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1. Introduction 

Let ~r be a sequence of integers. Suppose we have information about the distribution of 
~4 to certain moduli. How many squares can d contain? To formulate the problem 
precisely let w(n)> 0 for each integer n (positive, negative or zero) and suppose 
~,w(n) < oo. We write ~r for the sequence (w(n)), and we define 

oo 

= Z w(n 2) 
1 

We seek an upper bound for S(d).  Sieves which give answers to this problem have been 
provided by Gallagher [3] and Montgomery [7; Corollary 3.2]. These sieves concern 
much more general problems - and consequently are ill adapted for the finer questions 
discussed below. We shall prove the following simple bound. 

Theorem 1. let N be a set of P primes. Suppose that w(n) =0  for n=O or In1 >=e P. Then 

n p=l:qe~ 

where (~)  is theJacobisymbol. 

This result is motivated by the method used by Hooley [5] in his proof that the 
number of representations v(n} of n as a sum of 4 non-negative cubes, satisfies 
~'(n) ~ n 11/ls +,. Hooley's  method, when abstracted, is more complicated than 
Theorem 1, but not essentially weaker. 

Both the side conditions of the theorem are necessary in some form, for if pin for 
some fixed n > 0 and every peN, and w(n 2) = 1, w(m) = 0 for m =# n 2, then S(~r 1, while 
the right hand side of(l) is O(P- 1). The theorem will in general be weak by log P factors 
at least. As an illustration let w(n) = I for l _< n <: x and w(n) = 0 otherwise, and take N to 
be the set of primes p <  x 112. Then the PSlya-Vinogradov inequality yields 
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so that the right hand side o f ( l ) i s  O(x 1j2 logx) rather than O(Xl/2). This log factor 
could be recovered by complicating the form of the result. However one is usually 
interested in saving powers of P, rather than logP. 

One may count cubes or higher powers similarly (indeed one may bound Z w(f(n)) 
for any polynomial f ( . ) )  using power residue symbols in place of the Jacobi symbol. 
However, it seems, for example, that one can prove nothing better than 

Y, 1 ~ x  1/2 
tI3_<X 

in this way. 
The form of the second term on the right of(l) is reminiscent of that occuring in the 

linear sieve (see Iwaniec I-6]). Here we may give the coefficient of the inner sum 
explicitly; the term in question is merely 

Z Z w~n) . 

However the averaging over p and q has not yet been used successfully to improve 
bounds for S(d).  

As an application of Theorem 1 we investigate the number of consecutive square- 
free numbers below x. (I should like to thank Dr. R. Hall for suggesting this problem to 
me.) We shall prove: 

Theorem 2. let E(n) = 1 if  n is square-free and E(n) = 0 otherwise. Then 

~, E(n)E(n + 1) = Cx + O(x 7/1 l(logx) 7), 
n<x 

where 
C= H(1-2p-2). 

P 

Elementary methods yield an error term 0(x2/3+ 0 only (see Carlitz [1] for 
example). Our improvement is rather small. However, even for the much simpler 
problem of estimating the difference 

6 
Z E ( n ) - -  

n<=x 7~ 2 X '  

the bound O(x 1/2) cannot be improved without invoking the prime number theorem. 
We have made no effort at economy with the logx factors occuring in Theorem 2. 

2. Proof of Theorem 1 

Consider the expression 

Z= Zw(n) 

Each n is clearly counted with non-negative weight. Moreover if n = rn 2, then 

pe~  pe~,p~m Plm 
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since 

logm 

vim loglogm" 

Hence S >> p2S( j ) .  However, 

p, ~ p E ~ n ; p X n  

__ ~ P ~ w ( n ) - ' ~  ~_~ ~ W ( l ' l ) ( l ~ )  , 
n p:~q~9 a n r-~t 

and the theorem follows. 

3. Theorem 2 - Pre l imin a r i e s  

Since 

we have 

where 

E(n)= Z ~(J), 
J21n 

~_ E(n)E(n + 1) = E l~(j)#(k)N(x,J, k) , 
n < x  j , k  

N(x,j ,  k) = # {n<x;  jZln, k2ln+ 1}. 

We observe that N(x, j, k) = xj-  Zk- 2 + 0(1) if(j, k) = 1, and N(x,j, k) = 0 otherwise. The 
terms with jk <= y (where y will be specified later) therefore contribute 

x ~ ,u(j)p(k)(jk)-2+O(k~<= 1 ) 
jk~y j 

(j, k) = 1 

( j , k )  = 1 n > y  _ k,<-y / 

= Cx + O(xy -  1 logy) + O(y logy) .  

,(Here d(n) is the divisor function.) The  remaining values ofj,  k lie in 0(( logx)  z) 
ranges J < j  < 2J, K < k < 2K, where 

JK>> y,  J , K , ~ x  1/2 . 

Hence there exist some such, J, K for which 

#(j)#(k)N(x,j ,  k) ~ S ( logx)  2 , 
where jk > r 

N =  ~ {(j, k, u, v);J  < j <  2J, K < k < 2 K ,  j2u+ 1 =k2v< x} .  

We will choose x 1/2 < y < x, whence 

~, E(n)E(n + 1) = Cx + O(y logx) + O( N(logx)2) . (2) 
I1<x 
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It remains to bound N. We first give an elementary auxilliary bound. We 
have 

N,~ E E Z 1. 
K<k<=2K u<xJ 2 J<j<2J  

j2u ~ - 1 (modk 2) 

Since the above congruence condition has ~d(k) solutions (modk z) the 
innermost sum is ~ (1 + J K -  Z)d(k). Thus 

N ~ x j - 2 ( l + J K - 2 ) Y ' . d ( k ) , ~ , { x K j - 2 + x ( J K ) - l } l o g x  (3) 
k 

Henceforth we shall assume J > K, the alternative case being similar. Since 
JK ~ y, the bound (3) yields N ~ xy-  1/2 logx. On taking y = x 2/3 the estimate 
(2) would show that Theorem2 is true with the weaker error term 
O(xaJ3(logx)3). This is already better than the result of  Carlitz El], by an x ~ 
factor. 

For our principal bound for N, we write N as ~ N u  according to the value 
of  u, and divide the range for u into intervals U<u<=2U. We write 

N(U) = Z N, ,  
U<u<2U 

so that 

for some U, 

N ~ N(U) logx (4) 

U ~. xJ - 2. (5) 

By examining the available range for v we see that 

N , <  # {(j, k, v); kZv - l =jZu, K < k < 2 K ,  L<v<m} ,  

where 

L=Max(1,�88 M = K - 2 ( 1  + 8 j 2 U ) .  

We define w(n) to be zero unless uln, in which case 

w(mu) = # {(k, v); ulk2v - 1, m = k2v -  1, K < k < 2K, L <_ v < M}.  

Thus N, < S(~r We are now in a position to apply Theorem 1. We shall take 
to be the set of  primes p,~'u, Q < p < 2Q. Here Q, which will be independent of 

u, lies in the range 

(Iogx) 2 =< Q --<__ X, (6) 

and will be chosen optimally later. We have P,-~ Q(log Q) - 1 so that w(n) = 0 for 
Inl > e  P (and for n=0).  Hence 

N,, ,~Q-lOogx)Ew(n)+P -2 52 z ( u ( k 2 v - 1 ) ~ .  (7) 
P~'q k, v k Pq / I  

In the final sum the conditions on k, v are 

K<k<__2K, L<_v<_M, ulk2v-1,  (8) 
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In this section we deal with the first term on the right in (7), leaving the 
second term for Sect. 4. The first term contributes to N(U) a total 

~ Q - l O o g x ) 2  Z l ~ Q - l O o g x ) 2 ~ , d ( k 2 v - 1 ) .  (9) 
k , v  u l k 2 v - 1  k v 

To bound the sum over v we use the following lemma, for which see Shiu [8], 
for example. 

Lemma./et  c5 > 0 be 9iven. Then 

~_, d(n) ~ ~(q)q- 2x logx, 
n'<X 

n --  a ( T n o d q )  

uniformly for q < x  1 -~, (q, a) = 1. 

Taking 6 =  1/8, and noting, by (5), that J 2 U ~ x ,  we have 

~ d(k2v - 1) ~ K - 2 x l o g x  
ly 

for K < x  1/2-m6, whence (9) is O((QK)-lx(logx)Z). In case 
x1/E-1/16<-K<-x1/2 w e  may use the trival bound d(k2v--1),~x 1/16, which 
shows that (9) is 

Q - t ( logx)K(xK- 2)xlIa 6 ~ X5/8 

by (6). Thus the total contribution to N(U) arising from the first term on the 
right of (7) is 

x 5/8 + (QK) - lxOog x) 2 . (10) 

Let us now see what will be necessary to obtain some form of Theorem 2 
with an exponent < 2/3. We will apply (2) with y slightly less than x 2/3. Since 
J > K and JK >= y the estimate (3)will then be satisfactory unless J and K are 
both close to x ~/3. In this last case the contribution (10) will be sufficiently 
small ifQ is any positive power ofx. There remains the second term of(7). Here 
there are many terms k, v and these are very well distributed (modpq); this 
produces the key saving. 

4. Theorem 2 - Continuation of  the Proof  

We have now to estimate 

k2v -  1~ 
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say, subject to the conditions (8). We transform S as follows, (using the 
notation e(x) = exp(2rdx)). 

where 

k =- a(mgd upq) v ~. ,~(moa upql (%k,)} = Z Z e 
�9 , # \  Pq / ~=1 r<k=<2r 

�9 2 2 e 
~=X Z~-~sM \ upq 

u p q  

=(upq) -2 Z S(u, pq;7, f)O~bo, 
7, t~= 1 

(11) 

S(u, pq;7,6)= "~.q (~ (12) 
,l~,J-', k ~ q ~ ]  \ upq j '  

- y k  7 
0~= ~2 e ~ Min(K, , (13) 

K < k < = 2 K  

( )  qko= Y'. e _  - 6 v _  < M i n  J 2 U K - 2 ,  (14) 
L <--v<-M \ upq / ~pq " 

Here Ilxll denotes the distance from x to the nearest integer or integers. 
We note that u, p and q are relatively prime in pairs. Moreover we suppose 

that u=  [ I r :  is the canonical decomposition of u into prime power factors. 
Then the sum (12) factorizes as 

where 
Sx(p; c, d)Sl(q; c, d) I-I S2(r:; c, d) , 

Sl(p; c, d) = ~, e , 
.,.,=, ' , , - -Y- , ,  \ - 7 - /  

": e ( CO: + d fl'~ S2(r:; c, cO = Z 
rfJot2 fl -- 1 

and c, d are integers such that 

(e, upq) =(7, upq), (d, upq) =(6, upq). 

We shall see later that 

SI(p; c, d) ~ p ,  

]S2(r; c, d)[ < 3r U2(r, c, CO 1/2, 

and for f > 2 we shall use the trivial bound 

IS2(r:; c, COl < r: .  

(15) 

(16) 

(17) 

(18) 
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(Note that, for $2, each ~ corresponds to at most one ft.) It follows that (15) is 

"~ Q2Ud3(w)w- 1/2(W, C, d) 1/2 , 

where w is the product of those prime factors rlu for which f = 1. Moreover 
dk(.) denotes the usual generalized divisor function. Note that it would be 
possible to improve upon the trivial bound (18), but fortunately this is 
unnecessary for our purposes. 

From (11), (13) and (14) we now have 

$4. U-tQ-2d3(w)w-1/2 ~2 10•r W,  7, 6) 1/2 
and ~, 6 

Z 10r ~, 6) 1/2 

~.J2UK-Iwl f2+J2U2Q2K-2 y~. 7-1(w,~) 1/2 
=r Upq 

+ K U Q  2 E 6-1(w,6)t/2+U2Q'* E (76)-t(w,y, 6) 1/2 
l <,~< �89 t<,, 6< x U - -  = i ,  : 2 1''1 

We observe here that, for example, 

Z 7-1(w, 7) 1/2< Z d l / 2 ~ 7 - 1 ~  ~ ,d-XlZlogx~d(w) logx .  
l <=y<�89 d[w dly dlw 

Moreover d3(w)d(w ) < d6(w), whence 

S ,~ JZK-  1Q - 2d3(w ) h- {JEK- 2 U + K + UQ 2 } w - 1/2d6(w ) (logx) 2. 

In order to compute the contribution of  S to N(U) we must sum over u. Firstly 
we have 

E d3(w) < E d3(u ) , r  2. 
U < u < 2 U  U < u < 2 U  

Moreover u decomposes uniquely as u = ws, where s is 'square-full' (that is, pls 
implies p2[s) and the number of  such s < z is 0(zl/2), (see Erdfs  and Szerkeres 
[2] for example). Hence 

d 6 ( w ) w - 1 / 2 ~  ~2 d 6 ( w ) w - 1 / 2  Z 
u <u< 2 u  w <  2 u  u <ws< 2U 

w <  2 u  

U1/2(log U) 6 . 

We conclude that the total contribution to N(U) arising from the second term 
on the right of  (7) is 

~. {J2K-  1UQ- 2 + J2K-2U3/2 + KU1/2 + U3/2Qe}(logx) s 

{ x K -  IQ "-2 + x3 /2 j -1K-  2 + x l /2 j -1K  + xa/2 j -  aQa) (logx) 8, 

by (5). Comparison with (1 O) yields 

N(U) ~ x 5/s + { Q 2 x 3 / 2 j -  3 nc Q - IxK - i + x3/Ej - 1K - 2 h- X 1/2j- 1K} (logx)S. 
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We therefore take 

Q = x -  x /6 jK-  1/3 71_ (logx)Z ; 

since J <= x 1/2 the condit ion (6) is satisfied. Then, since J >= K, J K  ~ y, we have 

N(U) ~ x 5/8 + x3/2j - 3(1ogx) 12 

._}_ { x 7 / 6 j -  1 K -  2/3 + x3/2 j -  1 K -  2} (logx) s 

,~ X5/8 + X3/2y- 3/2(iogx) 12 

+ xV/6y- 5/6(10g x)8 + x3/2j -  1 K -  2(logx) 8 " 

On comparing this with (2) and (4) we see that  

E(n)E(n + 1) - Cx ~ y logx + xS/8(logx) 3 + x 3 / 2 y -  3/2(logx) 15 
n < x  

+ X7/6y- 5/600gx) i i + xa/Zj-  i K -  2(Iogx)  i 1. 

We choose y : x 7 / i l ( I o g x ) 6 ;  this makes the first and fourth terms approxi- 
mately equal. The expression above is then 

xT/i l(logx) 7 + xa/2j - i K -  2(log x)11. 

I f  we use the auxilliary bound (3) for N we see that  

E(n)E(n + 1) -- Cx ~ y  logx + x K J -  2(logx)3 + x (JK)  - l(logx) 3 
n < x  

x7/i t (logx) 7 + x K J -  2( logx)  3. 

Finally we observe that  

Min (x3/2J- 1K - 2, x K J -  2) <= ( x3/Zj-  i K - 2)3/ , (xKJ-  z) i/4 

= x 11/S(jK) - 5/4 

x 1 i/8y- 5/4 

�9 ~ X51/88 , 

and that  5~ . t  7 Thus Theorem 2 follows. ~-~ -'- Ti .  

5. Exponential Sums 

It  remains to deal with the estimates (16) and (17). We first consider $1. The 
terms with ~ = p contribute O(p) trivially. I f  ~ # p let ~ - 1 (modp). Then, on 
replacing fl by fl + ~2 we find 

Sl(p; c, d) = O(p) + Z e - 
�9 =1 p=l  

=O(p)+S2(p;c ,d)a~=l(~)e(d~f lp) .  
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Hence (16)is a consequence of(17) together with the well known bound for the 
quadratic Gauss sum, except possibly when p[d. However in the latter case 

and (16) again follows. 
Now consider (17). This is trivial if tic, r]d. Suppose tic, r,~d. Then 

= Z e  1+ 
//=1 

and (17) follows. In case r,~c, r}d we have 

S2(r; c ,  d )  = ~2  e = - 1, 

which again  yields (17). F ina l ly ,  if rXc, rXd, then the requi red  es t imate  fol lows from 
Hayes [4; eq. (4)]. This  last  result  is a consequence  of Wei l ' s  " R i e m a n n  Hypo thes i s "  
for curves over  finite fields. 
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