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While welding processes are of great importance in manufacturing, their modeling and 
control is still subject of research. The highly nonlinear, strongly coupled, and multivari- 
able nature of these processes renders the use of analytical tools practically impossible. In 
this article a novel approach is presented which employs networks of simple nonlinear 
units: a neural network. A widely used welding process, the Gas Tungsten Arc Welding is 
presented and the problem of its modeling and control is exhibited. A very brief 
introduction to neural networks is followed by presenting the experimental results for 
modeling the static and dynamic behavior of the process, as well as some practical 
recommendations regarding the use of the neural network techniques for controlling these 
processes. 
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1. Introduction 

Welding is the most frequently used method in manufac- 
turing for joining metal assemblies. The quality of a weld 
is of extreme importance, especially in the case of 
high-risk systems, like nuclear reactors or space systems. 
To ensure this quality one has to maintain a high level of 
control of the welding process itself. 

Control  for welding has traditionally referred to the 
control of individual components of the welding system. 
The control tasks are typically accomplished using linear 
feedback controllers of the single-input/single-output 
variety. Examples include the control of torch travel 
speed, control of  the welding voltage or current, and 
other  instances where a single process variable is forced 
to track a constant or varying setpoint signal. A relatively 
limited amount  of work has been carried out in studying 
and implementing schemes for controlling more global 
aspects of the arc welding processes. 

In general, any arc welding process can be viewed as a 
multiple-input/multiple-output system. The input vari- 
ables to the process are generally those parameters which 
can be controlled by the welder, such as the various 
equipment parameters (arc current, voltage, torch travel 
speed, etc.). These parameters affect the finished weld to 
a varying degree, and using the notation of Cook (1980), 
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they will be referred to as Indirect Weld Parameters 
(IWPs). At the output end of the process another set of 
parameters is defined to characterize the end result, and 
therefore the success, of the welding. Examples of such 
parameters include descriptors of the weld bead shape, 
its width and depth, the various strength measures of the 
weld, and the presence or absence of defects. These 
parameters,  which characterize the finished weld, are 
referred to as Direct Weld Parameters (DWPs). As a 
whole, the process can therefore be described as a system 
which transforms any set of applied IWPs into a corres- 
ponding set of DWPs. Generally the multivariable sys- 
tem which constitutes an arc welding process is not well 
suited to traditional linear control for the following 
reasons: 

(1) The system parameters are tightly coupled, i.e. 
each of the output parameters is strongly dependent  on a 
number of the input parameters,  and each input para- 
meter  affects a number of the output parameters as well. 

(2) The entire system is usually not well known or 
defined in terms of the mathematical formalization neces- 
sary for proper  controller design. 

(3) The process is nonlinear, i.e. each of the output 
parameters is nonlinearly related to one or more of the 
input parameters.  
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These characteristics, which are common to all arc 
welding processes, complicate the design of the overall 
multivariable arc welding controller. 

Traditionally, the individual parameters of the arc 
welding processes have been selected by human oper- 
ators. Successful welding operation has relied on the 
skills and experience of the welder, combined with 
trial-and-error approaches as necessary. By aiding or 
replacing the human welding experts with a multivariable 
controller which selects and maintains the indirect weld 
parameters at the values required to obtain a given set of 
direct weld parameters,  the overall efficiency and re- 
liability of welding can be improved. The approach 
outlined in this paper uses artificial neural networks to 
select and control the parameters of an arc welding 
process. It is used in a continuing project carried out for 
the NASA Marshall Space Flight Center,  aimed at 
improving the Gas Tungsten Arc Welding process 
(Andersen et al., 1991). This welding process is used in a 
variety of applications, including welding on the NASA 
Space Shuttle Main Engine (SSME). The artificial neural 
network approach has been compared with more conven- 
tional methods, and it has been demonstrated to be 
reliable and well suited for modeling and controlling arc 
welding, as discussed later in this paper. 

2. The gas tungsten arc welding process  

Arc welding is generally categorized into a number of 
processes, each of which is based on unique techniques 
and therefore uses its own type of equipment and 
materials. Gas tungsten arc welding (GTAW) is one of 
these processes, frequently used for precision welding. 
Unlike some other arc welding processes the electrode in 
this process is not consumable, i.e. it does not melt and 
add material to the welded joint. The arc is maintained 
between the electrode tip and the welded joint (refer to 
Fig. 1). An inert shielding gas, such as argon or helium, 
is routed around the electrode so that it covers the arc 
and the molten weld pool. This gas has two purposes: 

(1) It provides atoms to be ionized and thus form the 
arc plasma which carries the arc current. 

(2) It shields the weld pool from the oxygen in the 
atmosphere, and thus it prevents undesirable oxidation 
of the welded metal. 

The electric power source is operated as a current source 
rather than voltage source, and the welding current is 
typically on the order of 50-300A. The arc 
voltage is therefore determined by the electrical impe- 
dance of the arc, which is primarily affected by the length 
of the arc. The length of the G T A W  arc (defined as the 
distance between the electrode tip and the surface of the 
weld pool) is usually on the order of 0.030-0.100in, 
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Fig. 1. The gas tungsten arc welding process. 

with the corresponding arc voltage roughly in the range 
of 8-12 V, respectively, when argon is used for shielding. 
As a result, the arc voltage is usually set and maintained 
constant through a servo control mechanism (automatic 
voltage control - AVC) which adjusts the torch height 
and the arc length accordingly. Frequently, external 
metal is added to the molten spot under the.arc through 
the feeding of filler wire. The torch holding the elec- 
trode, the shielding gas cup, and the wire feed mechan- 
ism if one is used, are moved along the welded joint at a 
controlled travel speed, typically on the order of 5-20 in/ 
min. 

A given joint, depending on the thickness of the 
welded materials, may only require one pass to complete 
the welding, or it may require a number of passes back 
and forth along the joint until the pieces are adequately 
welded together. In the case of a multiple-pass weld the 
welded joint is usually prepared as a groove, and filler 
material is used to fill the groove, layer by layer. During 
the first pass it is usually desirable to maintain the pool 
depth just about adequate to melt through the bottom of 
the joint, in which case surface tensions suffice to prevent 
the pool from falling through the joint. This is usually 
referred to as full penetration. Full penetration may be 
used with or without backing material, which serves to 
hold the molten pool in the joint and prevent it from 
falling through. Partial penetration, on the other hand, is 
obtained when the pool depth is less than the thickness 
of the welded material. 

A number of control variables, or IWPs, are available 
to control the direct weld parameters of the G T A W  
process. These include the arc current (which may be 
constant, pulsed, or varied in other ways), arc voltage, 
torch travel speed, and wire feed rate. Additional 
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parameters are static during welding but may be selected 
before the arc is initiated, such as electrode diameter and 
tip angle, feed wire diameter and composition, etc. The 
human welder usually selects the control parameters 
based on past experience, which in turn may be based on 
trial-and-error procedures. The arc current is the primary 
variable for controlling heat input, while the arc voltage 
controls the heat to a lesser extent. This is largely 
because the current can be varied over a relatively much 
larger range than the arc voltage. 

It may appear that the number of available input 
variables gives the designer of the weld process controller 
a wide latitude in obtaining the desired set of direct weld 
parameters. In practice, however, the range of process 
input parameters is limited by the fact that many of these 
parameters need to be interrelated to maintain an 
acceptable weld. Welding current and travel speed, for 
example, are related in the sense that only a limited 
range of travel speeds is allowed for a given current 
level, assuming that other parameters of the process are 
fixed. Generally, the travel speed is increased as the 
current is increased, so as to maintain appropriate heat 
input per unit time to the weld. Either too much heat 
input or too little heat input is undesirable. Extremely 
significant variations are totally unacceptable. Therefore, 
the process controller must be aware of such limits and 
observe them as it selects the IWPs of the process. 

The relations between weld bead geometry and weld 
equipment parameters have been studied extensively by 
a number of researchers. The physical phenomena gover- 
ning some of these relationships are discussed in The 
Physics of  Welding (Lancaster, 1986), where both non- 
linearities and parameter coupling examples are illus- 
trated in various contexts. Additional information can be 
found in Connor (1987). 

3. Neural networks: mapping networks 

Recent successes in employing artificial neural network 
(ANN) models for solving various computationally dif- 
ficult problems have inspired revival of research in the 
area. Early work by McCullogh and Pitts (1943), and 
Widrow and Hoff (1960) focused largely on mathematical 
modeling while more recent research has augmented 
theoretical analysis with computer simulations and imple- 
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Fig. 2. The feedforward neural network. 

mentation demonstrations. Numerous variants of pattern 
classifiers using ANNs have been studied by Hopfield 
(1982), and Lippmann et al. (1988). Introductory texts to 
the subject may be found in Rumelhart et al. (1986), 
IEEE (1988), and Lippmann (1987). 

The most frequently used neural network architecture 
is the multilayer mapping network, pictured in Fig. 2. It 
can be proven (Kolmogorov, 1957) that this network is 
capable of approximating any nonlinear and multivari- 
able mappings. It achieves this capability through an 
incremental training process, which gradually adjusts the 
parameters, the weights of the network, to approximate 
the mapping in a least-square sense (Lippmann, 1987). 
The training process should present input/output pairs of 
examples, i.e. vectors of real numbers, of the desired 
mapping to the network (Lapedes and Farber, 1988). 
Having trained the system, entirely new input data can 
be presented to ANN, which, in turn, predicts new 
outputs based on the transfer characteristics learned 
during the training. If these new data are obtained from 
the same local region of operation of the process as 
during the training phase, data from the input/output 
relatiofls should be governed by the same underlying 
process and the ANN should perform adequately. 

Formally, the neural network model presented above 
is capable of learning arbitrary mappings of the form: 

F: R" -~ R m 

where n and m denote the dimensionality of the input 

Table 1. Neural network performances for static models in terms of standard deviation. 

Class Bead w i d t h  P e n e t r a t i o n  Reinforcement  Cross-sectional 
(%) (%) height (%) area (%) 

Training data 2.86 7.75 7.13 6.72 
New data 8.01 20.18 3.97 7.10 
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and output vectors. This feature can be utilized to 
facilitate the IWP-to-DWP mapping as follows. Experi- 
mental data can be considered as samples of the mapping 
and they can be used to train a network to approximate 
the mapping. The training algorithm reduces the map- 
ping error at the points below a certain limit. Between 
the points, the network will interpolate for the continuity 
of the-~transfer function of the individual units. The 
quality of this interpolation can naturally be increased 
through finer sampling, i.e. more data. 

4. Experimental results with mapping networks 

To examine the performance of a neural network, 
numerical data from actual GTAW experiments were 
used. The objective was to train neural networks to map 
vectors of IWPs to the corresponding DWPs. A set of 31 
distinct welds was used, each produced by a specific arc 
current, voltage, travel speed, and wire feed rate (IWPs). 
Analysis and cross-sectioning of each weld revealed the 
corresponding bead width, bead penetration, reinforce- 
ment height, and bead cross-sectional area (DWPs). The 
training of the neural network was carried out by 
teaching the network to approximate the measured IWP 
to DWP mapping. The procedure was repeated for each 
of the 31 training welds. This was continued until the 
combined error for the entire set of data reached a given 
threshold. Various network topologies were tried and 
one with two hidden layers and 18 nodes per layer was 
found to converge fastest without compromising overall 
accuracy. The stopping condition for the training process 
was set to 0.09 for the sum of squared DWP errors across 
the training data set. Once the neural network has been 
trained with the 31 welds, its performance on 11 random- 
ly selected welds out of the training set was tested. An 
additional 11 welds, not from the training set, were given 
to the network and its performance in predicting the 
DWPs from the IWPs of this new set of data was 
evaluated for comparison. The results are shown in Table 
1. Based on these results and other tests, we considered 
the trained neural network robust enough for practical 
purposes. 

5. Neural networks: dynamic networks 

The modeling of a dynamic system using adaptive 
techniques can be considered as the problem of teaching 
an adaptive system to follow arbitrary space-time 
trajectories. There have been many suggestions for 
teaching a neural network to do this. Pineda (1988) 
generalizes the backpropagation algorithm for networks 
containing recurrent feedback; thus the network becomes 
an adaptive dynamic system. Jordan (1988) extends a 

feedforward network with a feedback path, which goes 
from the output units to a group of input units, repre- 
senting past states of the system; the structure was shown 
to learn sequences. Robinson and Fallside (1988) use a 
similar structure: the output of a feedforward network is 
fed back to its input through a delay line. Pearlmutter 
(1988) derives a gradient search algorithm for a general 
continuous recurrent network which can be used to teach 
the system to follow state space trajectories. Most of 
these systems have been devised for applications in 
cognitive psychology, and, according to our knowledge, 
have rarely been used for modeling physical systems. 

In our case the following approach was used. Suppose 
that the general, nonlinear, multivariable dynamic sys- 
tem can be modeled according to the following (autore- 
gressive) equation: 

y(n) = F( x(n), . . . ,  x ( n -  k+ 1), y ( n -  1) . . . . .  y (n - l ) )  

where y(n) is the output vector of p variables of the 
system at time point n, x(n) is the input vector of q 
variables to the system at time point n, and F is a 
nonlinear mapping: 

F: gkxq+lXp __) gp 

That is to say, by knowing 

(1) the output of the system for the last l samples; 
(2) the input to the system for the last k -  1 samples; 

and 
(3) the current input x(n), 

we can compute the output of the system y(n) at time n. 
The feedforward multilayer network presented above 

may be taught to approximate F, a nonlinear, multivari- 
able mapping. The teaching can be done using the 
backpropagation learning algorithm. Our assumption is 
that if the modeling equation presented above is valid, 
and the network is able to approximate the mapping, a 
network equipped with appropriate tapped delay lines on 
its input can serve as a teachable model for a nonlinear 
multivariable dynamic system. The architecture is visual- 
ized in Fig. 3. 

As in the case of the static mapping network, there 
remains a set of 'free parameters', which should be 
determined empirically. These include: 

(1) number of layers and nodes in the network; 
(2) 'length' of the tapped delay line for input vari- 

ables; 
(3) 'length' of the tapped delay line for output vari- 

ables; 
(4) the value of the learning constant. 

In our work we determined these values by using 
experimental data from the GTAW process. 

The architecture suggested here was intended for use 
in modeling mainly the transient behavior of a system. In 
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Fig. 3. Neural network model with delay lines. 
7. Welding applications of artificial neural networks 

welding it is typical that the system has many fixed 
points, because for example, the IWPs take their values 
from a finite set, based on the possible equipment 
settings. During the actual welding, IWPs are maintained 
constant most of the time; thus the IWP to DWP 
mapping is relatively fixed. However, there can be 
sudden changes in the IWPs, which take the system along 
a particular trajectory from one setpoint to another one. 
Our task was to teach the neural network to imitate these 
transitions. 

6. Experiments with dynamic networks 

For dynamic modeling, various experiments have been 
performed (Andersen et al., 1988). Data were recorded 
from the physical process to determine how DWPs 
Change in time as IWPs change. In one case, for 
example, the arc current was stepped from 100A to 
150 A followed by another step from 150 A to 200A, and 
the effect of this on the penetration depth was measured. 
The measurements were made by stepping the current 
and observing how the weld geometry changed. Note 
that the torch travels along the weld, and the behavior of 
the process in the time-domain can be observed in spatial 
dimension. The physical process exhibited a first-order 
behavior for the first step and second-order behavior for 
the second step. These data were used to train the 
network. The result of the experiment can be seen in Fig. 
4. The network had three layers, with four units in the 
hidden layer, two input delays and three output delays. 
Further experiments are currently being conducted to 
test the feasibility of the modeling technique. 

Controllers for welding systems are currently designed as 
assemblies of subsystems (Cook, 1981). Each subsystem 
is concerned with the control of traditional equipment 
parameters, such as current and voltage. To obtain the 
desired results from the welding process, the human 
operator interactively adjusts these equipment para- 
meters until he is satisfied with the weld. Artificial neural 
networks give the welding system designer the potential 
to approach the entire problem from a more global 
viewpoint. Instead of requiring the welder to rely on 
experience and experimentation to adjust the equipment 
parameters for the desired results, the system may apply 
neural networks to aid in selecting these parameters, or, 
ideally, to control them without any intervention from 
the welder. In that case, the welder would only prescribe 
the desired properties of the weld, e.g. bead dimensions, 
and the system would select and control the equipment 
parameters throughout the weld to obtain the desired 
results. The general modeling capabilities of artificial 
neural networks appear to provide the means for the 
design of such systems. 

Having identified the arc welding process as a 
multivariable system, the questions of control methodol- 
ogy arises. All control methodologies require a formal 
description of the system to be controlled. In the case of 
arc welding such description is usually difficult to formu- 
late accurately. This is mainly due to the limited know-' 
ledge of the physics of the arc welding process, and also 
because the process is frequently influenced by factors 
that are not taken into account or known by the control 
system designer. 

Controlling a multivariable system such as the GTAW 
process is not a trivial task without an adequate model. 
In broad terms, weld process models are either derived 
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from the physics of heat transfer or they are constructed 
from empirical data. The models derived from heat 
transfer physics frequently assume that the arc can be 
modeled as a heat source of a given form (a point source, 
a disk-shaped source of heat, etc.) and then the three- 
dimensional heat equation is applied to calculate the 
temperatures at various points in the workpiece. Because 
of the numerous assumptions and simplifications neces- 
sary to derive the analytical models, these models are 
usually fairly inaccurate. On the other hand they offer 
some insight into the mechanisms of the weld process 
and may illustrate qualitatively how some of the indi- 
vidual process inputs and outputs are related. 

Contrasted against the physics-based models are the 
empirically derived models. These models may simply be 
a set of equations relating the process outputs to the 
process inputs, and derived by obtaining a best fit of  
experimental data to the equation form. In such extreme 
cases the models are derived without any consideration 
to the underlying physics of the process. A number of 
weld process models can be placed between the two 
extremes of purely physics-derived and purely empirical 
models. Frequently,  physics-based models are derived 
using the necessary approximations and then various 
empirical constants and other unspecified variables are 
tuned until the model adequately agrees with experi- 
mental welding data. 

There are various roles for models in a generic weld 
process controller. Firstly, a model can be used in 
defining the initial equipment parameters of the process. 
The welder specifies the desired DWPs, such as weld 
bead width, penetration, etc=, and the model can be used 
t o  arrive at suitable IWPs, such as welding current, travel 
speed, etc. This is illustrated in Fig. 5, where an artificial 
neural network serves to select equipment parameters 
required to obtain the desired bead geometry. 

Secondly, a model can be implemented in parallel with 
the actual process and provide calculations for DWPs 
that cannot be measured directly in real-time. Thus, a 
weld model can provide the controller at any time with 
an estimate of the weld bead penetration, although it 
m a y  not be measurable in real-time. The real-time 
application of neural nets for welding control is shown in 
Fig. 6. A traditional proportional-plus-integral (PI) con- 
troller is used in this case, and it provides the controller 
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Fig. 5. An artificial neural network used as a weld parameters 
selector. 
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Fig. 6. Artificial neural networks used in a real-time weld 
controller. 

neural network with scaled DWP values which are 
transformed to the appropriate indirect weld parameters.  
N~)te that if the controller network approximates the 
inverse of the plant, then in steady state the output of the 
P1 equals the expected output of the plant. It should also 
be noted that the multivariable PI controller does not 
have to take cross-couplings into account, as decoupling 
o f  the IWPs from the DWPs takes place in the controller 
neural network. 

8. Evaluation 

When compared to other modeling methodologies ANNs 
have certain drawbacks as well as advantages. For the 
drawbacks the most notable one is the lack of direct 
relation to the physics of the process. Relating the 
qualitative effects of the network structure or parameters 
to the process parameters is usually impossible. On the 
other hand most physical models resort to substantial 
simplifications of the process and therefore trade accura- 
cy for comprehensibility. The advantages of ANN-based 
models include relative accuracy and generality. If the 
training da ta  for a neural network are general enough, 
spanning the entire range of process parameters,  the 
resulting model will capture the complexities of the 
process, including nonlinearities and parameter  cross- 
couplings, over the same ranges. Model development is 
much simpler than for most other models. Instead of 
theoretical analysis and development for a new model 
the neural network tailors itself to the training data. The 
network can be refined at any time with the addition of 
new training data. Finally, the neural network can 
calculate its results relatively quickly, as the input data 
are only propagated once through the network in the 
application mode. 

9. Conclusions 

Novel methods for the modeling and control of welding 
processes, based on artificial neural network techniques, 
have been presented. Due to their learning and self- 



Methods for  the modeling and control o f  welding processes 235 

tuning capabilities, neural nets are excellent tools for 
modeling and controlling processes which are not readily 
analyzed and quantified, and thus not well suited for 
traditional methods.  Specific tests and simulations have 
shown neural networks to yield worst-case errors in weld 
paramete r  predictions on the order of 20% and typical 
errors are well within 10%. 
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