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Abstract 

In  this note the converses of recent fixed-point theorems due to KANNA~ 
and CHA~ERJEA are obtained. An example is constructed to show that  
a metric space having the fixed-point property for homeomorphisms need 
not  be metrically topologically complete. An example of COW,CELL is formul- 
ated in a more general perspective. 

w 1. Introduction 

II~r [5] showed that  a metric space is complete if and only if 
any contraction on closed subsets thereof has a fixed-point. In this 
context, it is easily seen from an example due to CON~ELL ([3], 
p. 978, Example 3) that  it is not however possible to conclude that  
a metric space is complete if any contraction on it has a fixed-point. 
In fact, the fixed-point property for even continuous maps does not 
insure the completeness of the metric space. Besides t t v ' s  [5], there 
are results converse to the contraction mapping principle. But  
mostly these assert the existence of complete metric topologies 
such that  a class of mappings of an abstract set into itself with 
fixed-points consists of  contractions (see e. g. [1]). Theorems t and 2 
of Section 2 of this note on the other hand have in their conclusions 
the completeness of the metric space under a hypothesis that  each 
member of a class of mappings with constraints on transformation 
of distance has fixed or periodic points. Incidentally it subsumes 
converses of recent results ([2], [6]) in the form of fixed-point theo- 
rems. Theorem 1 is independent of H c ' s  result, mentioned above. 

The author thanks the referee for drawing his attention to the 
note of H v  [5]. 

The connection between metric-topological completeness of a 
metric space (i. e. the existence of a metric whose topology is the 
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same as that  of the given metric but  under which the space is 
complete) and fixed-point property does not seem to have been 
studied. We observe in Section 3, that  fixed-point property for 
homeomorphisms neither implies nor is implied by topological 
completeness. 

Theorem 3, in Section 4, is an a t tempt  to place CONN~LL'S 
example mentioned at the outset in a general perspective. 

w 2. Completeness and Fixed-Points 

Theorem 1. A metric space (X,d) in which every mapping T of X 
into itself, satisfying the conditions: 
(i) d(T  (x), T (y)) <~ ~ max (d(x, T(x)), d(y, T (y))}, x, y ~ X,  for 

a fixed ~ > 0 ;  
(ii) T (X) is countable; 
has a fixed-point, is complete. 

Proof: I f  possible, let A---(xn} be a non-convergent Cauchy 
sequence where xn are distinct. For any x ~A, d(x, A) ~ O. (xn} being 
Cauchy, there exists a least positive integer N (x) such that  

d(xm, xn) < ~d(x, A) < ~d(x, x~), l : 1, 2 , . . .  ;V m, n >~N (x). 

In  particular 

d(xm,xN(x)) < ~d(x,x~), l =  l, 2 , . . . ;  Vm ~>N(x). (1) 

By a similar reasoning there exists a least positive integer 
n ' =  n' (n) > n such that  

d(xm, Xn') < 2d(xn,xn,), m>~n'. (2) 

I f  T : X - > X  is defined as 

T (x) = ~xN(~), ~A, x 

(Xn,, X(= Xn) cA, 

it is clear that  T has no fixed-points since xn .#xn ,  n~--1,2, . . . .  
On the other hand, T satisfies conditions (i), (ii) of the theorem. 
(ii) being obvious from the definition of T, (i) is verified by writing 
T (x) = xn, T (y) = xm, and noting that  

{ 4d(y ,A- - {y} ) ,  n / > m ,  
d(xm,xn) < 2d(x ,A- -{x} ) ,  n < m,  

as is easily seen by using (1) and (2). This contradicts the hypothesis 
of the theorem and thereby establishes the same. 
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Remarks: KA~NA~ [6] and CHATT~;IEA [2] have respectively 
shown that  if (X,d) is a complete metric space and T : X + X  is 
a mapping satisfying the condition 

either (i') d(T  (x), T (y)) <<. 2 [d(x, T (x)) q- d(y, T (y))], x, y e X  
for a fixed 4, 0 < 2 < �89 

or (i") d(T(x ) ,T (y ) )<~2[d(x ,T (y ) )+d(y ,T (x ) ) ] , x ,  y e X  
for a fixed 4, 0 < 2 < �89 

then T has a fixed-point. (i') being weaker than (i) in Theorem l, 
the class of mappings satisfying (i), (ii) can be replaced by the class 
of mappings satisfying (i'), (ii). In  fact ~ in (i') can be any positive 
number and not necessarily less than 2-. From the proof of the 
theorem it is clear that  (i) can be replaced, in the first instance, by 

d(T  (x), T (y)) <. ). max (d(x, T (y)), d(y, T (x))}, 
x, y e X, for a fixed 2 > 0, 

and thereafter by (i") which is weaker than this condition. To sum- 
marize, the converses of the results of KAN~CA~ [6] and C~TT~RZEX 
[2] hold even in stronger forms. 

FLnally, once it is noted tha t  the mapping T constructed in the 
proof of theorem i has no periodic point (i. e. for no x e X  does 
there exist a positive integer K such tha t  TK(x)-~x) and tha t  
(i) can be replaced by a more stringent condition, the t ru th  of the 
following theorem is clear. 

Theorem 2. I f  (X ,  d) is a metric space in which every mapping 
satisfying 

either (ia) d(T  (x), T (y)) <~ ~ max (i~fd(x, T g (x)), infd(y, TK (y))}, 
x, y e X ,  

or (ib) d(T  (x), T (y)) < 2 max {infd(x, T K (y)), i~d (y ,  T K (x))}, 
K x, y e X ,  

for a fixed 2 > O, together with (ii) of Theorem 1 has a periodic point, 
then the space is complete. 

w 3. Topological Completeness 

We point out in this section that  a metric space need not be metric- 
ally topologically complete even i f  every homeomorphism has a fixed- 
point. We begin with a general observation: if A and B are two 
separated subsets of a topological space such that  A is a non-trivial 
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connected set having fixed-point property for homeomorphisms and 
B is a totally disconnected set then A u B in the relative topology 
has fixed-point property for homeomorphisms. For, let f be any 
homeomorphism of A u B  into itself; since f ( A ) u f ( B ) ~ _ A u B  
where f (A)  is connected and A, B are separated, f (A)  h~s to be 
contained in A or B. But  B is totally disconnected so tha t  f (A)  _A.  
Thus by assumption f has a fixed-point. 

The following example proves the assertion made in the 
beginning of this section. Let  now A be the interval [0, i] and B 
be the set {x]x rational and >~2}w{xlx irrational and < - - 1 } .  
Then A u B in the usual topology cannot be G~ in its completion. 
For, otherwise {x Ix rational and /> 2} would be G~ in [2,~) contra- 
dicting tha t  [2, ~ )  is of the second category in itself. Since metrically 
topologically complete spaces are precisely absolutely Go spaces 
(see [7], p. 207, K ((a) to (c)), A u B cannot be metrically topo- 
logically complete. (Incidentally A u B is not  an absolutely Fa 
space too, since {x]x irrational, x < - - l }  is not  ~'a in (---~,1].) 
That  completeness does not  insure the fixed-point property for 
homeomorphisms is readily seen by considering the map x->x+ 2 
on the real line. 

w 4. A Fixed-Point Theorem 

Theorem 3. Let X be a topological space having fixed-point 
property for continuous functions and Y be a densely ordered, order 
complete, chain with its order topology which is bounded below by yo. 
Let Xi  ~_ X,  M ~_ X • Y and the map a: X-> Y be such that 

(i) M-~  U (x}x[yo,a(x)]w(X--X1)•  
xaX1 

(ii) {x} • (y0,a (x)] is open in the topology of M relative to that 
of X x Y .  

Then M has fixed-point property .for continuous maps. 

Remarks: (i) Theorem 3 includes CON~ELL'S example mentioned 
earlier in the assertion tha t  the (metrically incomplete but  metrically 
topologically complete) space of his example has the fixed-point 
property for continuous maps. (The space considered by CO,NELL 
is G6 in its completion and hence by a theorem of HAVSDO~FF [4] 
is topologically complete.) In  fact to obtain CowbeLL's example we 

1] _ R ,  X1--  { ,~,~,...}, a(x) = 1 for each x~X1. choose X =  Y---- [0, ~ --  I 1 1 
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(ii) From [7], p. 58, I (d) it follows tha t  Y is precisely a chain 
which is connected in the order topology. 

(iii) Y can be different structurally from a real interval (bounded 
below), for example the product of [0, 1] with itself, ordered lexieo- 
graphically ([7], p. 164, J). 

Proof: I f  f:  M->M is continuous, let f l  be its restriction to 
X • {Yo}. Since X is homeomorphic to X • {y0}, if pl: (x, y) ~ (x, y0), 
Pi o f  1 has a fixed-point (xo,y0}. From the definition of pl and f l  
it follows tha t  f(xo,yo)= (xo,zo). I f  xoeX- -X1 ,  then by the defini- 
tion of M, zo=y0 so that  (Xo,Zo) is a fixed-point of f. I f  xoeX1 
and z0 = y0 again f has a fixed-point. 

I f  possible suppose zo@yo. Then z0 >yo.  Let S be the set 
{y e Y If(x0, y} = (Xo, z}, z > y}. Since x0 eX1, {xo} • [y0, a (x0)] is a sub- 
set of M. So S is a bounded non-void subset of Y. As Y is order- 
complete, s u p s  = s for some s e [yo, a (x0)]. 

The set S with the order 4 is a net and it converges to s, for 
any neighbourhood o fs  contains some interval (a, b) with a < s < b. 
I f  no x of S lies in (a, b) then each element of S is less than a or 
greater than  b. The latter possibility is ruled out as x 4 s, for each 
xeS.  The former possibility, too is ruled out, as s u p S = s ,  so tha t  
there exists at  least one 81 aS, a < sl <~ s for any a < s, a eS. 

So the net (f(xo,y))uez converges to f(xo,s), as f is continuous. 
From the definition of S it follows tha t  f(xo, y) = (x0, z}, z a Y, for 
each yeS.  So f(xo,S)= (x0,t) for some te  Y, by the continuity o f f  
and the X-projection. 

I f  t < s, then as the ordering is dense there exists t' such tha t  
t < t ' <  s. Because the net S converges to s, S lies eventually in 
(t',a(xo)]. Further (f(xo,y))ues ties eventually in the interval 
{Xo}• (This follows from the continuity o f f  and the fact 
tha t  {x}• is open in M, for any a, ba[yo,a(x)].) Thus 
f (xo ,y)= (xo,y'} with y0 < y '  < t ' .  But  this contradicts tha t  y eSl 
So t >~s. 

I f  t > s  then the interval T =  (s, tl) is a net with the order 
defined as x~y if and only if y ~<x where s ~ t l  ~ t .  Clearly as the 
ordering is dense, T converges to s. Hence ((Xo,y))yeT converges 
to (xo, s) and (f(xo, y})u e T converges to f(xo, s), f being continuous. 

Now {xo} • (yo,tO is a neighbourhood of the point (xo,s) while 
(xo}• is a neighbourhood of (x0,t}. Since (f(xo,y})yeT 
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converges to (x0,t} this net  lies eventua l ly  in {xo} • (tl,a(xo)). So 
f(xo, y> = (Xo, w (y)} wi th  w (y) e(tl ,  a (x0)), af ter  some stage for y e T. 
B u t  s < y < t l  and w ( y ) > t l .  This means tha t  y ( > s = - s u p S ) e S ,  
a contradict ion.  Hence  t = s  and (Xo,S) is a fixed point  o f f .  

The p roof  is complete.  
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