  (,o) WR = ~ S.~ 

IL 1 F 2 
W]~ =Sin 2 [2p (VR r V ~ ) + 2 ( V R - r V ~ ) P  2 

I_ 

+A(3VR_rV,R)+4L2_I  V~] (11) 
F 3 

1 
W ~  AVR. (12) R -- 4m 2 

In the above expressions, r denotes the relative distance 
between quark and antiquark, Sq and sg are the respective 
spins (Sq = %/2), S = Sq + s~ the total spin, Sqr 3Sq" ~sr ~ - 
Sq'Sr the tensor operator, and L is the relative angular 
momentum. The quark masses, and the parameters of the 
potentials, the off-set a, the string tension b and the coup- 

ling strength as are treated as free parameters which are 
adjusted to reproduce the experimental meson spectrum. 
Values are shown in Table 1. They are given for two 
different model versions: All terms of (4) and (5) included 
in the hamiltonian will be denoted as version A, and spin 
independent terms neglected, viz. Wga= w~L= W~" =0,  
will be denoted as version B. 

Given the particular from of VR as in (2) and (3), note 
that through derivatives, the terms of WR diverge stronger 
than 1/r 2 for r~0 .  If these terms are attractive, as they are 
e.g. for the scalar and pseudoscalar mesons through spin- 
orbit and spin-spin interactions, the mesons collapse, viz. 
the hamiltonian H is unbound from below. This is despite 
the kinetic energy term that is proportional to p2 and 
would cure divergencies of lower order. Therefore the 
divergent terms are usually treated perturbatively. On the 
other hand, it has been argued [14] that these divergences 
are spurious due to the nonrelativistic reduction and 
should vanish, if all higher order corrections of (p/m)could 
be included. Since we do not use a pertubative treatment, 
we therefore need to regularize the potentials. This will be 
done in a way that keeps the terms of O G E  dominant at 
small distances to model the concept of asymptotic free- 
dom. Thus, not only the residual O G E  but also the confin- 
ing potential needs regularization. The latter would give 
a 1/r singularity in the spin-orbit term W~: s otherwise. We 
chose 

5 

l/r--* ~ fli exp[ - -?{r2] ,  (13) 
i = l  

for the residual interaction VR and in the confining poten- 
tial we replace 

b ~  b(r) = b" (1 - exp [ - (r/Zro) 2] ). (14) 

The parameters fll and 7i are fixed to fit 1/r with maximum 
likelihood in the region between ro and 4ro, which is the 
relevant region for charmonium and bottomonium. The 
regularization scale ro is a free parameter of the model and 
its value is also shown in Table 1. Its inverse is in the order 
of the constituent quark mass m and may be interpreted as 
an effective size of the constituent quark. The regularized 
lowest order potential V(r) is shown in Fig. 1 and com- 
pared with the nonregularized one. In fact, to be a reason- 
able regularization, mass spectra should not be too sensi- 
tive to a variation of ro. This is indeed the case for 
0.1 fm<r0<0 .25  fm. 

In passing, we note that mainly due to this regular- 
ization the parameter  as should not be mistaken for the 
coupling constant of QCD. In our model cq is of rather 
phenomenological character. 

Table 1. Parameters entering the hamiltonian for the full model 
(version A) and the reduced model (version B) 

parameter 

mo [aey] 
mb [aeV] 
a [GeV] 
b [e~y/f.q 

0l$ 

rO [f'q 

version A version B 
1.907 2.344 
5.306 5.690 

-0.864 -1.495 
0.740 0.637 
0.474 0.503 
0.14 0.18 
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Fig. 1. Lowest order central potential V(r)= VR(r)+ Vc(r) using the 
parameters of version A as given in Table 1. The dotted curve 
corresponds to the unregularized potential, while the solid curve 
corresponds to the regularized one 

Table 3. Rms-radii given in fm for various mesons 

i/L,~, version A version B 
~c 0.36 0.29 

J/r 0.42 0.34 
r  0.83 0.73 
r 0.84 0.72 
r 1.16 1.05 
X~o 0.53 0.45 
Xcl 0.63 0.53 
X~2 0.66 0.57 
r/b 0.20 0.19 
T 0.22 0.21 
T' 0.49 0.47 
T" 0.73 0.72 
T"  0.93 0.87 
XbO 0.34 0.33 
X~o 0.60 0.59 
Xbx 0.36 0.35 
X~,~ 0.63 0.61 
Xb2 0.38 0:36 
X~2 0.65 0.62 
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The regularized hamiltonian is then diagonalized in 
a reasonably large basis of oscillator wave functions. In 
fact, our results do not  change significantly, when the 
basis is enlarged or reduced. This choice of basis states 
and regularization scheme enables us to calculate the 
various matrix elements analytically. 

The energy eigenvalues of the two versions are ob- 
tained by minimizing the expectation value with respect to 
the oscillator parameter  of the wave functions due to Ritz' 
variational principle. The parameters are determined by 
a ~ 2  fit of the energy eigenvalues to the experimental mass 
spectrum. 

The mass spectra obtained with the best fit parameters 
as given in Table 1 are depicted in Fig. 2. 

Both versions give a reasonable description of the 
experimental mass spectra, for charmonium as well as for 
bot tomonium.  The contributions of the various potentials 
to the total energy of some selected mesons are shown in 
Table 2. Note, that  the spin independent terms W~ L, W~", 
W~ a, which are neglected in version B, lead to rather large 
expectation values. Nevertheless, version B still repro- 
duces the experimental spectra due to readjustment of the 
parameters as is seen in Table 1. In particular, the off-set 
parameter  a is changed by almost a factor of two. 

As can also be seen from Table 2, the net effect of the 
spin independent terms is repulsive, with the largest con- 
tributions from Wcm-part. As a consequence, the mesons 
of the full model are larger than those in version B, which 
is shown in Table 3. In addit ion these terms reduce the 
effect of the short-range spin dependent terms, which are 
responsible for the spin splittings in the reduced version. 
The spin independent terms in the full model  counteract  
the splittings due to the spin dependent terms Wff  and 
W~ s. This is reflected in the quark masses, which enter the 
spin dependent terms as a factor l/m 2. They are smaller 
for the full model than for the reduced version. And since 
relativistic effects are less impor tant  for bo t t o mo n iu m 
(mb>mc) the difference is less (8%)  than in cha rmonium 
(20%). 

3 E lec tromagnet i c  transit ions and decays  

It has been seen in the preceding section that despite 
differences in details both versions considered here lead to 
an equally good description of the experimental mass 
spectra. We now calculate leptonic decays and electro- 
magnetic (El, M1) transitions that should serve as more  

Table 2. Expectation values in MeV for the terms contri- 
buting to Wc and Wn 

version A 
Meson SS LSR I LSo T II D.R LLR I O.o 

~c - 1 3 6  - 68 - 9 8  168 i 

J/r 16 0 0 - 4  24 - 4 4  95 

X~ 4 -200  23 - 6 -109  207 

Xc, 1 - 3 2  9 - I - 3 6  92 

Xc2 0 22 - 8  - 1 - 2 8  74 

~b - -69  --  - -  - -  34 --61 77 

T 15 0 0 - I  23 - 4 2  59 

X~ I - 6 0  4 - 2 - 3 7  65 

Xbl 1 -21  2 - 1 - 2 6  51 

Xb2 0 17 --2 -- 1 --21 44 

version B 
SS LSa I LSc T 

-141 - 

21 0 0 - 3  
4 -151 14 - 
1 - 3 7  6 - 

0 25  - 6  - 

- 5 0  - - - 

13 0 0 0 

I - 4 9  3 - 

I - 2 0  1 - 

0 16 - I  - 
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Fig. 2. a Meson mass spectrum. 
Left part of each column 
experiments [20]. Right part of 
each column as calculated in 
version A. Upper part 
charmonium, lower part 
bottomonium 

sensitive tests of the details of the potentials, in particular 
the influence of the spin-independent residual interac- 
tions. 

To this end it is necessary to define a Fock-space 
representation for the mesons. This has been done e.g. by 
van Royen and Weisskopf [16] and by Godfrey and Isgur 
[15], and we follow their procedure with minor changes. 

As in [15] the meson is represented by a superposition 
of free quark-states I P) =a+(p)  l 0 )  (or b+(p) 10) for the 
antiquark) and the amplitudes given by the nonrelativistic 
meson wave function in momentum space 

1 

^ S J F C �9 [YL(P)| ] Z Z 1�89189 (15) 

where pq, pq are the quark momenta,  pO = ~ + m 2 (and 
analogously for ~) the free quark energies, P = pq + p~ the 

total momentum,  p = ( p q -  pq)/2 the relative momentum of 
the two quarks which are normalized as (pqlps  
(2~)32poS(pq-p~). The spin, flavor, and color wave func- 
tions are given by Z s, Z v, Z c, resp. The momentum space 
relative wave function is denoted by RNL(p) YLM(I~). With 
# the experimental meson mass, 09 = ~ p 2 + # 2  is the en- 
ergy of the meson. Thus the normalization chosen in (15) 
is a different choice as [15], viz. ( P + I P ~ ) =  
(27z)32~oS(Pq-Pq). For other normalizations, see [15]. 

We will not make the approximation p/m=O in the 
decay formulas, which will be given in the following, i.e. 
we do not neglect the small components  of the Dirac 
spinors of  quarks, when calculating S-matrix elements. 
Our formulas are then compared with the nonretativ- 
istic approach, e.g. the well-known ltp(0)12-formula (van 
Royen Weisskopf-formula). Through comparison, we are 
then able to estimate the influence of relativistic effects in 
mesonic decays. One might interpret these effects as 
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Fig. 2. b Same as a for version B 

a smearing of the space coordinates of the quarks. In other 
words, 1~(0)12 formulas are modified, since quarks can 
annihilate even if they are not at the same position, e.g. in 
an L # 0-state. We consider this a 'quasirelativistic' treat- 
ment. 

Although this approach is not a covariant formalism, 
it is a natural way to include relativistic effects into the 
calculation of decays in a nonrelativistic quark model. 
The formalism should account for these effects in a proper 
way for charmonium and bottomonium, since p/m is small 
in these mesons. 

We now consider leptonic decays, which is the inverse 
process of meson production in electron-positron annihi- 
lation. Due to selection rules, only the vector-mesons 
(jPC= 1 - - )  can be produced or decay via this channel. 
Therefore, the spin of the meson has to be S = 1, however, 
the angular momentum can be L = 0 or 2. Since the masses 

of  electrons or muons are much smaller than the meson 
masses (we do not consider decays into ~-leptons), the 
decay width becomes independent of the lepton masses. 
We compare the following two formulas: 

�9 The quasirelativistic formula as explained above is 
given by 

16~2e 2 t/. pZdp 2p ~ + m 

+y~RuL=z(p) 2xf2P~ 2 
3 ~  2P ~ J (16) 

with ~ =  1/137 and the quark charge eq being 2/3 for the 
c-quark and - 1/3 for the b-quark. Note,  that this formula 
explicitly allows for decay of D-waves into leptons! 
�9 The nonrelativistic formula, obtained by using p/m = 0 



3 1 2  

in (16) is given by 

16rcc~Ze 2 
F i e  p - 12 ~ 1 0 ( 0 ) 1 2  . (17) 

The D-wave-term vanishes and the momentum integral of 
the S-wave-term is equal to the spatial wave function at 
the origin r=0.  

We now turn to radiative transitions. Some difficulty 
arises related to the proper boost of the final state meson, 
being a composed object. However, due to the small 
momenta involved, it is possible to neglect momentum of 
the final state and treat the decays in the long wavelength 
limit. 

For E1 transitions, the transition width is given by the 
formula 

FE1 =~o~e2k3(2J' + 1) 

where J, L, S belong to the initial meson and J', L', S' to 
the final meson, and /=max(L, L'). We use the experi- 
mental photon energy for k in our calculation. The matrix 
element M:i will be given in impulse approximation only. 

�9 The quasirelativistic formula is obtained including the 
lower component of the quark Dirac spinors as explained 
in the beginning of the section and the long wavelength 
limit k << p. 

2 ~ p2dp Rs p RinL(p) (19) Mzi(E1)=~ o ~ pO 

�9 The nonrelativistic limit of the above formula leads to 
the following formula in momentum space 

2 ~ p2dp Rs p 
M:i(E1)=~ o (~n) 3 m R~r(p) (20) 

�9 If p=2m[H,  r] holds, the above momentum space for- 
mula is equivalent to the following coordinate space one 

2 ~ r2dr R s (r)r R ~L (r) (2 l) Mfi(E1)=~ o 

However, (20) and (21) lead to different results, if the 
potential is momentum dependent, as is the case in our 
model. In fact, since we are working in the long- 
wavelength limit, (21) can be obtained by using Siegert's 
theorem. Thus the difference between (20) and (21) gives 
a hint for the validity of impulse approximation. 
�9 Going beyond the long-wavelength limit an extended 
nonrelativistic formula in coordinate space reads [4]. 

3 o 
Mzi(E1) =~ ! r2drRs 

�9 {(1 +~m ) (�89189189 

k 
+_ ~m(J(J + 1)-4) jl(�89 

k 
+ 2mJl (l kr) ~r r } RiNL(r) (22) 

where the plus sign holds for S ~ P  transitions and the 
minus sign holds for P~S. In the long-wavelength limit 
this formula reproduces formula (21). 

The M1 transition widths are described by the formula 

4c~e2 3 
FM1 =~Tm2 k (2J '+ 1)M},(M1). (23) 

This formula is valid only for transitions with AS = 1 and 
L = L ' =  0. The small D-wave admixture is neglected. We 
compare three different formulas for the matrix element 
M:i: 

�9 The quasirelativistic formula in the approximation 
given before reads 

oo 

M:i(M1) = ! p2 dp Rs m2+ 2raP~ 3(pO)2 Riuos(P). (24) 

Due to the change of the total spin S an additional index 
S is used for the radial part of the wave function. In lowest 
nonrelativistic order this formula yields the following 
equation. 
�9 The nonrelativistic formula 

Myi(M1)= S r2 dr Rf,os,(r)Riuos(r ) 
0 

= ~ p2 dp R s (P) R iuo s (p) 
o(~n)3 (25) 

Models using undistorted wave functions not affected by 
residual interactions give R s = R ~0s for the radial part 
of the wave functions yielding M:i(M1)=6NN, in (25). 
Therefore M1 transitions with N # N' are expected to be 
strongly suppressed ('forbidden'). 
�9 Going beyond the long-wavelength limit the non- 
relativistic formula reads 

ct3 

M:i (M 1) = ~ r 2 dr R {'os' (r)jo (�89 kr) R ~uos (r) (26) 
0 

The long-wavelength limit, Jo ~ 1, leads to (25). 

In order to qualitatively discuss the relativistic effects in 
the above formulas, we analyze the integrands involved in 
leptonic decays and M1 transition rates. If we neglect the 
D-wave term in (16), the difference between the two for- 
mulas (16) and (17) is given by the integrand 

j~cp(p0) = 2p ~ + m (27) 
3p ~ 

which equals unity in the nonrelativistic limit. This func- 
tion is plotted in Fig. 3. The integrand suppresses higher 
momenta, which corresponds to the fact that contribu- 
tions of the wave function at very small distances becomes 
less important. However, typical values for p/m are 0.5 in 
charmonium and 0.25 in bottomonium, for which values 
the integrand is not very different from unity. Therefore 
these decays may provide a test to the wave function 
input, viz. the different versions of the model presented, 
since relativistic effects might (accidentally) be small in 
leptonic decays. Unfortunately, only the vector mesons 
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Fig. 3. Plot of the integrand d~p (dashed curve) used in the S-wave 
part of the quasirelativistic leptonic decay formula (16) and the 
integrand JMI (dotted curve) used in quasirelativistic M1 transition 
formula (24) 

can be tested this way. For M1 transitions differences 
between the quasirelativistic and the nonrelativistic treat- 
ment are given by the following integrand 

m 2 + 2 m p  ~ 

dMl(p ~ 3(pO)2 (28) 

A plot is shown in Fig. 3. From the figure we expect, that 
for typical value of charmonium and bot tomonium as 
given above, relativistic corrections in the operators are 
more important here than for the leptonic decays. 

4 Results 

We find that relativistic corrections are necessary for 
a better description of heavy quarkonia. This is in agree- 
ment with [14]. 

In charmonium, the full and the reduced model ver- 
sion as presented in Sect. 2 give satisfactory results for the 
7-transition rates. However, for leptonic decays, the full 
model much better describes the data. In addition the 
leptonic decay formulas are more reliable due to less 
approximations and less importance of relativistic correc- 
tions in the operators (see Fig. 3). We therefore favor the 
full model, which yields a better overall description. 

Comparing calculated and experimental leptonic 
widths in detail, for the S-wave-states in charmonium 
(Table 4), we find that the data of version B are too large 
by a factor ~ 2 to 3, while the data of the full model are in 
quite good agreement with experiment. Relativistic cor- 
rections are of the order of 10%, improving the agreement 
with the experimental data. On the other hand, they are 
also small enough to ensure that the quasirelativistic 
treatment, as explained in Sect. 3, is reasonable. The 
differences between the two versions are dominated by the 
repulsive Darwin-terms, as see from Table 2. 

The decay widths of the D-waves in charmonium are 
too small by more than one order of magnitude, but 
nonzero due to S-wave admixture by the tensor force and 
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Table 4. Leptonic decay widths given in keV: a using the full Dirac 
operator for quarks (16), b nonrelativistic approximation (17), ( )a 
denotes mesons dominated by d-waves 

decay 
J / r  - 

r  - 

r 
r 
r 
r 
T(1S) --* l + l  - 

T(2S') ~ l+ l  - 

T(3S) ---* l+ l - 

T(4S) ~ l+ l  - 

rexp 
4.72 4- 0.35 
2.14 + 0.21 
0.26 4- 0.04 
0.75 4- 0.15 
0.77 4- 0.23 
0.47 4- 0.10 
1.34 4- 0.04 

0.586 4- 0.029 
0.44 4- 0.03 
0.24 4- 0.05 

version A 
a b 

5.33 5.72 
2.31 2.62 
0.01 0.002 
1.59 1.85 
O.O2 0.003 
1.14 1.35 
1.24 1.32 
0.51 0.55 
0.35 0.38 
0.28 0.31 

version B 
a b 

11.2 12.2 
4.06 4.63 
0.03 0.005 
2.74 3.20 
0.04 0.01 
2.06 2.41 
1.41 1.49 
0.56 0.61 
0.36 0.39 
0.30 0.33 

relativistic effects (D-wave term in (16)). However, these 
particular decay width may be dominated by coupled 
channels and results may improve due to additional S- 
wave admixture [4]. 

In passing we mention some concerns about an addi- 
tional one gluon QCD-correction factor of the form 

1 - 1 6  ~ 0  3 (29) 
3 r e  } " 

in analogy to corresponding QED-radiation-corrections 
used in positronium decays [4, 17, 18]. The use of this 
correction factor is not free of bias as discussed in [17], 
because the radiative correction to the quark-antiquark 
interaction has already been included in the potential. As 
we have shown, our results are in quite good agreement 
with experimental data without any correction of that 
kind. 

For E1 transitions in charmonium we find that both 
hamiltonians (version A and B) lead to comparable results 
(Table 5). The results for the various approximations 
(19)-(22) show that also here the quasirelativistic formula 
(19) leads to quite good agreement with experiment. The 
relativistic effects are of the order of 20-30% and lead to 
a significant reduction of the corresponding nonrelativis- 
tic results of (20). Effects of the long-wavelength approx- 
imation (compare (21) to (22)) are generally much smaller 
and become important  only for the transition Zc2(1P)~ 
J / q ~ ( 1 S ) 7  with the largest photon momentum k. This is in 
agreement with results found by others [4, 14]. Coupled 
channel effects may further reduce the widths by 10-20%, 
and would thus lead to a good agreement with experiment 
[43. 

We find that two body currents might play some role 
(compare columns c and d in Table 5), less so for bot- 
tomonium. In transitions that are close to the long 
wavelength limit, differences are not so large, and compar-  
able to the differences emerging for the two model ver- 
sions. 

We emphasize that some E1 transitions are very sensi- 
tive to the nodes of the wave functions, which lead to large 
cancellations in the matrix elements. This explains the 
partly large differences in some decays using different 
formulas or the two models considered. 
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Table 5. E1 transition widths in keV for the full 
model (version A) and the reduced model (version 
B). Experimental data are taken from [20], -t from 
[21]. a-c along wavelength limit: a using the full 
Dirac operator for quarks (19), b nonrelativistic 
approximation using momentum space formula 
(20), c nonrelativistic approximation using 
coordinate space formula (21). d same as c but 
without employing the long wavelength limit (22) 

r  

X~o(1P) 
Xd(1P) 

[ Xc2(1P) 
T(3S) 

decay 
Xco(1P) "7 

experiment a 
22.6 4-4.5 24.2 
21.1 4-4.2 31.3 
19.0 4-4.0 26.3 

92 4-40 189 
240 4-40~ 264 
267 4-331' 271 
1.2 4-0.4 
2.9 4-0.7 
3.1 4-0.8 

-~ X~,(IP) 7 
-+ X~2(IP) 7 

--~ J/r  '7 
J/r "7 
X~o(2P) '7 

--+ Xbl(2P) '7 
---* XI,2(2P) 7 

T(2S) 

Xbo(2P) 

Xbl(2P) 

Xb2(2P) 

X~(IP) 
Xb,(1P) 
Xb2(1P) 

---* X~o(1P) 7 
---* Xbl(1P) "7 
---* Zb2(1P) "7 
--, T (2s )  
--, T(1S) '7 
-~ T(2s )  
-~ T ( IS )  n 
-~ T(2S) 

1.9 4-0.6 
2.9 4-0.7 
2.9 4-0.7 

T( IS)  7 
T ( IS )  7 

-~ T( IS)  
T ( IS)  7 

version A version B 
b e d a b c d 

34.1 22.7 2L6 19.9 28.0 19.4 18.5 
43.9 47.6 45.6 27.3 38.2 34.8 33.7 
36.8 37.2 36.2 19.8 27.7 29.3 28.7 
317 215 240 191 234 147 163 
315 438 447 262 315 287 297 
321 602 476 259 305 393 333 

1.18 1.38 1.00 1.00 1.06 1.23 1.00 0.99 
2.21 2.61 2.30 2.28 2.07 2.41 2.11 2.09 
2.29 2.70 2.80 2.78 2.26 2.62 2.59 2.57 
1.11 1.33 0.88 0.87 1.03 1.22 0.85 0.84 
1,88 2.25 1.83 1.81 1.83 2.15 1.64 1.63 
1.82 2.17 2.11 2.09 1.85 2.18 2.00 1.88 
11.9 13.5 15.2 15.5 11.4 12.7 13.8 14.1 
3.78 5.13 2.26 3.05 3.73 4.93 2.52 3.23 
13.7 15.4 16.9 16.9 12.9 14.3 15.8 15.8 

:7.03 8.91 7.04 7.98 6.26 7.86 6.15 6.92 
14.1 15.6 17.8 17.0 13.4 14.8 16.8 16.1 
8.14 i998 12.1 11.3 7.33 8.92 10.5 9.90 

I 

31.8!35.2 28.3 29.9 29.7 32.6 26.2 27.6 
33.4 36.6 32.5 33.1 31.5 34.3 30.4 30.9 
32.0 34.7 37.0 34.6 30.4 32.9 34.6 32.5 

Table 6. M1 transition widths in keV for the 
full model (version A) and the reduced model 
(version B). Experimental data are taken from r 
[20]. For charmonium experimental photon 
energies k have been used. For bottomonium 
photon energies are calculated from version J/r 
A (version B), respectively, a, b long wavelength r/c(2S) 
limit: a using the full Dirac operator for quarks T(2S) 
(24), b nonrelativistic approximation (25), T(1S) 
c same as b but without employing the long r/b(2S) 
wavelength limit (26) 

decay 
-~ ~o(is) 
-~ ~o(2s) '7 
--* ,7o(lS) '7 

J / r  "7 
-~  ~b( lS)  "7 
--, ~b(iS) 
-~ T( IS)  

experiment 
0.7 + 0.2 

0.94-0.3 

version A version B 
a b e a b c k [MeV] 

0.93 5 .92  12 .3  0.87 4.47 7.25 706 
0.81 0 .99  0.97 0.27 0 .66  0.65 96 
1.53 1 .84  1 .83  1 .00  1.21 1.21 117 
15,8 9.03 4.2 11.1 6,49 4.0 493 

0.018 0.063 0.094 0.006 0.027 0.043 668(629) 
0.040 0.044 0.044 0.009 0.010 0.009 105(66) 
0.225 0.124 0.082 0.135 0.065 0.038 540(556) 

F o r  M1 transitions, we find that  the quasirelat ivis t ic  
formula  (24) a lways yields results closest to the experi-  
menta l  data.  In  fact, they are within the exper imenta l  
errors  for version B and slightly larger  for the full model.  
Results  are given in Table  6. C o m p a r i n g  different for- 
mulas  we see tha t  long-wavelength  limit effects may  be 
impor t an t  for large k-values ( k ~ 7 0 0  MeV) (column b 
c o m p a r e d  to co lumn c in Table  6), a l though they do not  
yield agreement  with experiment .  The wel l -known dis- 
agreement  between the non-rela t ivis t ic  results of (25), (26) 
and  exper iment  seems to be a c c o m m o d a t e d  by including 
relativist ic effects due to (24). Note,  that  no anoma lous  
magnet ic  m o m e n t  of the charmed  quark  needs to be 
in t roduced  [14, 19] to resolve this long s tanding diffi- 
culty. 

If we compare  matr ix  elements of forbidden and al- 
lowed M1 transi t ions,  we also find for our  model  that  
mat r ix  elements with different N are smaller  than those 
with equal  N by abou t  one order  of magni tude.  This 
shows that  there are large cancel la t ions  in the matr ix  
elements  of forb idden  decays. In  par t icular ,  the matr ix  
element  for 2 S ~ 1 S  is very sensitive to the exact loca t ion  
of the node of the 2S-state, s imilar  to some E1 t ransi t ions  
ment ioned  above.  In  Fig. 4 the wave functions of ~(2S) 
and r/c0S ) are shown to demons t r a t e  this issue. F o r  this 

reason the matr ix  element  is also sensitive to changes of  
the in tegrand (i.e. relativistic correct ions  in the t rans i t ion  
operators) ,  which results in a significant reduct ion of the 
width of this forb idden transi t ion.  

In  b o t t o m o n i u m  we find that  bo th  versions (A and B) 
lead to reasonable  overall  agreement  with leptonic  decay 
as well as t ransi t ion data.  The differences in the var ious  
app rox ima t ions  turns out  to be smaller  here, because the 
sp in- independent  forces are reduced by a factor 1/m z. As 
expected, the relativistic correct ions  are smaller due to the 
smaller  fraction of (p/m) 2 ~ 6% in bo t tomon ium.  

In more  detail ,  in b o t t o m o n i u m  the 3 S - , 2 P - t r a n s i -  
t ions are in good  agreement  with experiment ,  while the 
2 S ~ l P - t r a n s i t i o n s  are slightly too  small. The fract ions 
(2P--*2S)/(2P--* 1S) are in agreement  with the exper imenta l  
fractions, too. The differences between various decay for- 
mulas  are smaller  than for charmonium.  We emphasize  
that  the 1 P ~ l S - t r a n s i t i o n s  are not  affected by the exact  
loca t ion  of the nodes. Unfor tunate ly ,  up to now the to ta l  
widths of the Zb's have not  been measured.  

Since the to ta l  decay width of Zb(2P) mesons is not  
known exper imental ly ,  we have given the rat ios for some 
decays in Table  7. Exper imenta l  errors  are assumed to be 
statistical.  We find that  all var ia t ions  are congruent  with 
exper imenta l  data.  



Table 7. Ratios for selected decays in 
bottomonium. Experimental ratios calculated 
from [20] assuming statistical errors only. 
Letters assigned as in Table 5 

decay ratio experiment 
Xbo(2P): ['(T(2S) 7 ) / F ( T ( 1 S )  7) 5.0 +4.5 
X b l ( 2 P ) :  F(T(2S) 7)/F(T(1S) 7) 4.1 +1.7 
xb~(2P): r (x(2s)  7 ) / r (T( l s )7 )  3.0 +1.4 

version A 
a b c 

3.1 2.6 6.7 
1.9 1.7 2.4 
1.7 1.6 1.5 

version B 
d a b c 

5.1 3.1 2.6 5.5 
2.1 2.1 1.8 2.6 
1.5 1.8 1.7 1.6 
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Fig. 4. Radial densities r R Nos(r) for ~b(2S) (dashed curve) and t/c (IS) 
(solid curve) using the parameters of the full model 

5 C o n c l u s i o n  

F o r  the binding of quark  and an t iquark  we use a non-  
relat ivist ical ly reduced version of the O G E  potent ia l  and  
a confining potent ia l  assumed to be of Lorentz  scalar  
nature.  The spin dependent  terms occurr ing in order  
(p/m) z are impor t an t  to account  for the var ious  spin split- 
t ings in the meson mass  spectra.  F o r  a systematic  ap-  
proach,  we also include the spin independent  terms and 
relat ivist ic  correct ions  of the t rans i t ion  opera tors .  

F o r  the mass spectra,  we find that  the spin indepen-  
dent  terms and the spin dependent  terms give cont r ibu-  
t ions to the masses of the same order  of magni tude .  
Nevertheless,  both  versions, the full mode l  (version A) and 
a reduced version with spin independent  terms neglected 
(version B), yield a meson mass spect rum of similar  qual-  
ity. The effects of the spin independent  terms in the full 
mode l  can be largely compensa ted  for by a change of 
pa rame te r s  in version B. 

We find that  leptonic  decay widths are more  sensitive 
to the par t icu la r  potent ia l  input,  due to smaller  relativist ic 

effects, than the 7 transition rates. Since they are better 
described in the full model, we favor version A. From the 
resulting E1 transition rates we conclude that also two 
body contributions to the current operators may be of 
some relevancy. 

The presented ca lcula t ional  scheme provides  an im- 
proved  descr ip t ion  of heavy qua rkon ia  [22]. Nevertheless,  
the magni tude  of relativist ic correct ions  found in this 
noncovar i an t  approach ,  actual ly  implies that  a genuine 
relativistic t rea tment  of q u a r k o n i a  might  be relevant. This 
of course applies a for ter ior i  to the light mesonic  systems. 
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