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Absiract

In this note the converses of recent fixed-point theorems due to Kanwan
and CHATTERJEA are obtained. An example is constructed to show that
a metric space having the fixed-point property for homeomorphisms need
not be metrically topologically complete. An example of ConNgrL is formul-
ated in & more general perspective.

§ 1. Introduction

Hvu [5] showed that a metric space is complete if and only if
any confraction on closed subsets thereof has a fixed-point. In this
context, it is eagily seen from an example due to CoNwmLr ([3],
p. 978, Example 3) that it is not however possible to conclude that
a metric space is complete if any contraction on it has a fixed-point.
In fact, the fixed-point property for even continuous maps does not
ingure the completeness of the metric space. Besides Hu's {5], there
are results converse to the contraction mapping principle. But
mostly these assert the existence of complete metric topologies
such that a class of mappings of an abstract set into itself with
fixed-points consists of contractions (see e. g. [1]). Theorems 1 and 2
of Section 2 of this note on the other hand have in their conclusions
the completeness of the metric space under a hypothesis that each
member of a class of mappings with constraints on transformation
of distance has fixed or periodic points. Incidentally it subsumes
converses of recent results ({2], [6]) in the form of fixed-point theo-
rems. Theorem 1 is independent of Hu’s result, mentioned above.

The author thanks the referee for drawing his attention to the
note of Hv [5].

The connection between metric-topological completeness of a
metric space (i. e. the existence of a metric whose topology is the
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same as that of the given metric but under which the space is
complete) and fixed-point property does not seem to have been
studied. We observe in Section 3, that fixed-point property for
homeomorphisms neither implies nor is implied by topological
completeness.

Theorem 3, in Section 4, is an attempt to place CONNELL’s
example mentioned at the outset in a general perspective.

§ 2. Completeness and Fixed-Points

Theorem 1. A metric space (X,d) in which every mapping T of X
into itself, satisfying the conditions:
() (T @), T () <Amax (A, T(@), dy, T @)}, 2,y € X, for

a fized A >0;
(i) T(X) is countable,
has a fixed-point, is complete.

Proof: If possible, let A= {x,} be a non-convergent Cauchy
sequence where x, are distinct. For any xz¢ 4, d(x,4) > 0. {x,} being
Cauchy, there exists a least positive integer N (x) such that

W&m, 2n) < Ad(x, A) < Ad(w, 1), 1= 1,2,...;Vm,n =N ().
In particular
A(Tm, TN ) < Ad(x,21), 1=1,2,...; Ym =N (z). (1)
By a similar reasoning there exists a least positive integer
n' =n'(n) >n such that
Axm, ) < Ad(Zn, 25}, mz2n. (2)
If T:X -+ X is defined as

_ |, w¢d,
T(x)_{xn', z(=2zn)ed,

it is clear that 7 has no fixed-points since xu #w,, n=1,2,....
On the other hand, T satisfies conditions (i), (ii) of the theorem.
(i) being obvious from the definition of 7', (i) is verified by writing
T(x)=2u, T (y) =2, and noting that

/103(%%1“—{2/}): n 2 m,

d(xm’x”) <{A’d(st"——{x})s n<m,

asg is easily seen by using (1) and (2). This contradicts the hypothesis
of the theorem and thereby establishes the same.
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Remarks: Kannax [6] and CHATTERIEA [2] have respectively
shown that if (X,d) is a complete metric space and T: X +X is
a mapping satisfying the condition

cither (i) &(T (@), T () <4 [d(z, T @) +d(y, T ()], 2,y e X
for a fixed 4, 0 <A<},

o () AT @), T W) <A T @)+ dly, T @), 7.yeX
for a fixed 2, 0 <A<,

then T has a fixed-point. (i') being weaker than (i) in Theorem 1,
the class of mappings satisfying (i), (ii) can be replaced by the class
of mappings satisfying (i), (ii). In fact 1 in (i’) can be any positive
number and not necessarily less than . From the proof of the
theorem it is clear that (i) can be replaced, in the first instance, by

d(T (@), T (y)) < Amax {d(z, T (y)), d(y, T (@)}
z,ycX, for a fixed 1 >0,

and thereafter by (i) which is weaker than this condition. To sum-
marize, the converses of the results of KAxNaN [6] and CHATTERIEA
[2] hold even in stronger forms.

Finally, once it is noted that the mapping T constructed in the
proof of theorem 1 has no periodic point (i. e. for no zeX does
there exist a positive integer K such that TE{x)==x) and that
(i) can be replaced by a more stringent condition, the truth of the
following theorem is clear.

Theorem 2. If (X, d) is a melric space in which every mapping
satisfying
either (ia) d(7 (z), T (y)) < Amax {igf d(x, TE (z)), i?{f d(y, TE (y))},
z,yelX,

or (ib) d(T (z), T (y)) < Amax {infd(x, T (y)), infd(y, TX (2))},
X X z,yeX,

for a fixed 2 >0, together with (i) of Theorem 1 has a periodic point,
then the space is complete.

§ 3. Topological Completeness

We point out in this section that a metric space need not be mefric-
ally topologically complete even if every homeomorphism has o fixed-
point. We begin with a general observation: if 4 and B are two
separated subsets of a topological space such that 4 is a non-trivial
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connected set having fixed-point property for homeomorphisms and
B is a totally disconnected set then AU B in the relative topology
has fixed-point property for homeomorphisms. For, let f be any
homeomorphism of AUB into itself; since f(4)uf(B)cAUB
where f(A4) is connected and A, B are separated, f(4) has to be
contained in 4 or B. But B is totally disconnected so that f(4) < A.
Thus by assumption f has a fixed-point.

The following example proves the assertion made in the
beginning of this section. Let now A4 be the interval [0,1] and B
be the set {r|z rational and >2}U{z|x irrational and << —1}.
Then AU B in the usual topology cannot be G5 in its completion.
For, otherwise {x|x rational and >2} would be ¢ in [2,0) contra-
dicting that [2,0) is of the second category in itself. Since metrically
topologically complete spaces are precisely absolutely (s spaces
(see [7], p. 207, K((a) to (¢)), AU B cannot be metrically topo-
logically complete. (Incidentally AU B is not an absolutely Fg
space too, since {z|x irrational, x <<-—1} is not F,; in (—oo,1].)
That completeness does not insure the fixed-point property for
homeomorphisms is readily seen by considering the map z—z+2
on the real line.

§ 4. A Fixed-Point Theorem

Theorem 3. Let X be a topological space having fixed-point
property for continuous functions and Y be a densely ordered, order
complete, chain with its order topology which is bounded below by yo.
Let X1 X, M X XY and the map a: XY be such that

(i) M= {] &} Xy, @]V (X —X1)X {5}

xeXy
(i) {@} X (yo,a(x)] is open in the topology of M relative to that
of XX Y.
Then M has fixed-point property for continuous maps.

Remarks: (i) Theorem 3 includes CoNNELL’s example mentioned
earlier in the assertion that the (metrically incomplete but metrically
topologically complete) space of his example has the fixed-point
property for continuous maps. (The space considered by ConNELL
is G5 in its completion and hence by a theorem of HAUSDORFF [4]
is topologically complete.) In fact to obtain CoNNELL’s example we
choose X =Y =[0,1]< R, X;={1,1,1, ...}, a(z)=1 for each xeX;.
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(ii) From [7], p. 58, 1(d) it follows that Y is precisely a chain
which is connected in the order topology.

(iii) Y can be different structurally from a real interval (bounded
below), for example the product of [0, 1] with itself, ordered lexico-
graphically {[7], p. 164, J).

Proof: If f: M- M is continuous, let fi be its restriction to
X X {yo}. Since X is homeomorphic to X X {yp}, if p1: (&, ¥) =&, yo),
profi has a fixed-point (zo,yo). From the definition of p; and fi
it follows that f(xo,¥o) = (xp,20). If ee X — X1, then by the defini-
tion of M, zg=yo so that (xo,2) is a fixed-point of f. If xpeX;
and zp=yo again f has a fixed-point.

If possible suppose zo#£yo. Then zp >yo. Let S be the set
{ye Y |fxo,y)= (x0,2), 2 >y} Since xoe Xy, {#o} X [yo,a (x0)] is a sub-
set of M. So 8 is a bounded non-void subset of Y. As Y is order-
complete, supS=s for some se[ys,a ()]

The set § with the order < is a net and it converges to s, for
any neighbourhood of s contains some interval (a,b) with o <s<Cb.
If no = of § lies in {a,b) then each element of S is less than a or
greater than 4. The latter possibility is ruled out as z <s, for each
xe8. The former possibility, too is ruled out, as supS=s, so that
there exists at least one s1e8, ¢ <<s1 <s for any a <s, aeS.

So the net (f{zo,y))yecs converges to f(zo,s), as f is continuous.
From the definition of § it follows that f{xg,¥) = (%0,2), z€ ¥, for
each ye8. So flx,s) = (xo,f) for some £cY, by the continuity of f
and the X-projection.

If t <s, then as the ordering is dense there exists ¢ such that
t<t' <s. Because the net S converges to s, § lies eventually in
(t',a(x0)]. Further (f(wo,»))ycs lies eventually in the interval
{wo} X (0,t'). (This follows from the continuity of f and the fact
that {z}Xx(a,b) is open in M, for any a,belyo,a(x)].) Thus
Jxo, yy="{(x0,y"y with yo<<y'<t'. But this contradicts that yeS!
Sot>s.

If t >s then the interval 7 = (s,f1) is a net with the order «
defined as zay if and only if y <z where s < #; <¢. Clearly as the
ordering is dense, 7' converges to s. Hence ({(xo,¥))yer converges
to (wo,s) and (f{xe,¥y))yer converges to f(xzo,s), f being continuous.

Now {xo} X (y0,%1) is a neighbourhood of the point {xg,s) while
{mo} X (t1,a (%)) is a neighbourhood of (wo,f). Since (f{zo,¥)lyer
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converges to (rp,?) this net lies eventually in {xo} X (f1,a (x0)). So
[ (@0, y) = @o,w(y)) with w(y)e(t1,a(x0)), after some stage for yeT'.
But s<y<tt and w(y) >*4. This means that y(>s=sup8)es,
a contradiction. Hence t=s and (x¢,) is a fixed point of f.

The proof is complete.
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