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Abstract. Let K be a d-dimensional star body (with respect to the origin o). It is known that the 
( d -  1)-dimensional volume of the intersections of K with the hyperplanes through o does not 
uniquely determine K. Uniqueness can only be achieved under additional assumptions, such as central 
symmetry. Here it is pointed out that if one uses, instead of intersections by hyperplanes, intersections 
by half-planes that contain o on the boundary, then, without any additional assumptions, the volume of 
these intersections determines K uniquely. This assertion, and more general results of this kind, 
together with stability estimates, are obtained from uniqueness results and estimates concerning a 
particular spherical integral transformation. 

1. Introduction 

Let E d denote the euclidean d-dimensional space. It is always assumed that 
d ~> 2. The origin of E a will be denoted by o, and the volume (Lebesgue measure) 
in E a by yd. We let ~a denote the volume, and wd the surface area of a d- 
dimensional unit ball. A nonempty compact subset K of E d is called a star body if 
it contains for every p c K the half-open line segment [o,p) in its interior. S a-1 
denotes the unit sphere in E ~ (centered at o), and for any u ~ S a-1 we let u • 
denote the (d - 1)-dimensional linear subspace of E ~ that is orthogonal to u. It is 
well-known that there are star bodies K, L such that for all u E S d-1 

vd - i (Kn  u • : Vd_,(Ln u • (1) 
but K ~ L. For example, this happens already for d = 2 if K is a circular disc and 
L a non-circular equichordal set of appropriate size. On the other hand, it also is 
well-known that for centrally symmetric star bodies (1) does imply K = L. For 
references regarding these matters see the books [2] or [4]. 

In the present article we consider intersections of star bodies with half-planes 
(i.e. half-hyperplanes) of the form 

H ( . , w )  = {x:  x u 1 ,  x .  w1>O}, 

where u E S a-l ,  w E S a-1 r~ u • and the dot indicates the inner product. The 
intersections K n H(u, w) will be called the half-sections of K. As a special case of 
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our results it will follow that, without any symmetry assumptions on the given 
bodies, it can be concluded that K = L  if for all such half-sections 

(K n I-l(u, w) ) - (L n I4(u, w) ). 
The primary subject of our work, however, is a certain spherical integral 

transformation, particularly its injectivity, stability, and geometric significance. 
Such transformations have been considered for d = 3 by BACKUS [1] in connection 
with a problem of geophysics. Backus pointed out that although a sufficiently 
smooth function on the unit sphere is not uniquely determined by its integrals over 
great circles (i.e., by its spherical Radon transform), it is uniquely determined by 
integrals over great semicircles. Injectivity results for the spherical Radon 
transformation and the corresponding transformation, where integrals are extended 
over hemispheres, have been known for some time and various geometric con- 
sequences have been deduced (see GARDNER [2] for an exposition and references 
regarding this matter). However, the geometric relevance of half-sections has 
apparently been overlooked. 

In the following section we consider, for all d ~> 2, the transformation suggested 
by the work of Backus and prove our stability results. In Section 3 several 
geometric implications of the results obtained in Section 2 are presented. 

2. T h e  In tegra l  T r a n s f o r m a t i o n  

For any u C S d-1 let S(u) denote the ( d -  2)-dimensional unit sphere 
S d-1 N u • Furthermore if w _L u, or equivalently, w E S(u), define S(u, w) as 
the (d - 2)-dimensional hemisphere S d-1 fh H(u, w). Hence, 

s(u,w) = { z :  z e s a-1  , z - u  : o ,  z .  w > O } .  

If F is a continuous function on S d-l, and if u and w are as just described, we 
define a function F~(u, w) by 

F~(u, w) = [ F(z)&ru(Z), 
d s(u,w) 

where cru(z) denotes the surface area differential on S(u) at z. Thus, F ~ is a 
function on the set 

B d = {(u,w) : u,w E S d-1 , w • u}. 

Instead of writing F ~ it will sometimes be more convenient to write ~ F ,  and to 
consider ~ as a transformation that maps the set of continuous functions on S a-1 
into the set of functions on B d. If  d = 3 the function F~(u, w) is the integral of F 
over the great semicircle determined by u and w. If d = 2 we let F~(u, w) = F(w). 

The transformation ~ is closely related to two other spherical integral 
transformations, namely the spherical Radon transformation ~ ,  defined by 

F~(u) = [ V(z)dcru(z), 
J S(u) 

and the 'hemispherical transformation' 3", defined by 

= [ d r, F~-(u) 
J s+(u) 
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where S+(u) denotes the (d - 1)-dimensional hemisphere {z : z E S a-1 , z" u>~0}, 
and dcr indicates the surface area differential on S+(u). The transformation ~ can 
be expressed in terms of Y- by 

V~(u, w) = (F A S(u))~-(w), (2) 

where F/~ S(u) signifies the restriction of F to S(u) and J -  refers to the 
hemispherical transformation on the ( d -  2)-dimensional sphere S(u). We also 
note that evidently for all (u, w) E B a 

V~(u, w) + F~(u, -w)  = r~(u). (3) 

The problem is now to estimate the deviation between two functions F and G on 
S a-1 in terms of the deviation between the functions N F  and NG. As deviation 
measure for the relevant functions we use the pertinent L z-norms. The following 
notation will be used: 

If O is a function on S d-l,  let 

]IOI]s~_l _- I[O(u)liuEs~_l = ~, O(u)2da(u) ; 

if  �9 is a function on S(u), let 

= = r  , II lls(u) II (w)llw s(.) (~ 

and if ,It is a function on B d, let 

"~"Bd = "~(U' W)"(U'W)E"d (IS IS(u) 
= ~-1 ~(u,  w)Zdcru(w)dcr(u)) 1/2. 

We obviously have 

II ll.  = II II (u, w) llw s(u)Ilu s-. 
It is clear that estimates of the desired kind will depend on the smoothness of 

the functions F and G. As a measure of smoothness of a function O on S ~-1 we use 
the gradient ~7oO with S a-1 as underlying space. It can be defined by 

(VoO)(u) = (VO(xllxl))x=u, 
where u E S ~-1 and V is the gradient operator (O/Oxl,..., O/Oxa). Similarly one 
defines the gradient for functions on S(u). The notation IiVoOlI is used to indicate 
the L2-norm of the euclidean norm of ~7oO. 

We now can prove the following theorem. 

Theorem 1. If  F and G are two continuous functions on S d-1 and ~ F  = ~G, 
then F = G. 

Furthermore, let an e E [0, 1] be given and assume that F and G are twice 
continuously differentiable and that C is a constant such that 

IlVoglls~_, <. c, IlVoGllsa_l <~ c, (4) 
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and for all u E S d-1 

IlVo(F/x S(u))IIs(u)~< C, 

Then the condition 

implies 

IlVo(G/X S(u))II~(.> ~ c. (5) 

I[~F - ~GIIB~ ~< e (6) 

IIF - GIIsd-~ <~ ~]d(C) e2/(d+l), (7) 

where rlcl( C ) depends on C and d only. 

It would be possible to explicitly determine a suitable rla(C ). This will become 
evident from the proof, but will not be done here. The proof depends on the 
following lemma concerning the transformations ~R and Y .  A proof of this lemma 
can be found [4, Propositions 3.4.11, 3.4.12, and Theorem 3.4.14]. (Regarding 
proofs of the first statement of this lemma see also the older work cited in [4]). If F 
is a function on S d-1 it will be convenient to define functions F+ and F_ by 

1 1 
F+(u) = ~ (F(u) + F(-u) ) ,  F_(u) = ~ (F(u) - F(-u) ) .  

Lemma.  If  F and G are two continuous functions on S d-l, then the condition 
~ F  = ~ G  implies F+ = G+, and the condition J F  = ~--G implies F_ = G_. 

Furthermore, if  F and G are twice continuously differentiable and e >~ 0 the 
following two statements are valid. 

(a ) / fn>~3 and I [ ~ F  - ~Gl[so-~ <~e, then 

.~ 2 liE+ - a+ l l s . - i  -~a.(llVoFlls.-, + IlVoalls2.-~ + bnE2) (n-2)/2nc2/n. 

(b)  I f  n>~2 and I I J F  - f allsd-~ ~ ,  then 

2 [IVoal121)n/2(n+2)e2/(n+2). 
I I F -  - G-IIs. , ~c,,(llVoVlls:-, + 

The coefficients an, bn, and cn depend on n only (and can be explicitly determined). 

Proof of  Theorem 1. The first part of Theorem 1 follows immediately from (2), 
(3), and the first statement in the above lemma. 

Let u E S d-l.  If part (b) of the preceding lemma is applied in the case 
n = d - 1 with S(u) serving as S ~-1, we obtain, observing also (5), 

l iE- /X S(u) - G_/x S(u)lls(u) <-Cd-1(2C2) (d-1)/2(d+l)~2/(d+l)" (8) 

Since for any continuous function O on S d-1 we have 

Isd_l lS(u) O(w)d~ru(W)dcr(U) = Wd-l lxd_, O(v)dcr(v) 
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(see, for example, [4, Lemma 1.3.3]) it follows from (8) that 

IIF- 2 Is~ - G_]lsu_l = (F_(v) - G_(v))2&r(v) 

~d-1 S d-1 (u) 

-- ~d-ll Is d-~ tiE- AS(u) - G_ A S(.)lls2(~d~(u) 

~C2 1 r (2C2)(d-1)/(d+l)ea/(d+l). 
- COd_ 1 

Hence, there is a gd(C),  depending on d and C only, such that 

[IF_ - G_ I1~' ~gd(C) r (9) 

To estimate [ I F + -  G+[[ we note that (3) shows that for any choice of  
Wu ~ S(u) 

]]~g - ~G][s~_1 = ][F~(u, w,)  + F ~ ( u , - W u )  - G~(u, Wu) - G~(u,-wu)][u~Sd-1. 

Noting that on the right hand side the expression within the norm sign does not 
depend on Wu and using (6) we can infer that 

tl~tg - ~Gllsd_~ = 

- , ~ _ ~  II IIF~( u, w) - a~(u, w) + F ~ ( u , - w )  - G~(u, ~ W ) I~w~S~u~ 

~< ~_1(11  IlF~(u, w) - a~(u,w)llw~siulllu~S~_, 

+ II IIF~(., -w)  - G~(u, -w)Ilw~Siu)Ilu~s~-l) 
2e ~ < - -  ~v/~_~ 

If this is combined with (4) and part (a) of the above lemma, letting n = d, we 
obtain 

iif+_G+lls~_,<~a,,(2C 2 4d\(a-2)/2d( 2e ,]2/d 
Since e C [0, 1] this shows that 

IIF+ - G+ lisa-, <<. hd( C) e2/d ~ hd( C) e2/(d+l), (10) 
where hd(C) depends on d and C only. Combining (9) and (10) we find 

l i E -  alls.-, < liE+ - a+lls~-, + liE- - a-IIs.,-1 < (gd(C) + hd(C))e 2/d+l, 

which obviously implies (7). 
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3. Geometric Consequences 

If M is a star body in E d let PM denote the radial function of M. This means that 
pu(u) signifies for any u E S a-1 the length of the line segment M n {Tu : T~>0}. 
Our geometric applications concern the radial power integrals I d-1 of the half- 
sections M N H(u, w). If A is a real number and (u, w) E B a, then these functionals 
are defined by 

I~ - ' (M NH(u ,w))  = Is rM(U)dCru(Z)" 
(u,w) 

In particular, if A : d - 1, then 

d - 1  1 I~_I (MNH(u ,w) )  = Vd_l(MNH(u,w)) ,  
d - 1  

where Vd-a denotes again the volume in E d-1. In the case when A = 1 then 
2 td-1 t ~  N H(u, w)) is the average radial length of M n H(u, w). 

0jd_ 1 a l  k "*~ 

Theorem 1, together with results proved in [3] and [4], can now be used to 
obtain the following statement. Here, convex bodies in E a are defined as nonempty 
compact convex subsets of E d. The closed unit ball in E a centered at o will be 
denoted by Qd. 

T he o r e m 2. l f  K and L are two star bodies in E a and if for  some A ~ 0 and all 
(u, w) ~ B d 

I d- '  (K n H(u, w)) ---- I~ -1 (L N U(u, w)), 

then 
K-~- L. 

Furthermore, let K and L be two convex bodies in E d, and assume that there 
are numbers r and R such that 0 < r < R, rQ d c K C RQ d, and rQ d c L C RQ d. 
I f  for  some e E [13, 1] and ~ 7[: 0 

III~-I(K n H(u, w) ) - Id-I (L N H(u, w)) IlBa ~<e, 

then 

and 

[IPK - PLIIs~-~ ~ ~d(~,R, r)E z/(d+~) (11) 

6(K, L) <~ 7d( )~, R, r)e 4/(d+lf , (12) 

denotes the Hausdorff distance, and both /3d(/~,R,r) and "yd(A,R,r) where 
depend solely on d, )h R and r. 

Proof The first part of this theorem is obtained from the first part of Theorem 
1. Indeed, letting F(u) = p~x(u), G(u) = p~(u) we have 

F ~ ( u , w ) = - l ~ - l ( K n H ( u , w ) ) ,  G ~ ( u , w ) = Z ~ - l ( L N H ( u , w ) ) ,  (13) 

and it follows from Theorem 1 that p~ = p~. Since A r 0 this implies pK = PL 
and therefore K = L. Concerning the second part we apply the second part of 
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Theorem 1 again with F = pK and G = PL and assume that these functions are 
twice continuously differentiable. Observing (13) we find that under the 
assumptions (4) and (5) 

IIp  - p211 < wd(c)  2/(d+l). (14) 

It is shown in [3, formula (52)] and in [4, formula (5.6.9)] that for any convex body 
M in E n with r Q " c  M C RQ ~ and twice continuously differentiable radial 
function pM we have 

IIVop~ll < x/(n - 1)wd IA] max{rA+l R;~+I}. 
r 

If this inequality is applied to the radial functions of K and L it follows that there is 
a ka(A, r,R) such that 

IlVop lls  , <~kd(A,r,R), IlVop llsd-1 <~kd(A,r,R). 

Also, it is obvious that for any u E S  a-1 we have (rQ ~ ) N u z C K n u z C  
c (RQ a) n w L and (rQ ~) n u • C L n u z C (RQ d) n u • Thus, letting n = d - 1, 
a n d M = K n u  •  •  

IIVo(p  A S(u))ils( ) <kd-l(A, r,R),  IlVo(p2 A S(u))lls(,) r,R). 

Hence, (4) and (5) are satisfied with C = max{kd_l (A,r ,R) ,ka(A,r ,R)} ,  and it 
follows from (14) that liP) - p211 <pd(A, r,R)e 2/(a+~). Since it is easy to show (see 
[3, Lemma 3], or [4, Lemma 2.3.2]) that 

IIPK PLIIs~-, ~<-~max{rl -a ,  Rl-a}llP~ x - - p lls -  

(11) follows. Finally, (12) is a consequence of (11) since it can been shown (see 
the preceding references) that 

~(K, L) <~dR2r -(d+3)/(d+l) IlPK -- PLII 2/(d+l), 

with #d depending on d only. 
If the differentiability assumptions on PK andpL are not satisfied one can use 

well known approximation theorems to deduce the same inequalities in full 
generality (see, for example, the proof of Theorem 3 in [3], or of Theorem 5.6.3 in 
[4]). 

In the special cases A = d - 1 and ), = 1 one immediately obtains from the 
first part of this theorem the following result. 

Corollary 1. Let K and L be two star bodies in E d. I f  for  all (u, w) E B d 

12d_ 1 (K n n(u,  w) ) = Yd-1 ( t  n n(u,  w) ), 

then, K = L. The same conclusion is valid if the respective average radial lengths 
of  the corresponding half-sections of  K and L are equal. 

Letting L be a ball in E a one obtains the following result. 
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Corollary 2. Let K be a star body in E d. I f  for  some c > O, A ~ O, and all 
(u, w) B 

I d-1 ( g  1") n(lg, W)) = c, 

then K is ball. In particular, K is a ball i f  the volume or the average radial length 
of  all half-sections is constant. 

If obviously would be possible to use the second part of Theorem 2 to prove 
stability versions of these corollaries in the case when the star bodies are convex. 

We finally note that the characterization of balls in terms of the volume of  the 
half-sections can also be deduced from two well-known geometric results (cf. [4, 
Section 5.6]) as follows: If for fixed u the half-sections K fq H(u, w) have constant 
(d - 1)-dimensional volume, then K A u • and therefore K itself, are known to be 
centrally symmetric. Moreover, since the half-sections K fq H(u, v) have constant 
volume, the same is true for the total sections K A u • But it is also known that 
symmetric bodies with this property are balls. 
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