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Abstract. Charmonium c¢¢ and bottomonium bb are in-
vestigated in the framework of a constituent quark model.
A scalar confining and a one-gluon exchange (OGE) po-
tential are used in a nonrelativistic reduction to order
(p/m)*. Therefore the model includes spin dependent as
well as spin independent terms. Their influence on the
meson mass spectra and decay widths is analysed. We find
that the experimental spectra can be reproduced by using
a full model as well as by using a reduced version neglect-
ing the spin independent terms. For both versions we
calculate leptonic and radiative decay widths including
relativistic corrections for the current operators. We find
that for leptonic decays inclusion of all terms of the OGE
potential gives better results than the non-relativistic for-
mulas. For radiative transitions relativistic corrections are
important.

1 Introduction

Since the discovery of J/iy- [1] and Y-resonances [2]
many models have been studied to relate the spectra of
charmonium ¢¢ and bottomonium bb to the underlying
quark-antiquark (gq) structure. Among them non-relativ-
istic models [3—117] have been particularly successful in
describing the mass spectra. This is mostly due to the fact
that the masses of the constituents are relatively large.
Those models lead to very similar results, since for
0.1 fm <r <1 fm, which is the typical scale for cc and bb
mesons the various gg potentials used are nearly identical.
For recent reviews see [12, 137] and references therein.
The various models however difler both in the long-
range part and the short-range part of qg potential. The
long-range part is responsible for the confinement of
quarks. Since the problem of confinement has not yet been
solved one has to rely on phenomenology for a reasonable
ansatz. Results from lattice QCD as well as the Regge
trajectories in light meson spectroscopy and their inter-
pretation in terms of the flux tube model suggest a linear
confining potential see e.g. [6]. The short-range part

should reflect the concept of asymptotic freedom, which in
most models is realized by one-gluon exchange (OGE). In
early modeling, a short-range Coulomb-like 1/r-potential
was used [3, 4], which later was modified e.g. by taking
into account that ¢, is a running coupling constant [7].
Alternatively, the central potential has been approximated
altogether by a logarithmic potential [5].

In addition, these models have to account for the
spin-dependence of the ¢gg interaction as reflected by the
mass splitting of the spin triplet states y.;, x5y (J=0, 1, 2)
and in the hyperfine splitting of #. and J/i. In the frame-
work of OGE this can be done in a straightforward
manner: A non-relativistic expansion in powers of p/m
leads in addition to the 1/r-potential in lowest order to
spin dependent terms in next order. Note, that it also leads
to spin independent terms in the same order. In analogy to
QED the sum of all these terms will be referred to as
Fermi-Breit interaction. This model leads to a reasonable
agreement with experimental data (see also next section).

Nevertheless, the spin dependent terms alone yield
mass splittings, that are already in quite good agreement
with experiment. In the past this reduced version has been
used in most of the quark models describing heavy quar-
konia. For comparison, we therefore use both versions to
investigate decay and transition observables, which are
much more sensitive to details of the wave function than
the spectra alone.

In Sect. 2 the model is introduced and the resulting
mass spectra are shown. In Sect. 3 we calculate leptonic
decay widths, E1- and M I-transition rates and investigate
various approximations of the transition operators. Our
results are discussed in Sect. 4.

2 The quark model

In the constituent quark model presented here, char-
monium and bottomonium are treated as quark-anti-
quark states, i.e. we do not take into account any gluonic
admixtures, which, presumably, should be small. Also no
coupled channel effects are included although these might
be relevant [4].
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Confinement is implemented by a potential ¥ as-
sumed to a Lorentz scalar and thus giving rise to a Dar-
win and a Thomas precession term in addition to a linear
confining potential. Furthermore, we assume that there is
a residual short-range quark interaction from one-gluon-
exchange ¥ A nonrelativistic reduction of these interac-
tions is done up to order (p/m)* as explained in the
following.

Spectra and wave functions are obtained by solving
the Schrédinger equation with the hamiltonian given by

[13]
H=M+T+%c+7% (1

where M is the sum of the constituent quark masses,
m,=mgz=m, and T the kinetic energy of relative motion in
the center of mass system. We define the potential through
¥ =V + W, where W denotes the order (p/m)* and V the
lower orders in a p/m expansion, for confining and resi-
dual interactions, respectively. For the lowest order in p/m
the gg-interactions read

Ve=a+br 2
4 1
Vi=— o~ 3
R 301 ; @)
The terms of order (p/m)? are given by
We=Wg+wee (4)
Wr=WX+WE+ Wi+ Wi +Wge 5

They are sorted according to their spin dependence, viz.
spin-spin, spin-orbit, tensor, Darwin, and orbit-orbit in-
teraction, in obvious notation. The explicit forms are
given by

1 1
m r
1
Wei= ‘W(zpz Ve+2Vep* +4Vy) @)
SS 2
W :qu'sqﬁ Vg ®)
2 1
Wﬁs=§—5L'S* Vi 9)
m r
T 1 1 1 "
WR:W Seq ;VR*VR (10
1
WﬁL:W[zpz(VRVV§)+2(VR_rV‘/‘)p2
1
+A(3VR—rV§)+4L2;V§] ()
Da 1
we :WAVR. (12)

In the above expressions, r denotes the relative distance
between quark and antiquark, s, and s; are the respective
spins (s, =6,/2), S=s,+s; the total spin, S,z=3s, sz £ —
s, *s7 the tensor operator, and L is the relative angular
momentum. The quark masses, and the parameters of the
potentials, the off-set a, the string tension b and the coup-

ling strength o are treated as free parameters which are
adjusted to reproduce the experimental meson spectrum.
Values are shown in Table 1. They are given for two
different model versions: All terms of (4) and (5) included
in the hamiltonian will be denoted as version A, and spin
independent terms neglected, viz. W2%= Wkl= Wb =0,
will be denoted as version B.

Given the particular from of V5 as in (2) and (3), note
that through derivatives, the terms of Wy diverge stronger
than 1/r? for r—0. If these terms are attractive, as they are
e.g. for the scalar and pseudoscalar mesons through spin-
orbit and spin-spin interactions, the mesons collapse, viz.
the hamiltonian H is unbound from below. This is despite
the kinetic energy term that is proportional to p? and
would cure divergencies of lower order. Therefore the
divergent terms are usually treated perturbatively. On the
other hand, it has been argued [14] that these divergences
are spurious due to the nonrelativistic reduction and
should vanish, if all higher order corrections of (p/m) could
be included. Since we do not use a pertubative treatment,
we therefore need to regularize the potentials. This will be
done in a way that keeps the terms of OGE dominant at
small distances to model the concept of asymptotic free-
dom. Thus, not only the residual OGE but also the confin-
ing potential needs regularization. The latter would give
a 1/r singularity in the spin-orbit term W§® otherwise. We
chose

5
1r—3 prexp[—yir’l, (13)
i=1

for the residual interaction ¥ and in the confining poten-
tial we replace

b—-b(r)=b-(1—exp[—(r/2ro)*]). (14)

The parameters f; and y; are fixed to fit 1/r with maximum
likelihood in the region between r, and 4r,, which is the
relevant region for charmonium and bottomonium. The
regularization scale r is a free parameter of the model and
its value is also shown in Table 1. Its inverse is in the order
of the constituent quark mass m and may be interpreted as
an effective size of the constituent quark. The regularized
lowest order potential V(r} is shown in Fig. 1 and com-
pared with the nonregularized one. In fact, to be a reason-
able regularization, mass spectra should not be too sensi-
tive to a variation of ro,. This is indeed the case for
0.1 fm <ry<0.25 fm.

In passing, we note that mainly due to this regular-
ization the parameter o, should not be mistaken for the
coupling constant of QCD. In our model «, is of rather
phenomenological character.

Table 1. Parameters entering the hamiltonian for the full model
(version A) and the reduced model (version B)

parameter version A | version B
me.  [GeV] 1.907 2.344
my  [GeV] 5.306 5.690

a [GeV] —0.864 | —1.495
b [GeV/fm]| 0.740 0.637
a, 0.474 0.503
ro [fm] 0.14 0.18
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Fig. 1. Lowest order central potential V(r)= Vg(r)+ V¢(r) using the
parameters of version A as given in Table 1. The dotted curve
corresponds to the unregularized potential, while the solid curve
corresponds to the regularized one

The regularized hamiltonian is then diagonalized in
a reasonably large basis of oscillator wave functions. In
fact, our results do not change significantly, when the
basis is enlarged or reduced. This choice of basis states
and regularization scheme enables us to calculate the
various matrix elements analytically.

The energy eigenvalues of the two versions are ob-
tained by minimizing the expectation value with respect to
the oscillator parameter of the wave functions due to Ritz’
variational principle. The parameters are determined by
a y? fit of the energy eigenvalues to the experimental mass
spectrum.

The mass spectra obtained with the best fit parameters
as given in Table 1 are depicted in Fig. 2.

Both versions give a reasonable description of the
experimental mass spectra, for charmonium as well as for
bottomonium. The contributions of the various potentials
to the total energy of some selected mesons are shown in
Table 2. Note, that the spin independent terms WL, ke,
W22 which are neglected in version B, lead to rather large
expectation values. Nevertheless, version B still repro-
duces the experimental spectra due to readjustment of the
parameters as is seen in Table 1. In particular, the off-set
parameter a is changed by almost a factor of two.
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Table 3. Rms-radii given in fm for various mesons

R, || version A | version B
e 0.36 0.29
J/p 0.42 0.34
' 0.83 0.73
" 0.84 0.72
P 1.16 1.05
X0 0.53 0.45
Xe 0.63 0.53
Xc2 0.66 0.57
m 0.20 0.19
T 0.22 0.21
T 0.49 0.47
T/ 0.73 0.72
T 0.93 0.87
X50 0.34 0.33
Xbo 0.60 0.59
X1 0.36 0.35
Xb1 0.63 0.61
Xb2 0.38 0.36
X2 0.65 0.62

As can also be seen from Table 2, the net effect of the
spin independent terms is repulsive, with the largest con-
tributions from W2%-part. As a consequence, the mesons
of the full model are larger than those in version B, which
is shown in Table 3. In addition these terms reduce the
effect of the short-range spin dependent terms, which are
responsible for the spin splittings in the reduced version.
The spin independent terms in the full model counteract
the splittings due to the spin dependent terms W% and
W&, This is reflected in the quark masses, which enter the
spin dependent terms as a factor 1/m?. They are smaller
for the full model than for the reduced version. And since
relativistic effects are less important for bottomonium
(m,>m,) the difference is less (8% ) than in charmonium
(20%).

3 Electromagnetic transitions and decays

It has been seen in the preceding section that despite
differences in details both versions considered here lead to
an equally good description of the experimental mass
spectra. We now calculate leptonic decays and electro-
magnetic (E1, M1) transitions that should serve as more

Table 2. Expectation values in MeV for the terms contri- vermon A version B

buting to W and Wy Meson | SS | LSz |LSc| T || Dar| LLg | Dac | SS | LSk |LSc| T
e -136 [ - — [~ 68 | —98 | 168 || —141| — - | -
J/Y 16 0 0 |—4f 24 | —44 | 95 21 0 0 [-3
X0 4 [-200]| 23 | — 6 | —109| 207 4 |[-151| 14 | —
Xa 1 =32 9 | - 1 -36 | 92 1 —-371{ 6 —
Xez 0 22 | -8 | — 1 -28 | 74 0 25 -6 | —
m || 69| — | — | —| 34 |61 77 || =50 — | — | —
T 15 0 0 |—-1f 23 | —42 | 59 13 0 0 0
Xb0 1 —-60 | 4 | — 2 =37 | 65 1 —49 3 —
X1 1 -21 2 | - 1 —-26 | 51 1 -20 1 -
Xb2 0 17 | =2 | - 1 —-21 | 44 0 16 -1 -
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the influence of the spin-independent residual interac-
tions.

To this end it is necessary to define a Fock-space
representation for the mesons. This has been done e.g. by
van Royen and Weisskopf [16] and by Godfrey and Isgur
(157, and we follow their procedure with minor changes.

As in [15] the meson is represented by a superposition
of free quark-states |p>=a*(p)|0> (or b*(p}|0)> for the
antiquark) and the amplitudes given by the nonrelativistic
meson wave function in momentum space

lwP) = \sz € \/7;2 Y Ryr(p)
LYY xF xC13P+p)5P—p) 4 (15)

where p,, p; are the quark momenta, pJ=./p2+m? (and
analogously for g) the free quark energies, P=p,+p; the

the two quarks which are normalized as {p,|p,>=
(2n)? 2p05(pq p.)- The spm flavor, and color wave func-
tions are given by ¥5, X %, resp. The momentum space
relative wave function is denoted by Ryp(p) Y (p). With
i the experimental meson mass, w=./P*+ pu? is the en-
ergy of the meson. Thus the normalization chosen in (15)
is a different choice as [15], viz. (P, |P,=
(2m)*2wé(P,—P,). For other normalizations, see [15].
We will not make the approximation p/m=0 in the
decay formulas, which will be given in the following, ie.
we do not neglect the small components of the Dirac
spinors of quarks, when calculating S-matrix elements.
Our formulas are then compared with the nonrelativ-
istic approach, e.g. the well-known |y (0)|>-formula (van
Royen-Weisskopf-formula). Through comparison, we are
then able to estimate the influence of relativistic effects in
mesonic decays. One might interpret these effects as
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a smearing of the space coordinates of the quarks. In other
words, [y(0)]> formulas are modified, since quarks can
annihilate even if they are not at the same position, e.g. in
an L#0-state. We consider this a ‘quasirelativistic’ treat-
ment.

Although this approach is not a covariant formalism,
it is a natural way to include relativistic effects into the
calculation of decays in a nonrelativistic quark model.
The formalism should account for these effects in a proper
way for charmonium and bottomonium, since p/m is small
in these mesons.

We now consider leptonic decays, which is the inverse
process of meson production in electron-positron annihi-
lation. Due to selection rules, only the vector-mesons
(JP¢=17") can be produced or decay via this channel.
Therefore, the spin of the meson has to be § =1, however,
the angular momentum can be L =0 or 2. Since the masses

of electrons or muons are much smaller than the meson
masses (we do not consider decays into t-leptons), the
decay width becomes independent of the lepton masses.
We compare the following two formulas:

e The quasirelativistic formula as explained above is
given by

16 2d
rlep 7:;“ eq4 <“‘p p

(21t)3 Ryr-o(p) 3p 0
N j p dp 2\/ p’—m
(2ny? Rxe=2lp 3f 2p°
with «=1/137 and the quark charge ¢, being 2/3 for the
c-quark and —1/3 for the b-quark. Note, that this formula

explicitly allows for decay of D-waves into leptons!
e The nonrelativistic formula, obtained by using p/m=0

2p°+m

(16)
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n (16) is given by
lé6na’e?
Fop =254 0y (17)

The D-Wave-term vanishes and the momentum integral of
the S-wave-term is equal to the spatial wave function at
the origin r=0.

We now turn to radiative transitions. Some difficulty
arises related to the proper boost of the final state meson,
being a composed object. However, due to the small
momenta involved, it is possible to neglect momentum of
the final state and treat the decays in the long wavelength
limit.

For EI transitions, the transition width is given by the
formula

FEI :%a€2k3(2J/+ 1)

{ (1)l {J’ Ls }Mﬁ(m)énmass}z 18)

where J, L, S belong to the initial meson and J', L', §’ to
the final meson, and /=max(L, L'). We use the experi-
mental photon energy for k in our calculation. The matrix
element M ;; will be given in impulse approximation only.

e The quasirelativistic formula is obtained including the
lower component of the quark Dirac spinors as explained
in the beginning of the section and the long wavelength
himit k<« p.
2% p*dp p
M (ED)= Ri(p) 5
fl( ) g (27’[)3 N'L (p) po
o The nonrelativistic limit of the above formula leads to
the following formula in momentum space

wi(p) (19)

p*dp P
(2 ) R L’(P);n‘

e If p=2m[H, r] holds, the above momentum space for-
mula is equivalent to the following coordinate space one

Mp(ED)= I Ri.(p) (20)

Mﬁ(El):% [ #2drRE L (D1 Rig(r) 1)
0

However, (20) and (21) lead to different results, if the
potential is momentum dependent, as is the case in our
model. In fact, since we are working in the long-
wavelength limit, (21) can be obtained by using Siegert’s
theorem. Thus the difference between (20) and (21) gives
a hint for the validity of impulse approximation.

e Going beyond the long-wavelength limit an extended
nonrelativistic formula in coordinate space reads [4].

3 0
Mf,»(El)=E [ r2dr R (r)
0

k
. {(1 +4—> (3krjo(zkr)—ji (kr))
m

R U4 )Gk
4m

k 0 )
+—J1Gkr)—r > Riy(r) (22)
2m or

where the plus sign holds for S—P transitions and the
minus sign holds for P—S. In the long-wavelength limit
this formula reproduces formula (21).

The M transition widths are described by the formula

40!63 3 ’ 2

This formula is valid only for transitions with AS=1 and
L=L"=0. The small D-wave admixture is neglected. We
compare three different formulas for the matrix element
M,

e The quasirelativistic formula in the approximation
given before reads

m? + 2mp°
3(p%?
Due to the change of the total spin S an additional index
S is used for the radial part of the wave function. In lowest
nonrelativistic order this formula yields the foliowing

equation.
o The nonrelativistic formula

pdp
I 5

M (M1)= Qn ) NOS p)

Rivos(p) - (24)

0

M (M1)= j r2dr R¥os/() Rivos(r)

B © 2dp
=) W os'(P) Rivos(p) - (25)

Models using undistorted wave functions not affected by
residual interactions give R4os = R iyos for the radial part
of the wave functions yielding M;(M1)=34yy in (25).
Therefore M1 transitions with N 3 N’ are expected to be
strongly suppressed (‘forbidden’).

e Going beyond the long-wavelength limit the non-
relativistic formula reads

M. Ml)= j" d"RN os'(r )J'o(%k")Rfvos(r) (26)

The long-wavelength limit, j,~ 1, leads to (25).

In order to qualitatively discuss the relativistic effects in
the above formulas, we analyze the integrands involved in
leptonic decays and M1 transition rates. If we neglect the
D-wave term in (16), the difference between the two for-
mulas (16) and (17) is given by the integrand

2p°+m

30 27

jlcp(po):

which equals unity in the nonrelativistic limit. This func-
tion is plotted in Fig. 3. The integrand suppresses higher
momenta, which corresponds to the fact that contribu-
tions of the wave function at very small distances becomes
less important. However, typical values for p/m are 0.5 in
charmonium and 0.25 in bottomonium, for which values
the integrand is not very different from unity. Therefore
these decays may provide a test to the wave function
input, viz. the different versions of the model presented,
since relativistic effects might (accidentally) be small in
leptonic decays. Unfortunately, only the vector mesons



integrand

p/m

Fig. 3. Plot of the integrand .#,  (dashed curve) used in the S-wave
part of the quasirelativistic leptonic decay formula (16) and the
integrand .#,,, (dotted curve) used in quasirelativistic M1 transition
formula (24)

can be tested this way. For M1 transitions differences
between the quasirelativistic and the nonrelativistic treat-
ment are given by the following integrand

m? + 2mp°
]M1(PO):W

A plot is shown in Fig. 3. From the figure we expect, that
for typical value of charmonium and bottomonium as
given above, relativistic corrections in the operators are
more important here than for the leptonic decays.

(28)

4 Results

We find that relativistic corrections are necessary for
a better description of heavy quarkonia. This is in agree-
ment with [14].

In charmonium, the full and the reduced model ver-
sion as presented in Sect. 2 give satisfactory results for the
y-transition rates. However, for leptonic decays, the full
model much better describes the data. In addition the
leptonic decay formulas are more reliable due to less
approximations and less importance of relativistic correc-
tions in the operators (see Fig. 3). We therefore favor the
full model, which yields a better overall description.

Comparing calculated and experimental leptonic
widths in detail, for the S-wave-states in charmonium
(Table 4), we find that the data of version B are too large
by a factor ~2 to 3, while the data of the full model are in
quite good agreement with experiment. Relativistic cor-
rections are of the order of 10%, improving the agreement
with the experimental data. On the other hand, they are
also small enough to ensure that the quasirelativistic
treatment, as explained in Sect. 3, is reasonable. The
differences between the two versions are dominated by the
repulsive Darwin-terms, as see from Table 2.

The decay widths of the D-waves in charmonium are
too small by more than one order of magnitude, but
nonzero due to S-wave admixture by the tensor force and
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Table 4. Leptonic decay widths given in keV: a using the full Dirac
operator for quarks (16), b nonrelativistic approximation (17), ( )
denotes mesons dominated by d-waves

version A | version B
decay Tezp a b a b
J/p(18) — FI- | 4.72+0.35 |5.33] 5.72 [11.2 12.2
¥(25) - It 2.144+0.21 [2.31( 2.62 [4.06( 4.63
$(3770)¢ — It~ | 0.26 +£0.04 {0.01 |0.002 | 0.03 | 0.005
$(4040) —» I*1~ | 0.75+0.15 |1.59{ 1.85 [2.74| 3.20
¥(4160)? — [+I- | 0.77+£0.23 |0.02 [0.003 | 0.04 | 0.01
$¥(4415) - I*1- | 0.47+0.10 |1.14] 1.35 [2.06 | 2.41

T(1S) — It~ 1.34+£0.04 [1.24] 1.32 (1.41] 1.49
T(2S) — I*l~ |0.586 +£0.029 | 0.51 | 0.55 | 0.56 | 0.61
T(3S) = I*I- 0.44+0.03 (0.35( 0.38 {0.36 | 0.39
T(45) — It~ 0.24+0.05 }0.28( 0.31 |0.30} 0.33

relativistic effects (D-wave term in (16)). However, these
particular decay width may be dominated by coupled
channels and results may improve due to additional S-
wave admixture [4].

In passing we mention some concerns about an addi-
tional one gluon QCD-correction factor of the form

16
(1 - as>z0.3 (29)
3n

in analogy to corresponding QED-radiation-corrections
used in positronium decays [4, 17, 18]. The use of this
correction factor is not free of bias as discussed in [17],
because the radiative correction to the quark-antiquark
interaction has already been included in the potential. As
we have shown, our results are in quite good agreement
with experimental data without any correction of that
kind.

For El transitions in charmonium we find that both
hamiltonians (version A and B) lead to comparable results
(Table 5). The results for the various approximations
(19)-(22) show that also here the quasirelativistic formula
(19) leads to quite good agreement with experiment. The
relativistic effects are of the order of 20-30% and lead to
a significant reduction of the corresponding nonrelativis-
tic results of (20). Effects of the long-wavelength approx-
imation (compare (21) to (22)) are generally much smaller
and become important only for the transition y.,(1P)—
J/p(18)y with the largest photon momentum k. This is in
agreement with results found by others [4, 14]. Coupled
channel effects may further reduce the widths by 10-20%,
and would thus lead to a good agreement with experiment
[4].

We find that two body currents might play some role
(compare columns ¢ and d in Table 5), less so for bot-
tomonium. In transitions that are close to the long
wavelength limit, differences are not so large, and compar-
able to the differences emerging for the two model ver-
sions.

We emphasize that some E1 transitions are very sensi-
tive to the nodes of the wave functions, which lead to large
cancellations in the matrix elements. This explains the
partly large differences in some decays using different
formulas or the two models considered.
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Table 5. E1 transition widths in keV for the full version A version B
model (vqrsion A) and the reduced model (version decay experiment | a b c d a b c d
B). Experimental data are taken from [20], f from | 7g7(38) 5 y o(1P) 7 | 22.6 £4.5 |24.2 | 34.1]22.7 | 21.6 | 19.9| 28.0 | 19.4 | 185
gilric a;;’;:;gf gf?ﬁﬁh( 11191;“2 golilsrlslittll\lllestil::ll - xa(1P)y [21.1 +4.2 [31.3(43.947.6|45.6 |27.3|38.2|34.8 |33.7
approximation using momenn;m space formula — xc2(1P) vy |19.0 +4.0 |26.3|36.837.2{36.2|19.8(27.7|29.3|28.7
(20), ¢ nonrelativistic approximation using Xo(1P) —J/Pp(1S)y| 92 £40 | 189 | 317 | 215 | 240 | 191 | 234 | 147 | 163
coordinate space formula (21). d same as ¢ but Xa(1P) — J/$(15)y | 240 +40f ) 264 | 315 | 438 | 447 | 262 | 315 | 287 | 297
without employing the long wavelength limit (22) Xf;((;g ; - J/ '/(’g;s; ) 216; igif 127118 3?318 f%% ;12?) 1250% f(;?i f%% g:;:;
— X0 v . . . . . . . . . .
— xu(2P) v | 2.9 £0.7 [2.21|2.61{2.30{2.28|2.07 | 2.41|2.11 | 2.09
— x02(2P) v | 3.1 £0.8 [2.292.70|2.80 [ 2.78 | 2.26 | 2.62 | 2.59 | 2.57
T(25) — xw(lP)y | 1.9 0.6 {1.11(1.33}0.88]0.871.03|1.22{0.85 | 0.84
— xa(1P)y | 29 £0.7 {1.88]2.25]1.83(1.81|1.83(2.15|1.64|1.63
— xp2(1P)y | 29 +0.7|1.82]2.17|2.11(2.09(1.85(2.18|2.00|1.88
x0(2P) — Y(25) v 11.9113.5(15.2|15.5 [ 11.4 [ 12.7]13.8 | 14.1
— T(15) v 3.78 {5.13|2.26 | 3.05 | 3.73 | 4.93 | 2.52 | 3.23
xn(2P) — Y(25) v 13.7}1154(16.9(16.9(12.9(14.3|15.815.8
- T(18) v 7.03 1891 |7.04|7.98]6.26(7.86|6.15[6.92
x52(2P) — T(28) v 14.1(15.6 [17.8|17.0 [ 13.4 | 14.8 [ 16.8 | 16.1
—T(1S) v 8.1419.98112.1 (11.3|7.338.92110.5{9.90
xw(1P) — Y(15)~y 31.8135.2(28.3(29.9{29.7]32.6|26.2]27.6
xs(1P) — T(1S)y 33.4|36.6 (32.5(33.1131.534.3(30.4]30.9
xo2(1P) — YT(15) v 32.034.7(37.034.6 | 30.4 32.9]34.6|32.5
Table 6. M1 transition widths in keV for the version A version B
full rpodel (versmr} A) and the reduced model decay experiment | a b c a b ¢ k([MeV)
(version B). Experimental data are taken from [—grmey = ey 2107202 [0.93 [5.902 [ 123 [ 087 | 447 [ 725 706
[20]. For charmonium experimental photon
h ) — 1(28) 0.81 [ 0.99 | 0.97 | 0.27 | 0.66 | 0.65 96
energies k have been used. For bottomonium J/(1S 1S 09+03 | 1.5 " 0
photon energies are calculated from version [$(1S) = n(1S) v 9£0. 83 | 1.8 1.83 | 1.0 1.21 1121 17
A (version B), respectively, a, b long wavelength n:(25) — J/$(15) v 158 19.03 | 42 | 111 | 649 | 4.0 493
limit: a using the full Dirac operator for quarks T(25) - p(1S) v 0.018 { 0.063 | 0.094 | 0.006 | 0.027 | 0.043 | 668 (629)
(24), b nonrelativistic approximation (25) T(1S) — n(1S) 4 0.040 | 0.044 | 0.044 | 0.009 | 0.010 | 0.009 | 105 (66)

wavelength limit (26)

For M1 transitions, we find that the quasirelativistic
formula (24) always yields results closest to the experi-
mental data. In fact, they are within the experimental
errors for version B and slightly larger for the full model.
Results are given in Table 6. Comparing different for-
mulas we see that long-wavelength limit effects may be
important for large k-values (k=700 MeV) (column b
compared to column c¢ in Table 6), although they do not
yield agreement with experiment. The well-known dis-
agreement between the non-relativistic results of (25), (26)
and experiment seems to be accommodated by including
relativistic effects due to (24). Note, that no anomalous
magnetic moment of the charmed quark needs to be
introduced [14, 197 to resolve this long standing diffi-
culty.

If we compare matrix elements of forbidden and al-
lowed M1 transitions, we also find for our model that
matrix elements with different N are smaller than those
with equal N by about one order of magnitude. This
shows that there are large cancellations in the matrix
elements of forbidden decays. In particular, the matrix
element for 2§— 18 is very sensitive to the exact location
of the node of the 2S-state, similar to some E1 transitions
mentioned above. In Fig. 4 the wave functions of ¥(2S5)
and #.(15) are shown to demonstrate this issue. For this

reason the matrix element is also sensitive to changes of
the integrand (i.e. relativistic corrections in the transition
operators), which results in a significant reduction of the
width of this forbidden transition.

In bottomonium we find that both versions (4 and B)
lead to reasonable overall agreement with leptonic decay
as well as transition data. The differences in the various
approximations turns out to be smaller here, because the
spin-independent forces are reduced by a factor 1/m?. As
expected, the relativistic corrections are smaller due to the
smaller fraction of (p/m)* ~ 6% in bottomonium.

In more detail, in bottomonium the 3S-—2P-transi-
tions are in good agreement with experiment, while the
2S— 1 P-transitions are slightly too small. The fractions
(2P—>28)/(2P—18) are in agreement with the experimental
fractions, too. The differences between various decay for-
mulas are smaller than for charmonium. We emphasize
that the 1P—1S-transitions are not affected by the exact
location of the nodes. Unfortunately, up to now the total
widths of the ¥,’s have not been measured.

Since the total decay width of y,(2P) mesons is not
known experimentally, we have given the ratios for some
decays in Table 7. Experimental errors are assumed to be
statistical. We find that all variations are congruent with
experimental data.
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Table 7. Ratios for selected decays in version A version B
bottomonium. Egperimeptgl ratios calculated decay ratio experiment | ¢ | b | ¢ |d|a | b | c|d
gg&rgzggsfgssgé“;‘;glns‘%z;‘]‘ecasl errors only. 7 BP) : T(T(25) 7)/T(T(15) 7) |50 *45 |3.01]2.6(6.7|5.1]3.1[2.655]44
x01(2P) : T(T(28) 4)/T(T(1S) ) |41 +1.7 |1.9[1.7(2.4|21(2.1|1.8(26](23
xe2(2P) : T(T(25) 7)/T(Y(1S) 7)|3.0 +14 {1.7|1.6|1.5{1.5[1.8(1.7|1.6|L6
0.2 T T T effects, than the v transition rates. Since they are better
| 77TUNG | described in the full model, we favor version A. From the
/ AN resulting E1 transition rates we conclude that also two
o oap / AN - body contributions to the current operators may be of
& / AN some relevancy.
e i ] N 1 The presented calculational scheme provides an im-
! oo / T~ proved description of hegv.y quarkonia [22]. Nevertheless,
- N // the magnitude of relativistic corrections found in this
£ A / § noncovariant approach, actually implies that a genuine
i \\ / relativistic treatment of quarkonia might be relevant. This
BN S 4 of course applies a forteriori to the light mesonic systems.
R e s 20 References
r (fm)

Fig. 4. Radial densities r R yo4(r) for y(2S) (dashed curve) and #. (1S)
(solid curve) using the parameters of the full model

5 Conclusion

For the binding of quark and antiquark we use a non-
relativistically reduced version of the OGE potential and
a confining potential assumed to be of Lorentz scalar
nature. The spin dependent terms occurring in order
(p/m)? are important to account for the various spin split-
tings in the meson mass spectra. For a systematic ap-
proach, we also include the spin independent terms and
relativistic corrections of the transition operators.

For the mass spectra, we find that the spin indepen-
dent terms and the spin dependent terms give contribu-
tions to the masses of the same order of magnitude.
Nevertheless, both versions, the full model (version A) and
a reduced version with spin independent terms neglected
(version B), yield a meson mass spectrum of similar qual-
ity. The effects of the spin independent terms in the full
model can be largely compensated for by a change of
parameters in version B.

We find that leptonic decay widths are more sensitive
to the particular potential input, due to smaller relativistic
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