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DETECTOR: A knowledge-based system for 
injection molding diagnostics 
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A knowledge-based system (KBS) for diagnosis of multiple defects in injection molding is 
presented. The general scheme for knowledge representation based on fuzzy set theory has 
been shown useful in representing inexact and incomplete information for developing the 
KBS. An optimality criterion is created for selecting a simple and 'best' cover to explain the 
given problem. An efficient search algorithm for finding such cover is also discussed. 
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1. Introduction 

Injection molding is one of the major processes of produc- 
ing plastic parts, consisting of approximately one-third of 
all plastics production. The process can be fully automated, 
can be easily adapted to mass manufacturing and performs 
most efficiently for high-volume production. 

The quality of a molded part must in general address 
geometric, aesthetic, structural and material properties 
considerations. A plastic part could thus exhibit defects 
such as warpage, shrinkage, sink marks, bubbles, weld 
lines, flashing, surface defects, etc. The final product 
quality is a function of the variables related to the molding 
conditions, mold design, raw material and machines. The 
task of the diagnostic system is to identify the sources that 
contribute to the observed product defects. In addition, 
remedy recommendations must also be provided. 

The traditional approach to the diagnostic problem has 
relied heavily on human process operators. Developing an 
expert operator normally requires years of training. Many 
skilled operating personnel come up through the ranks 
learning through experience, their skills about the process 
often exceeding their technical understanding. Unfortu- 
nately, the knowledge gained by years of experience is 
often lost when that person leaves the job. In addition, the 
knowledge of an operator is often restricted to a subset of 
the processing environment in a particular company. 

A computer-based system could help in addressing some 
of the above problems. Such a system could encode the 
expert information about the process, thus retaining much 
of the process knowledge that would have otherwise been 
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lost. This is not a trivial task, since the expert thinking is 
often intuitive and hard to formalize into appropriate rules 
for an expert system. However, the resulting encoded 
knowledge could represent the accumulated experience of 
many experts, producing a 'super expert'. Much informa- 
tion that can be stored in databases as process-specific data 
can enhance the applicability of the system to a wide variety 
of products and conditions. As the use of engineering 
materials and the variety of the different materials and part 
geometries increases, such a need will become more 
pronounced. Such a system can also be used for educating 
and training operators, reducing the time required for them 
to reach a certain level of expertise. 

There has been an extensive research effort to create 
expert systems capable of dealing with specific areas of 
expertise such as MYCIN (Shortliffe, 1976) in medical 
diagnostics, DENDRAL (Feigenbaum, 1971) in chemistry 
and PROSPECTOR (Phelps, 1978) in geology. 

In general, the problem of development of an expert 
system can be broken down into the following interrelated 
subproblems. The first is the choice of the form for 
representing and constructing the expert knowledge base 
and is treated in Section 2. The second, of developing a 
mechanism of logic inference on the basis of the available 
knowledge database, is dealt with in Section 3. The third is 
to design facility programs for experts for their efforts to 
modify the knowledge database and improve the inference 
mechanism. These facilities and the overall system struc- 
ture are discussed in Section 4. The diagnostic system is 
illustrated by an example in Section 4.2, and conclusions 
are presented in Section 5. 
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2. A general knowledge representation scheme 

The representation and manipulation of qualitative and 
inexact knowledge are difficult to address by conventional 
means. One particularly encouraging method of dealing 
with imprecise concepts, such as those related to injection 
molding diagnostics, is based on fuzzy set theory (Kandel, 
1986; Zadeh, 1979; Sugeno, 1985). The formulation of our 
problem in terms of this theory will be presented next. 

2.1. Mathematical tools for knowledge representation 

We call the universal set or universe of discourse U, and the 
others as follows. 

Let D = {djl j = 1, 2 , . . . ,  n} represent all defects that can 
occur in injection molding, and where dj is one of the 
possible defects. 
Let C = {cil i = 1, 2 , . . . ,  m} represent all possible causes 
that may occur when one or more defects are present, and 
where q is one of the possible causes. 

We proceed with the following definitions: 

Definition: Let a, b be any two elements, then <a ,  b>  is 
called the ordered pair a, b. 
In our case <ca, dj> represents "ca can cause da". Note that 
< C i ,  dj> does not imply that ca always occurs when dj is 
present, but only that ci may occur. Also, let 

E = {<ci, dj> [ci can cause dj}. 

Definition: Let C(i) be a family of non-empty subsets of C 
and iEI,  where I is a finite set of integers. Then {C(i)]iEI} is 
called a partition of C if 

PI: U C ( i ) = C  
i@I 

P2: For any i =/: j, C(i) fl C(j) = Q 

Example: Let T = {a, b, c, d, e, f, g} and let U = {a, b, c}, 
V = {d, e}, W = {f, g}, then {U, V, W} is a partition ofT. In 
our case, we partition the possible causes into the following 
four categories: 

�9 category(l) : Molding condition problems 
�9 category(2) : Material problems 
�9 category(3) : Machine problems 
�9 category(4) : Mold design problems. 

Based on this partition ci(k) will be interpreted as "cause 
r '  from "category k",  where k = 1,2,3,4. 

A simple and instructive way of illustrating the rela- 
tionships between sets is in the use of Venn-Euler dia- 
grams. These sets are depicted in Figure 1, which shows the 
relation of C to D. The defect (ci) represents some defects 
caused by ci. Clearly, if defect (Ca) is known for every 
element (cause) Ca, or if cause (dj) is known for every 
element (defect) in D, then the causal relation C to D is 

completely determined. From a mathematical point of 
view, this is a many-to-many relation. When one or more 
defects are found on the part, it is not easy to distinguish 
which subset of causes best explains the observed defects. 
From expert knowledge, we know each element in D can be 
caused by some elements (causes) in C. Now, let 

cause(dj) = {ci[ <el, dj> @ E} Vdj E D 

defect(ci) = {djl<q, dj> E E} Vci E C 

cause(D) = U cause(dj) = C where U 
dj @D means union 

defect(C) = U defect(ci) = D 
c iEC 

A diagnosis problem may now be posed as a mathematic- 
al problem in which one is first given a subject of 
manifestations (symptoms, defects, abnormal test results). 
This subset of D will be called the floating defect subset D+. 
In injection molding, the set D + represents the observed 
defects of the produced parts which the user inputs to the 
system. We also let the floating causes subset, C +, repre- 
sent the subset of C which consists of all associated causes 
that explain at least one of the observed manifestations. 
Given the initial set D +, and associated degrees of severity 
of the observed defects, as well as information about the 
current status of the project, the system will select a subset 
of C § that 'best' explains the observed defects. The method 
by which we can manipulate that information to arrive at 
the final diagnosis will use concepts from fuzzy set theory. 

2.2. Knowledge representation via fuzzy sets 

One of the underlying principles of knowledge engineering 
is that the methodology for solving a problem is based on 
some representation techniques that are independent of 
the application. This methodology should be well defined 
and should facilitate direct thinking and traceability. One 

Ca) CZJ) 

Knowledge P r o b l e a  

Fig. 1. Organization of diagnostic knowledge (a) and problem (b) 
with a Venn Diagram. 
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tool that lends itself well to this goal is a table or a diagram, 
without which misunderstandings, omissions and inconsis- 
tencies may occur in the design stage. When the knowledge 
can be represented in a table, the entries can be easily 
changed: they can also be easily maintained and manipu- 
lated. 

In our system, we will deal with uncertain information 
which, based on fuzzy set theory, will require the use of 
tables to model the relations of causes to defects. The 
theory of fuzzy sets, 'a generalization of conventional set 
theory, provides an adequate conceptual framework as 
well as a mathematical tool to solve real physical world 
problems which are usually fuzzy. It can account for 
inexactness, like ambiguity and vagueness, and thus for 
nonstatistical uncertainty'. The theory was originally de- 
veloped by L. A. Zadeh (1965). Many investigators are 
presently exploring the usefulness of fuzzy set theory in a 
wide variety of fields ranging from medical diagnosis to 
industrial control and man-machine communication prob- 
lems. 

A nonfuzzy finite set may be simply represented by the 
list of its elements as for example, A = {ca, c3}. In contrast, 
a finite fuzzy set is represented by its elements and their 
associated weights, for example, B = {0.6/Ca, 0.4/c3}. The 
notation denotes that the grade of the membership for 
cl E B is 0.6 and for cl ~ B is 0.4. 

Definition: The fuzzy relation is considered to be a mapping 
from C • D into [0,1], such that wij = f(ci, d i) for all pairs 
(Ci, dj). 

Clearly, we can associate with every relation a matrix to 
represent the relation of the fuzzy sets, giving rise to the 
notation of relation matrices. When the related sets C and 
D are finite, a fuzzy relation f on C • D can be represented 
as a matrix [W] whose entries are wij. 

Determination of the grades of membership wij which 
may range anywhere between 0 and 1, is based on expert 
knowledge. The value of I is assigned to wij when cause ci 
will always result in defect dj, while 0 is assigned to causes 
that are not related to the defects. The term wij/ci signifies 
that wij is the grade of membership of ci in W(dj). Based on 
this notation, we interpret the fuzzy set 

W(dj) = {Wij/CilWij > 0} 

as representing the relationship of defect j to the related 
causes in terms of grades of membership, e.g. 

W(dl) = {Wal /Cl ,  W2a/C2, W3a/C3, �9 . . . . .  Wna/Cn} 

W ( c a )  = { W a a / d l ,  Wa2/d2 ,  w13 /d3 ,  . . . . .  , Wam/dm} 

A typical cause-defect relation is represented in Table 1. 
The assigned initial confidence factors to each wij for 
injection molding, were based on expert domain know- 
ledge (Rosato, 1986; Rubin, 1972; Mosanto, 1988; McCar- 
thy, 1989). 

Table 1. Knowledge organization based on fuzzy sets. 

dl da d3 d4 d5 d6 d 7 d s . . . .  dn 

Ca(2) 

C2(1) 

C3(2) 

C4(3) 

c5(4) 
C6(4) 

C7(2) 

Cn(1) 

0 .50 .1  0.7 0 . 3 0 . 5 0 . 2  

0.3 0.3 0.6 

0.3 0.8 

0 .41 .0  

0.2 

0 . 5 0 . 7 0 . 3  0.9 

0.8 0.4 

0 .60 .5  0.5 

0.7 0 .60 .8  

From the above table, we may also deduce facts such as: 

cl (2) E Category(2) 
c5(4) E Category(4) 
cause(da) = {c1(2), c3(2)} 
defect(c1) = {da, d2, d4, d6, d7, d8} 
W(d2) = {0.1/Cl, 0.3/c2, 0.4/c4} 
W(Cl) = {0.5/dl, 0. l/d2, 0.7/d4, 0.3/d6, 0.5/d7, 0.2/d8} 

2.3. Manipulation of knowledge via fuzzy matrices 

Once the knowledge is represented, our task is to discover 
an appropriate way to manipulate the weights associated 
with the elements in the fuzzy sets. The process of fuzzy 
matrix manipulation allows us to determine the grade 
membership for each associated cause in the floating cause 
model. Subsequent to the grade membership calculation, a 
set with elements in descending order of grade membership 
will be produced. This set will be input to the PFC 
algorithm presented in the next section to produce the 
proposed diagnosis. 

The first step in the diagnostic process is to accept the set 
of observed defects from the user, and associate appropri- 
ate weights for their respective severity. The operator 
reads the defects from the rejected part and judges the 
degrees by his subjective estimate or by experience. He is 
given three choices of severity, namely 'slight', 'moderate' 
and 'serious'. He may associate for example, dx (bubbles) 
with 'serious', d2 (short shot) with 'slight', and d3 (black 
streaks) with 'serious'. These are internally normalized to 
reflect the relative importance of each defect with respect 
to the others. By associating 'slight' with weight 1, 'moder- 
ate' with 2 and 'serious' with 3, we assign appropriate 
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weights as shown below for our example. 

P(dl) = P(bubbles) = ['serious'[/EIdegree [ = 3/ 
( 3 + 1 + 3 ) = 3 / 7  

P(d2) = P(short shot) = [ 'slight' ] / E [ degree I = 1/ 
( 3 + 1 + 3 )  = 1/7 

P(d3) = P(black streaks) = [ 'serious' ] / E I degree I = 3/ 
( 3 + 1 + 3 )  =3 /7  

where P(di) is the normalized severity of the ith defect. 
In this example, bubbles, short shot, and black streaks 

have relative severity given by the vector P(D+) T = [3/7, 
1/7, 3/7]. These degrees will be later used to modify the 
elements of the fuzzy relational matrix. 

The second step is to determine the associated set of 
possible causes, C +, to the observed defects D +. Let's take 
D + = {di, d2, d3} for example. First, dl is used to retrieve 
the causes, c1(2) and c3(2), with their initial associated 
weights. This step is repeated for d2 and d3. We thus obtain 
a submatrix [W +] of [W], containing the necessary entries 
for diagnosis process, from the knowledge table as follows. 

dl d2 d3 

cx(2) 

c2(1) 

c3(2) 

c4(3) 

0.5 0.1 

0.3 

0.3 

0.4 1.0 

All subsequent diagnostic operations will deal with the 
submatrix [W+]. The elements of this submatrix will next 
be modified to give [W' +] based on current status informa- 
tion. This information consists of data entered by the 
operator about the status affecting the causes of the four 
categories mentioned previously. For example, informa- 
tion as to whether a new material or mold is presently used 
by the operator, will alter the weights of [W +] for the 
respective categories. 

The introduction of new material increases the likeli- 
hood of problems associated with that category. Thus 
based on these current status conditions, the elements 
associated with category (2) will be multiplied by the factor 
1.5, altering the entries w11and w31 to 0.75 and 0.45 from 
0.5 and 0.3 respectively. Manipulation based on other 
available current data, such as the present barrel tempera- 
ture compared with normal ranges for that material, serves 
to modify the submatrix as shown below. 

dl d2 d3 

C1(2) 

C2(1) 
C3(2) 

c4(3) 

0.75 

0.45 

0.15 

0.5 

0.4 ; 1.0 

The observed relative severity of the defects will now be 
taken into account. This is done by multiplying the 
respective weighting vector P(D +) associated with D + with 
the submatrix [W '+] to give the likely importance vector 
P(C +) of the fuzzy set C +, so that 

p(c +) = [w,+le(o+). 

In this case we have 

[Fell Lor 75 ~ ~ dl] P(c2) = 0.5 0 P(d2) 
P(c3) 10.45 0 0 
P(c4) 0.4 1.0 P(d3) 

The normalized weights of the defects were found to be 

P(D+) T = [1/7, 3/7, 3/7]. 

By matrix multiplication, we get 

E(C+) x = [2.75/7, 0.5/7, 1.35/7, 3.4/7]. 

Based on the above, the list of causes in descending order 
for the above example is {P(c4), P(c3), P(ca)}. This ordering 
will be an important step in the search algorithm described 
in the next section. 

3. Maximum priority set covering 

For a specified weighted list of observed defects, the 
resulting list of possible causes is arranged in descending 
order based on fuzzy set manipulations as shown in the 
previous section. The problem that must now be addressed 
is the appropriate selection of an adequate subset of this list 
as the 'best explanation' of the observed defects. One 
approach is to base the selection on a 'minimum cover' 
criterion, where the smallest possible set of causes explain- 
ing the defects is chosen as the 'best' explanation. 

The set covering model was proposed and studied by 
other researchers (Reggia, 1982, 1983) as a general model 
for medical diagnostic problem-solving. Reggia and col- 
leagues (1985) developed the Generalized Set Covering 
model (GSC), capturing intuitively plausible features of 
diagnostic inference and handling multiple simultaneous 
disorders. The most obvious advantage is to narrow the 
search space in the specified domain and to produce the 
sequential problem-solving paradigm to seek further in- 
formation for the human diagnostician. The GSC is not 
directly suitable for our problem for two reasons. First, it 
ignores the fact that disorders usually occur with different 
degrees for the given set of manifestations. Second, 
although this model can generate a small set that can cover 
the occurring manifestations, it is still not sufficient for 
decision making because it requires additional responses 
from the user before it arrives at a conclusion. 
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3.1. Maximum priority cover (Pandelidis and Lin, 1988) 

Our goal is to reduce the search space and determine the 
smallest set that can explain all of the defects present. An 
optimality criterion is set for selecting a subset of causes 
that explains the defects. This criterion is called 'Maximum 
Priority Cover'. An associated algorithm of how to find 
such a subset is also given. 

Definition: I EI denotes the cardinality of set E, i.e., the 
number of elements in E. 

Definition: The sigma count, Y count 

A = ~ U i ,  
i=l  

is the arithmetic sum of the grades of membership in 
A = {U1/Ul, U2/U2, . . . ,  Um/Um}. 

Definition: For any diagnostic problem, with a floating 
model D +, D + C D, and E C C, 

(1) E is a cover of D +, if D + C_ defect(E). 
(2) E is a minimum cover if I E [ --< I E' If or any other cover 

E' of D +. 

This definition captures the concept that the proposed 
causes in a set explains or 'covers' the presence of all the 
observed defects D +. Definition (1) specifies the reason- 
able constraint that a set of causes E must be able to cause 
all known D +, while (2) reflects the notion that the shortest 
explanation is the preferable one (Reggia, 1985). 

Definition: The solution, Sol(D+), is the set that contains all 
covers for the floating model D +. 
Soi(D +) = {Ekl Ek is a cover of D+}. 

Definition: The simplest solution to the flaoting model D +, 
SS(D+), is the set that contains all minimum covers of D +. 
SS(D+)={Ek [ Ek is a minimum cover D+}. 
Definition: For two fuzzy sets A and B, A has higher 
priority, if 

E count A X count B 
> , or if (1) 

Iml IBI 

Z count A E count B 

IAI Inl 
& I A I < I B I .  (2) 

From this definition, we can see that a set has higher 
priority as the cardinality is deceased reflecting the need for 
simplicity that may represent a specific explanation. The 
significance of association, quantified in the sigma count, 
also reflects a higher priority. 

Definition: A Maximum Priority Cover (MPC) is a cover 
with maximum priority from C to set D +. 

The concept of maximum priority cover not only con- 
tains the concept of minimum cover in set theory but also 
takes the association of a set into account. 

Example 1: 

Given set D + of defects [dl, d2, dc], assume the following 
relations as shown in Fig. 2: 

cause(d1) = {Cl, c3}; 

cause(d3) = {c4}. 

defect(c2) = {d2} 

defect(c4) = {dE, d3} 

cause(d2) = {Cl, C2, C4}; 

defect(C2) = {dl, d2} 

defect(c3) = {dl} 

cause(D +) = tO cause(d j) 
dj E D + 

= {cl ,  c2, c3, c4} 

Fig. 2. Relations of causes to defects. 

The above relations are also represented in Fig. 2: 
We can see from Fig. 2 that a cover from C to D + is either 

{el, C4} , or {C3, C4} or  {Cl, C2, C4} , or  {Cl, c3, c4} , or  {c2, c3, c4} , 
or {cl, c-2, C3, C4}. 

The set of all solutions is given by: 

Sol(D +) -~- {{Cl, c4}, {c3, c4}, {Cl, c2, c4}, {Cl, c3, c4}, {c2, c3, 
c4}, {Cl, c2, c3, c4}}. 

The simplest solution, which is based on the minimum 
cover criterion, is 

SS(D +) = {{Cl, c4}, {c3, c4}}. 

The fuzzy set of possible causes is C + = {0.39/Cl, 0.07/c2, 
0.19/c3, 0.49/c4} obtained from the previous section. The 
following describes the maximum priority cover criterion: 

(E count {cl, c4})/2 = (0.39 + 0.49)/2 = 0.44 

(E count {c3, c4})/2 = (0.19 + 0.49)/2 = 0.34 

.'. (E count {cl, c4})/2 ~ (5. count {c3, c4})/2 

The best choice for an explanation of the defects {da, d2, 
d3} based on the maximum priority cover criterion is 
E = {c b c4}. In general, the maximum priority cover will 
not necessarily be one of the simplest solutions, as it occurs 
in this particular example. 
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3.2. Algorithm to find a maximum priority cover (MPC) 

The floating model containing the observed defects 
D + = {dl, d2, d3, �9 �9 ,dn} will be used to identify the MPC 
of causes following the algorithm below: 

(1) Get  the defect di and the corresponding degree P(di) 
for all di E D +. 

(2) Retrieve cause(dj) and wij from the knowledge 
database for all dj E D +. 

(3) Manipulate the fuzzy matrix and vectors as in 
Section 2. 

(4) Find a cover based on the MPC criterion. 

Finding an MPC from an unordered weighted list would 
normally require an exhaustive search which is very 
inefficient, particularly when the list is not small. It is 
useful, therefore,  to find an algorithm for this purpose. 

3.3. Priority first cover (PFC) 

PFC has been developed as an alternative method to an 
exhaustive search. Such an algorithm which finds a sub- 
optimal subset based on the criterion of Priority is pre- 
sented next. This algorithm depends on first creating an 
ordered weighted list and thus it is called the Priority First 
Cover (PFC) algorithm. One desirable feature of the 
algorithm is that it will always obtain a cover. Preliminary 
results show that the cover found by PFC algorithm is also 
the MPC. However  we have not yet generated either a 
counterexample or a proof of this statement. 

The Priority First Cover (PFC) Algorithm: 

(1) Arrange the grades of membership in C + in descend- 
ing order. 
The resulting ordered list will be denoted by 

O = { c 1, c 2, c 3, . . .} where c i is'the ith element in the list. 

(Quicksort (Bratko, 1986) is a good method for this step.) 
(2) Let  P be the PFC set we wish to determine and Pi be 

the tentative cover in the ith step. The cause with the 
highest weight is selected first, so 

P1 = { c l}  �9 

(3) At  stage i, the element c i is added to the list of P if it 
covers a new defect other  than those previously covered. 
Otherwise, the next element is taken into account. 

(4) The algorithm terminates when a cover has been 
found. 

We illustrate the PFC algorithm by way of Example 1. 
Step 1: 

Sort from {Cl, c2, c3, ca}: 
The resulting ordered list is {c4, cl, c2, c3} 

Step 2: 
Put Ca into the set P1 and record defect(c4): 

PI = {c4}  

defect(c4) = {d2, d3} 
Step 3: 

Check whether defect(c1) = {dl ,  d2} can cover a new 
defect or not. The element c~ is added to P1 because dl is a 
new defect. 

P2 = {C4, Cl} 

defect({c4, Cl}) = {dl, d2, d3}. 
The algorithm stops here and the cover is {c4, Cl}. This set 

is the same as the one obtained in Section 3.1. 
We shall now prove with the help of the following 

theorem and corollary a certain optimality property of the 
PFC algorithm. 

Theorem." If a list {Wl, W 2 . . . . .  } such that wi---Wi+l for 
i E N, then 

Wi Wi 
i=1 ~ i= l  

n n + l  
for all n E N 

Proof: 

Let  S(k) = ~ wi 
i=l  

Since wi -> wi+l, thus S(n) -> n Wn+ 1 
Adding n • S(n) to both sides of the inequality results in 
(n + 1) • S(n) -> n • (Wn+ 1 + S(n)) = n • S(n + 1) 

Therefore  

S(n) S ( n +  1) 

n n + l  

which is the desired result. 

Corollary." Given a decreasing list Wl -> We - w3 -> w4 --- �9 �9 . 
> then 

Wi ~ Wi 
i=l ~ i=l 

n m 
, if n < m .  

The proof  is easy to construct. 
Given a list with descending order,  we can always find a 

cover by using the PFC algorithm. This is guaranteed by 
construction. Assume A = {wl, w2, w3, w4 . . . .  ,wn} is a 
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cover obtained from PFC. If we add another element to A, 
that element by construction will have an associated weight 
w,+l  - w,  so we will have B = {wl, wz, w3, w 4 , . . .  , Wn, 
Wn+l}- Based on the above-stated corollary, the priority of 
A is greater than that of B. This indicated that whenever a 
cover is found from a descending list, it is not necessary to 
consider the remaining elements of that list. 

A comparison of the above method with the following 
two exhaustive searches will show its usefulness. 

Exhaustive Search 1: 
(1) Calculate the values of Ecount Ek/[Ekl for all the 

combinations of the list {Wl, w2, w3, w4, �9 �9 �9 , Wn}. (If n is 
not small, this requires much computation.) 

(2) Perform a or b. 

a. Sort in a descending order for all Ek, then pick the 
element sequentially from the list until a cover is found. 
(Much execution time is needed to sort the list to an 
ordered form because its length is much larger than the 
one used by the PFC algorithm.) 
b. Find the maximum value of association (highest 
priority), then check whether it is a cover. If not, try the 
next maximum until a cover is found. (This step selects 
the combination with the largest number from an 
unordered list. Sometimes with luck it is possible to find a 
cover quickly. Otherwise, this step will require repeti- 
tion.) 

Exhaustive Search 2: 
(1) Find all covers for D +, i.e., Sol(D +) = {EklE k is a 

cover}. (This takes a lot of execution time and storage if the 
list is not small.) 

(2) Calculate the value of Ecount Ek/IEk[ for all 
Ek ~ Sol(D+). 

(3) Search from Sol(D +) to find the set Ek with highest 
priority (maximum value of association). 

Exhaustive search 2 is better than exhaustive search 1, 
but it is still not efficient. By using the PFC algorithm, we 
only sort {Wl, w2, w3, w4, �9 �9 �9 , w,}, a subject of sol(D+), 
to an ordered list. Then we pick up each element from the 
beginning to check whether the set is a cover or not. Thus, 
the PFC algorithm is faster than exhaustive search 
methods. 

4. System organization 

The system is organized in such a way that it is centered by a 
knowledge base which consists of stored experiential data, 
theoretical rules for diagnosis, logic inference rules, tech- 
nical data of plastic materials and injection machines, as 
well as rules monitoring the activity of the system itself. 
Around the knowledge base, three interactive functional 
components are built to provide facilities for diagnosis, 
explanation and discussion. On-line help is also im- 
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Fig. 3. System configuration. 

Remedies 

plemented. An overview of the system architecture may be 
seen in Fig. 3. 

4.1. System development and requirements 

This program was written in the Prolog programming 
language primarily for three reasons: first, the knowledge is 
expressed in a context familiar to the human expert; 
second, it is efficient, both in speed and memory, which 
enables it to run on small computers; third, it is compatible 
on a variety of computers such as Vax or Sun using a 
C-prolog interpreter allowing sharing of the same data- 
base. Additional advantages which improve the perform- 
ance and the acceptance of this system may be found in the 
menu-driven interface, learning capabilities (although 
limited) and explanation facilitation. 

Knowledge about the relations of causes and defects are 
organized into well-defined categories of attributes and 
other factors. A few of the important characteristics of 
objects can be represented in a qualitative classification 
scheme. For example, a low mold temperature causing 
short shot with the relative weight 0.5 can be represented as: 

cause_of([short, shot], molding, [mold,temperature], 
low, 0.5). 
Defect: short shot 
Category: molding 
Causes: mold temperature 
Description: low 
Initial weight: 0.5 

There are over 400 rules covering 25 types of molded part 
defects, as shown in Defects Menu in Section 4.3. The 
methodology has been thoroughly developed for Detector. 
The material database has been created for the plastics of 
the Monsanto Co. Presently, data for several kinds of 
machines are also stored. We still need further technical 
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support from the parts manufacturers and the material 
producers to create a complete expert database. 

System requirement for personal computers is that they 
be 

�9 IBM PS/2 or IBM PC, XT, AT (or compatible) 
�9 640 K RAM 
�9 One 5.25 or 3.5 inch disk drive or a hard disk 
�9 DOS 2.0 or higher 

4.2. Functional components 

4.2.1. Knowledge base: 

There are five functionally independent parts of this 
knowledge base. 

(1) Trouble-shooting guide 
This is the kernel of the knowledge database as we 
mentioned in Table 1. It records all of the relations of 
causes and defects with associated initial weights contain- 
ing the necessary data for further diagnosis. 

(2) Reference rules 
This part contains general rules about the properties and 
relationships of plastic materials. These rules link to the 
trouble-shooting guide to help identification in the 
problem. 

(3) Connection of plastic variables and machine vari- 
ables 
Remedies of the defects are given after the diagnosis is 
achieved. Suggested remedies are in terms of the adjust- 
able variables or machine variables, while causes are in 
most cases in terms of plastic variables. 

(4) Materials Data Base 
The properties of the material and their general processing 
conditions are stored in a materials processing database. 
They form an independent area of the database where 
important information such as suggested melt tempera- 
ture, mold temperature, screw speed, injection pressure, 
etc., is available for the diagnosis process. 

The materials database is stored as a hierarchical frame 
structure with generic material such as ABS (Acrylonitrile 
Butydiene Styrene) being stored at the top and specific 
grades from a given company such as ABS-448 being 
stored at the bottom of the hierarchy. This arrangement 
allows for robust behavior of the expert system, since 
default values can be obtained through property inheri- 
tance from the parent category. The diagnostic system is 
thus capable of responding to inquiries about a general 
material as well as for a specific grade. 

(5) Machine Data Base 
The machine database consists of information about the 
process capabilities of the particular injection molding 
machine under consideration. Information such as max- 
imum clamping force, plasticizing capacity and maximum 
injection pressures is stored for each machine. This in- 
formation is stored under a system with default values, so 

that recommendations can still be given when this informa- 
tion is not available. 

One of the important links of the processing capabilities 
to the quality of the part is the machine plasticizing 
capacity. Generally speaking, the shot weight in ounces 
should fall within 40--80 per cent of the plasticizing capacity 
of the barrel, which holds and heats the plastic before it is 
injected into the mold. A shot size much less than 40 per 
cent will have an extended barrel residence time. This 
exposes the plastic melt to heat, pressure and screw shear 
beyond its limits of endurance and degradation of the 
polymer will begin. On the other hand, residence times that 
are too short due to shot size beyond 80 per cent of the 
capacity of the barrel risk insufficent plasticizing of the 
resin. Comparison of the barrel capacity stored as machine 
data with the presently used shot size, is useful diagnostic 
information. 

4.2.2. Explanation program 

One of the advantages in writing a program using an 
artificial intelligence language is the ability to provide 
explanations of the steps taken by the program to arrive at a 
conclusion. The program can trace and review the rules 
invoked during the diagnostic process. It can produce a 
reasonable explanation of its conclusions by tracing the 
applicable rules for the given problem. It also gives the 
human expert a chance to change the rules to improve the 
performance. Whenever the users need the explanation of 
terminology, it also has the capability to explain the 
meaning of most injection molding terms. This feature 
gives the users the opportunity to understand plastic 
terminology or behavior associated with precise informa- 
tion from machines or material data from the database. 

4.2.3. Discussion program 

This program displays the list of the possible causes with a 
corresponding number. The user selects the number to 
deny or confirm it until no further discussion. Detector 
changes the weights associated with those items then 
invokes the diagnostic program again after knowing that 
some of the causes given by the previous diagnosis are 
denied or confirmed. The new information is supported for 
decision-making to yield another diagnosis. We can natur- 
ally expect to obtain a more reliable conclusion when more 
condition are known. 

4.3. Example of a consultation 

In this section we show a typical example of a consultation 
with the diagnostics program. A typical session involves a 
few minutes of interactive dialogue with the user. When the 
user types diagnosis, to run a consultation, Dector displays 
some options in the help menu. After selecting the defect 
by a corresponding number for the current problem to be 
solved, the user is guided to answer the degree of the defect 
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then to answer whether other defects are found or not until 
there are no defects. Questions are about material, 
machines, molds, processing conditions, etc. The re- 
sponses by Detector are different for the problems depend- 
ing on what is needed. The following output is what is 
displayed after the initial interaction, where the operator 
enters the observed defects and information about the 
current status of the manufacturing process. The result 
contains the most possible causes and recommended 
remedies. It also lists all of the possible causes that can 
solve the problem. 

DEFECTS MENU SCREEN 

1. black specks 2. black spots 
3. black streaks 4. brittleness 
5. brown streaks 6. bubbles 
7. charred area 8. cracking 
9. delamination 10. dimensional variation 

11. discoloration 12. drooling 
13. erratic cycle 14. flashing 
15. low heat distortion 16. jetting 

temperature 
17. poor ejection 18. sink marks 
19. shrinkage 20. short shot 
21. sprue sticking 22. voids 
23. warpage 24. weld lines 
25. tearing 26. Why? 

Please Enter the defect by choosing the corresponding 
number --, 

Please Enter the number to describe the degree of the defect: 
1. means Slight 
2. means Obvious 
3. means Serious 

Current operating environment: 
Mold has not been changed recently. 
Mold in good condition. 
/* A new mold could contribute to the problem. */ 
The material in use is ABS-448 that is a general purpose 
grade. 
The machine in use is machine I which is in good condition. 
The melt temperature of the current processing conditions 
is 540~ 

Defects description: 
Black streaks with slight evidence 
Flashing with moderate evidence 
My diagnosis is: 

(1) high melt temperature with relative weight 1.46 
which causes defect flashing of weight 1.46. 

(2) insufficient mold venting with relative weight 0.4 
which causes defect black streaks of weight 0.4. 
Other possible causes are: 

(3) excessive plastic feed with relative weight 0.79 

(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

0.5 
(10) 

0.34 
(11) 

weight 
(12) 

0.3 
(13) 

weight 
(14) 

insufficient clamping with relative weight 0.79 
high injection pressure with relative weight 0.79 
low plasticizing capacity with relative weight 0.67 
high injection speed with relative weight 0.67 
non parallel mold plate with relative weight 0.5 
poor alignment of mold plate with relative weight 

high injection forward time with relative weight 

unequalized filling rate in cavities with relative 
0.34 
non parallel machine platens with relative weight 

not maintained clamping pressure with relative 
0.3 
plunger off center causes friction burning with 

relative weight 0.23 
(15) inconsistent cycle in mold operation with relative 

weight 0.07 

The following action can be taken to eliminate the iden- 
tified causes: 

REMEDY:  
You can decrease the barrel temperature or nozzle temper- 
ature to decrease the melt temperature. 

Note: 
You should check and maintain that the melt temperature 
is actually between 475 to 525~ for Monsanto's ABS-448. 

A common method is to insert the needle probe of a hand 
pyrometer into shot taken after the cylinder is up to 
operating temperature, and after the machine has been 
operating on cycles for 10 to 12 shots. 

REMEDY:  
You can increase mold venting. 

Note: 
The recommended mold venting for ABS-448 is 0.002 inch 
deep 0.002 to 0.5 inch wide. 

INSTRUCTION SCREEN 
Diagnosis finished and the prescription is given in the file 
"result". You can see that file by typing view(result). 
If you do not agree with this result, you can discuss it with me 
by typing discuss. 
If you need the reasoning, please type explain., then choose 
the item from the shown menu. 

Press Esc to exit 

Note: 
In this particular case, the flashing is explained entirely by 
the high melt temperature and the black streaks are caused 
by insufficient mold venting, so the weights for each defect 
match the weights for each cause. This will not be true in 



58 Pandelidis and Kao 

general. Note also that excessive plastic feed may have a 
higher weight than insufficient mold venting, but it does not 
explain black streaks, so it is not chosen in the maximum 
priority cover. 
/* Several other simulated cases have been tested with 
positive results. However, no field data is available yet. */ 

5. Conclusions 

The diagnostic knowledge-based system, Detector, has 
been developed in order to attain the high level of 
performance that a human expert achieves in the trouble- 
shooting of injection molding. Three important parts of the 
solution process, problem representation, alternative gen- 
eration and alternative evaluation, have been discussed 
and the requirements of the expert system judgment have 
been identified. By means of fuzzy set theory, initial 
confidence factors are assigned. This has made it possible 
to deal with intangible factors for the prenumerated set of 
possible solutions with which we have been concerned. 
Expert rules are retrieved only when they are related, 
avoiding unnecessary computation, and thereby increasing 
the efficiency of this program. 

A list of possible causes generated by fuzzy matrix 
manipulations is obtained in descending order of weights. 
The inference solver then selects an appropriate subset of 
causes based on the Maximum Priority Cover (MPC). An 
alternative algorithm without exhaustive search for the 
MPC has been developed to find an optimal subset from the 
list of causes. 

This system provides a new inference method, which is 
attractive because it supports a descriptive representation 
rather than a procedural representation. It also supports 
approximate reasoning for multiple simultaneous disorders 
and produces several possible alternatives, which are 
ordered in terms of priorities. If the corrective action for 
the most-likely causes fails to solve the problem, the 
Discussion program can be invoked to modify the original 
inference based on the newly acquired information. Re- 
medies and suggestions of how to implement the recom- 
mendations associated with material properties are also 
given, and material specific information is provided 
through a materials processing database. 
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