Completeness and Fixed-Points

By

P. V. Subrahmanyam, Madras

(Received 17 January 1974)

Abstract

In this note the converses of recent fixed-point theorems due to KANNAN and CHATTERJEA are obtained. An example is constructed to show that a metric space having the fixed-point property for homeomorphisms need not be metrically topologically complete. An example of CONNELL is formulated in a more general perspective.

§ 1. Introduction

Hu [5] showed that a metric space is complete if and only if any contraction on closed subsets thereof has a fixed-point. In this context, it is easily seen from an example due to CONNELL ([3], p. 978, Example 3) that it is not however possible to conclude that a metric space is complete if any contraction on it has a fixed-point. In fact, the fixed-point property for even continuous maps does not insure the completeness of the metric space. Besides Hu's [5], there are results converse to the contraction mapping principle. But mostly these assert the existence of complete metric topologies such that a class of mappings of an abstract set into itself with fixed-points consists of contractions (see e. g. [1]). Theorems 1 and 2 of Section 2 of this note on the other hand have in their conclusions the completeness of the metric space under a hypothesis that each member of a class of mappings with constraints on transformation of distance has fixed or periodic points. Incidentally it subsumes converses of recent results ([2], [6]) in the form of fixed-point theorems. Theorem 1 is independent of Hu's result, mentioned above.

The author thanks the referee for drawing his attention to the note of Hu [5].

The connection between metric-topological completeness of a metric space (i. e. the existence of a metric whose topology is the same as that of the given metric but under which the space is complete) and fixed-point property does not seem to have been studied. We observe in Section 3, that fixed-point property for homeomorphisms neither implies nor is implied by topological completeness.

Theorem 3, in Section 4, is an attempt to place CONNELL's example mentioned at the outset in a general perspective.

§ 2. Completeness and Fixed-Points

Theorem 1. A metric space (X,d) in which every mapping T of X into itself, satisfying the conditions:

- (i) $d(T(x), T(y)) \leq \lambda \max \{ d(x, T(x)), d(y, T(y)) \}, x, y \in X, for a fixed <math>\lambda > 0;$
- (ii) T(X) is countable;

has a fixed-point, is complete.

Proof: If possible, let $A = \{x_n\}$ be a non-convergent Cauchy sequence where x_n are distinct. For any $x \notin A$, d(x,A) > 0. $\{x_n\}$ being Cauchy, there exists a least positive integer N(x) such that

$$d(x_m, x_n) < \lambda d(x, A) \leq \lambda d(x, x_l), \ l = 1, 2, \ldots; \forall m, n \geq N(x).$$

In particular

$$d(x_m, x_N(x)) < \lambda d(x, x_l), \ l = 1, 2, \ldots; \ \forall \ m \ge N(x).$$

$$(1)$$

By a similar reasoning there exists a least positive integer n' = n'(n) > n such that

$$d(x_m, x_{n'}) < \lambda d(x_n, x_{n'}), \quad m \ge n'.$$
(2)

If $T: X \to X$ is defined as

$$T(x) = \begin{cases} x_{N(x)}, & x \notin A, \\ x_{n'}, & x (=x_n) \in A, \end{cases}$$

it is clear that T has no fixed-points since $x_{n'} \neq x_n$, n = 1, 2, ...On the other hand, T satisfies conditions (i), (ii) of the theorem. (ii) being obvious from the definition of T, (i) is verified by writing $T(x) = x_n$, $T(y) = x_m$, and noting that

$$d(x_m, x_n) < \begin{cases} \lambda d(y, A - \{y\}), & n \ge m, \\ \lambda d(x, A - \{x\}), & n < m, \end{cases}$$

as is easily seen by using (1) and (2). This contradicts the hypothesis of the theorem and thereby establishes the same.

326

Remarks: KANNAN [6] and CHATTERJEA [2] have respectively shown that if (X,d) is a complete metric space and $T: X \to X$ is a mapping satisfying the condition

either (i')
$$d(T(x), T(y)) \leq \lambda [d(x, T(x)) + d(y, T(y))], x, y \in X$$

for a fixed $\lambda, 0 < \lambda < \frac{1}{2}$,

or (i'')
$$d(T(x), T(y)) \leq \lambda [d(x, T(y)) + d(y, T(x))], x, y \in X$$

for a fixed $\lambda, 0 < \lambda < \frac{1}{2}$,

then T has a fixed-point. (i') being weaker than (i) in Theorem 1, the class of mappings satisfying (i), (ii) can be replaced by the class of mappings satisfying (i'), (ii). In fact λ in (i') can be any positive number and not necessarily less than $\frac{1}{2}$. From the proof of the theorem it is clear that (i) can be replaced, in the first instance, by

$$\begin{aligned} d\big(T(x), T(y)\big) &\leqslant \lambda \max \left\{ d\big(x, T(y)\big), d\big(y, T(x)\big) \right\}, \\ x, y \in X, \text{ for a fixed } \lambda > 0 \,, \end{aligned}$$

and thereafter by (i") which is weaker than this condition. To summarize, the converses of the results of KANNAN [6] and CHATTERJEA [2] hold even in stronger forms.

Finally, once it is noted that the mapping T constructed in the proof of theorem 1 has no periodic point (i. e. for no $x \in X$ does there exist a positive integer K such that $T^{K}(x) = x$) and that (i) can be replaced by a more stringent condition, the truth of the following theorem is clear.

Theorem 2. If (X, d) is a metric space in which every mapping satisfying

either (ia)
$$d(T(x), T(y)) \leq \lambda \max \{ \inf_{K} d(x, T^{K}(x)), \inf_{K} d(y, T^{K}(y)) \}, x, y \in X,$$

or (ib)
$$d(T(x), T(y)) \leq \lambda \max \{ \inf_{K} d(x, T^{K}(y)), \inf_{K} d(y, T^{K}(x)) \}, x, y \in X, \}$$

for a fixed $\lambda > 0$, together with (ii) of Theorem 1 has a periodic point, then the space is complete.

§ 3. Topological Completeness

We point out in this section that a metric space need not be metrically topologically complete even if every homeomorphism has a fixedpoint. We begin with a general observation: if A and B are two separated subsets of a topological space such that A is a non-trivial connected set having fixed-point property for homeomorphisms and B is a totally disconnected set then $A \cup B$ in the relative topology has fixed-point property for homeomorphisms. For, let f be any homeomorphism of $A \cup B$ into itself; since $f(A) \cup f(B) \subseteq A \cup B$ where f(A) is connected and A, B are separated, f(A) has to be contained in A or B. But B is totally disconnected so that $f(A) \subseteq A$. Thus by assumption f has a fixed-point.

The following example proves the assertion made in the beginning of this section. Let now A be the interval [0,1] and B be the set $\{x \mid x \text{ rational and } \ge 2\} \cup \{x \mid x \text{ irrational and } <-1\}$. Then $A \cup B$ in the usual topology cannot be G_{δ} in its completion. For, otherwise $\{x \mid x \text{ rational and } \ge 2\}$ would be G_{δ} in $[2,\infty)$ contradicting that $[2,\infty)$ is of the second category in itself. Since metrically topologically complete spaces are precisely absolutely G_{δ} spaces (see [7], p. 207, K ((a) to (c)), $A \cup B$ cannot be metrically topologically complete. (Incidentally $A \cup B$ is not an absolutely F_{σ} space too, since $\{x \mid x \text{ irrational}, x < -1\}$ is not F_{σ} in $(-\infty, 1]$.) That completeness does not insure the fixed-point property for homeomorphisms is readily seen by considering the map $x \to x + 2$ on the real line.

§ 4. A Fixed-Point Theorem

Theorem 3. Let X be a topological space having fixed-point property for continuous functions and Y be a densely ordered, order complete, chain with its order topology which is bounded below by y_0 . Let $X_1 \subseteq X$, $M \subseteq X \times Y$ and the map $a: X \to Y$ be such that

(i)
$$M = \bigcup_{x \in X_1} \{x\} \times [y_0, a(x)] \cup (X - X_1) \times \{y_0\}$$

(ii) $\{x\} \times (y_0, a(x))$ is open in the topology of M relative to that of $X \times Y$.

Then M has fixed-point property for continuous maps.

Remarks: (i) Theorem 3 includes CONNELL's example mentioned earlier in the assertion that the (metrically incomplete but metrically topologically complete) space of his example has the fixed-point property for continuous maps. (The space considered by CONNELL is G_{δ} in its completion and hence by a theorem of HAUSDORFF [4] is topologically complete.) In fact to obtain CONNELL's example we choose $X = Y = [0, 1] \subseteq R, X_1 = \{1, \frac{1}{2}, \frac{1}{3}, \ldots\}, a(x) = 1$ for each $x \in X_1$. (ii) From [7], p. 58, I(d) it follows that Y is precisely a chain which is connected in the order topology.

(iii) Y can be different structurally from a real interval (bounded below), for example the product of [0, 1] with itself, ordered lexicographically ([7], p. 164, J).

Proof: If $f: M \to M$ is continuous, let f_1 be its restriction to $X \times \{y_0\}$. Since X is homeomorphic to $X \times \{y_0\}$, if $p_1: \langle x, y \rangle \to \langle x, y_0 \rangle$, $p_1 \circ f_1$ has a fixed-point $\langle x_0, y_0 \rangle$. From the definition of p_1 and f_1 it follows that $f \langle x_0, y_0 \rangle = \langle x_0, z_0 \rangle$. If $x_0 \in X - X_1$, then by the definition of M, $z_0 = y_0$ so that $\langle x_0, z_0 \rangle$ is a fixed-point of f. If $x_0 \in X_1$ and $z_0 = y_0$ again f has a fixed-point.

If possible suppose $z_0 \neq y_0$. Then $z_0 > y_0$. Let S be the set $\{y \in Y | f\langle x_0, y \rangle = \langle x_0, z \rangle, z > y\}$. Since $x_0 \in X_1, \{x_0\} \times [y_0, a(x_0)]$ is a subset of M. So S is a bounded non-void subset of Y. As Y is order-complete, $\sup S = s$ for some $s \in [y_0, a(x_0)]$.

The set S with the order \leq is a net and it converges to s, for any neighbourhood of s contains some interval (a,b) with a < s < b. If no x of S lies in (a,b) then each element of S is less than a or greater than b. The latter possibility is ruled out as $x \leq s$, for each $x \in S$. The former possibility, too is ruled out, as $\sup S = s$, so that there exists at least one $s_1 \in S$, $a < s_1 \leq s$ for any a < s, $a \in S$.

So the net $(f\langle x_0, y \rangle)_{y \in S}$ converges to $f\langle x_0, s \rangle$, as f is continuous. From the definition of S it follows that $f\langle x_0, y \rangle = \langle x_0, z \rangle, z \in Y$, for each $y \in S$. So $f\langle x_0, s \rangle = \langle x_0, t \rangle$ for some $t \in Y$, by the continuity of f and the X-projection.

If t < s, then as the ordering is dense there exists t' such that t < t' < s. Because the net S converges to s, S lies eventually in $(t', a(x_0)]$. Further $(f\langle x_0, y \rangle)_{y \in S}$ lies eventually in the interval $\{x_0\} \times (y_0, t')$. (This follows from the continuity of f and the fact that $\{x\} \times (a, b)$ is open in M, for any $a, b \in [y_0, a(x)]$.) Thus $f\langle x_0, y \rangle = \langle x_0, y' \rangle$ with $y_0 < y' < t'$. But this contradicts that $y \in S$! So $t \ge s$.

If t > s then the interval $T = (s, t_1)$ is a net with the order α defined as $x \alpha y$ if and only if $y \leq x$ where $s < t_1 < t$. Clearly as the ordering is dense, T converges to s. Hence $(\langle x_0, y \rangle)_{y \in T}$ converges to $\langle x_0, s \rangle$ and $(f \langle x_0, y \rangle)_{y \in T}$ converges to $f \langle x_0, s \rangle$, f being continuous.

Now $\{x_0\} \times (y_0, t_1)$ is a neighbourhood of the point $\langle x_0, s \rangle$ while $\{x_0\} \times (t_1, a(x_0))$ is a neighbourhood of $\langle x_0, t \rangle$. Since $(f \langle x_0, y \rangle)_{y \in T}$

converges to $\langle x_0, t \rangle$ this net lies eventually in $\{x_0\} \times (t_1, a(x_0))$. So $f \langle x_0, y \rangle = \langle x_0, w(y) \rangle$ with $w(y) \in (t_1, a(x_0))$, after some stage for $y \in T$. But $s < y < t_1$ and $w(y) > t_1$. This means that $y(>s = \sup S) \in S$, a contradiction. Hence t = s and $\langle x_0, s \rangle$ is a fixed point of f.

The proof is complete.

References

[1] BESSAGA, C.: On the converse of Banach fixed-point principle. Colloq. Math. 7, 41-43 (1959).

[2] CHATTERJEA, S. K.: Some theorems on fixed-points. Research Report No. 2, Centre of Advanced Study in Appl. Math., University of Calcutta. 1971.

[3] CONNELL, E. H.: Properties of fixed-point spaces. Proc. Amer. Math. Soc. 10, 974-979 (1959).

[4] HAUSDORFF, F.: Die Mengen G_{δ} in vollständigen Räumen. Fund. Math. 6, 146—148 (1924).

[5] HU, T. K.: On a fixed-point theorem for metric spaces. Amer. Math. Monthly 74, 436-437 (1967).

[6] KANNAN, R.: Some results on fixed-points. Bull. Calcutta Math. Soc. 60, 71-76 (1968).

[7] KELLEY, J. L.: General Topology. New York: Van Nostrand. 1955.

P. V. SUBRAHMANYAM Department of Mathematics Indian Institute of Technology Madras 600036, India