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In recent years the Just-in-Time (JIT) production philosophy as been adopted by many 
companies around the world. This has motivated the study of scheduling models that embrace 
the essential components of JIT systems. In this paper, we present a search heurustic for the 
weighted earliness penalty problem with deadlines in parallel identical machines. Our 
approach combines elements of the solution methods known as greedy randomized adaptive 
search procedure (GRASP) and tabu search. It also uses a branch-and-bound post-processor 
to optimize individually the sequence of the jobs assigned to each machine. 
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1. Introduction 

The Just-in-Time (JIT) production system was developed 
by Toyota Motor Co., Ltd, and has been adopted by many 
companies around the world. JIT basically means to 
produce the necessary units in the necessary quantities at 
the necessary time. The main purpose of JIT systems is to 
reduce costs associated with production processes thus 
improving the total productivity of a company. The current 
interest in JIT production has motivated the study of 
scheduling models capable of capturing the essence of this 
idea. Unfortunately, as shown in the review article by 
Baker and Scudder (1990), very little has been done in 
terms of developing solution procedures for scheduling 
problems in JIT environments with more than one 
machine. 

In this paper we study the multi-machine weighted 
earliness (WE) problem with deadlines. As opposed to due 
dates, which may be violated at the cost of tardiness, 
deadlines must be met and cannot be violated. The WE 
problem is specially relevant to companies with point-of- 
use manufacture. This manufacturing approach means that 
the work-stations making the components are located 
along the assembly line immediately before the assembly 
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operations they serve. In this way, point-of-use manufac- 
ture increases productivity by reducing the amount of 
work-in-process. At the same time, failing to meet dead- 
lines causes the entire line to shut down. 

We encountered an instance of the WE problem in the 
last stage of a JIT system for the manufacturing of thread. 
At this stage, n jobs are to be processed on m machines in 
order to meet deadlines and minimize the total earliness 
penalty. Each job, j, is described by a processing time, tj, a 
deadline, dj, and an earliness penalty, pj. As a result of 
scheduling decisions, jobj  will be assigned a position in one 
of the m machines and a completion time, denoted by cj. 

A schedule, S, has the following form 

s = {n,  c} 

where II = {Hi, H2 . . . .  ,nm} is the partition of the n jobs 
in m sequences, and c is the set of completion times for all 
jobs. For each machine k, the following represents the 
sequence in which jobs will be processed 

[I/, = {Trk(1), 7rk(2) . . . .  , 7rk(nk), n + k} 

where ~rk (i) is the index of the job in position i on machine 
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k, and n + k is a dummy job that uniquely identifies the end 
of each sequence. In mathematical terms, the WE problem 
can be formulated as follows 

Minimize 

subject to 
d -cj>-O 

n 

F(S) = ( 4 -  e )p; 
]=1 

for j =  1 , . . . , n  
and no two jobs overlap. 

Since the single machine case of the WE problem is 
NP-hard (Chand and Schneeberger, 1988) branch-and- 
bound (Ahmadi and Bagchi, 1986) and dynamic program- 
ming (DP) (Chand and Schneeberger, 1988) methods have 
been developed for its solution. Chand and Schneeberger 
(1988) also developed a heuristic based on a dispatching 
rule that selects admissible jobs by their natural order (i.e. 
in increasing value of rj, where rj = ti/pj). The performance 
of this heuristic Was evaluated by comparing its solutions to 
10 job problems against optima found with the DP 
algorithm. Based on extensive computational experiments, 
the authors were able to identify some weaknesses in their 
heuristic. For example, problems with tightly clustered 
deadlines do not have good heuristic solutions because the 
method does not consider the effect of scheduling a job 
prior to fellow candidates. The authors also do not 
recommend the use of their DP procedures for problems 
with more than 15 jobs. Finally, they identify a need to 
develop better heuristics for realistic situations. 

The primary purpose of our study is to develop a search 
heuristic to provide high-quality solutions to the WE 
problem. Our heuristic combines the ideas of two search 
procedures: GRASP (Feo and Resende, 1989) and tabu 
search (TS) (Glover, 1989; 1990 de Werra and 
Hertz, 1989). The TS framework has emerged as an 
effective approach for handling complex decision prob- 
lems, and it stems from the general tenets of intelligent 
problem solving (Glover and Greenberg, 1989). The 
approach is considered to be a blend of artificial intelli- 
gence and operations research, because it employs memory 
functions to provide an interplay between learning and 
unlearning that monitors and directs the search procedure. 

In Section 2 we present the procedure used to construct 
initial trial solutions. These solutions are then used to start 
the TS method presented in Section 3. A branch-and- 
bound procedure is introduced in Section 4. This procedure 
is employed as a post-processor optimally to schedule jobs 
already assigned to each machine. Computational experi- 
ments, designed to measure the merit of our solution 
approach, are shown in Section 5. Conclusions, final 
remarks, and directions for future research are given in 
Section 6. 

2 .  G R A S P  c o n s t r u c t i o n  

A greedy randomized adaptive search procedure 
(GRASP) is a technique developed by Feo and Resende 
(1989) for the approximate solution of combinatorially 
difficult problems. GRASP typically consists of two 
phases: the construction step and the local search proce- 
dure. The construction phase is based on the idea that a 
variety of good solutions can be generated by an intelligent 
randomization of the selection step of a greedy heuristic. 
These solutions are then passed to an exchange procedure 
that searches for local improvements. 

The greedy heuristic we examine for our application is 
the modified Smith-heuristic (MSH) proposed by Chand 
and Schneeberger (1988). We first adapt MSH to handle 
more than one machine and then we integrate a random 
component. In general terms MSH, as conceived by Chand 
and Schneeberger (1988), schedules the admissible job 
with the smallest time-to-penalty ratio (r ratio), starting 
from the last position. A job is admissible if it belongs to the 
set of jobs yet to be scheduled (YS), and its deadline is 
greater than or equal to a variable T. This variable marks 
the completion time that will be assigned to the selected 
job. 

The deterministic version of MSH for parallel machines 
is shown in Fig. 1. The first six lines correspond to the 
initialization step. The set of jobs yet to be scheduled, YS, 
initially contains all jobs. The planning horizon, h, is 
defined as the maximum deadline. Each machine is 
assigned a dummy job and a Tvalue equal to the planning 
horizon (since machines are filled starting from the last 

1 YS ~ [1 . . . . .  n] 

2 h 4-- max (di) 
ie  YS 

3 for (k = 1 ..... m) { 
4 Tk (-- h 

5 Ilk ~ {n+k} 
6 } 
7 flo { 
8 Find q such that Tq = max (Tk) 

k = l ,  . . . ,m 
9 Find j such that rj = min (ri) 

i~ YS, di>T q 

lO cj -Tq 
11 1-Iq 6-- l'Iq U {j ] 
12 YS <-- YS- {j} 
13 for (k = 1 ..... m) { 
14 T k ~- max (di) 

ie  YS 

15 i f  (k = q) T k 4-- min (cj- tj, T k) 
16 } 
17 } wh i l e  (YS # 0) 

Fig. 1. MSH for parallel machines 
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position, the only admissible jobs are initially those with 
deadlines exactly equal to h). Lines 7-17 contain the 
iterative process by which one job is scheduled at a time. In 
line 8, the index of the machine with the minimum load is 
found and is labeled machine q. The next job to be 
scheduled, job j, is the one with the minimum r ratio among 
all those found admissible (admissibility here depends on 
the selection of machine q). Line 10 assigns the Tvalue  o f  
machine q as the completion time of the selected job j. Line 
11 adds job j to the sequence of jobs in machine q. It is 
important  to note that job j is always being inserted in the 
first position of the given sequence. Line 12 reflects the fact 
that job j has already been scheduled. The updating of the 
T values for each machine is carried out in lines 13-16. 

A randomized version of the heuristic described above (a 
procedure that will be referred to as MSH-random),  may 
be achieved by modifying the job selection step of line 9. In 
MSH-random job j is randomly selected from a candidate 
list, CL, of admissible jobs (i.e. i] i E YS and di >- Tq). The 
candidate list is created by first defining r_min and r_max as 
the minimum and maximum r ratio values, respectively, in 
the set of admissible jobs. An admissible job i is then added 
to the list if 

r i <-- r_min + a (r_max - r_min) 

where a(O -< a -< 1) is a parameter  that controls the amount 
of randomization permitted. If a is set to a value of zero, 
MSH-random becomes the deterministic procedure de- 
scribed in Fig. 1. On the contrary, the candidate list reaches 
its maximum possible cardinality when a is set to a value of 
one. 

3. Tabu search 

The solutions generated by MSH-random are used as 
starting-points for a TS method. Tabu search uses flexible 
memory structures to integrate intensification and 
diversification strategies. In our implementation (a method 
that will be referred to as TSH),  we make use of a 
traditional fixed size short-term memory function, as 
opposed to more elaborate schemes for which attributes 
are allowed to change their memory size individually. In 
addition, TSH is designed to identify essential moves for 
specific search states (Laguna and Glover,  1990). Essential 
moves are those whose execution is considered necessary if 
an improved solution is to be found. We will further 
elaborate on this concept later in this section. 

Given an initial solution TSH seeks an optimal solution 
to the WE problem by making a succession of swap or 
insert moves. The swap move SP (Trg (i), % (j)) allows jobs 
in positions i and j of machines k and q, respectively, to 
exchange positions. The insert move IN(zrg(i), %(j)) 
consists of transferring the job currently in position i of 

machine k to a position immediately before job %( j ) .  
Every move has an associated move value which is com- 
monly defined as the change on the objective function 
value, i.e. if S and S' are the schedules before and after the 
move, then 

move_value = F(S ' )  - F(S) 

In this context moves can be either improving, deteriorat- 
ing, or null depending on whether their move_value is 
strictly less than, greater than, or equal t o z e r o ,  respec- 
tively. 

A list of candidate moves, along with their associated 
move values, is made available at every step of the search 
procedure.  The construction of the candidate list considers 
the exclusion of moves that are expected to have large 
positive move values. In general, these moves occur when a 
job is being considered for a position in the schedule that 
results in a decrease on the completion time of a number of 
jobs. The candidate list is formed by all moves that fall in 
one of the following categories 

(1) A swap of immediate neighboring jobs on the same 
machine, i.e. SP ('irk (i), 7rk (i + 1)) for i = 1 , . . . ,  nk - 1 and 
k = l , . . . , m .  

(2) A swap of two jobs on different machines such that 
their absolute deadline difference is less than or equal to 
the threshold value dmax, i.e. all SP(zrg(i), 7rq(j)) for 
k 4= q such that 

abs (d.rrk(i) --  d,rr q(j) ) ~ dmax 

where dmax = max (1 - p, 0.25) 
(h - minv= l ..... n (dr)) 

i - 1  j - l )  
and p =  max -- , -- - 

n k nq  

(3) An insert move IN(Trk(i), Zrq(j)) with the same 
conditions as in (2), and p calculated as below 

j - 1  p =  
nq 

The threshold value dmax is designed to detect and 
eliminate from consideration unreasonably large de- 
teriorating moves. Those moves are usually related to a 
large difference between the deadline values of the jobs 
being exchanged. The maximum deadline difference is the 
deadline range (i.e. the difference between the planning 
horizon h and the minimum deadline). The value of dmax is 
a percentage of the deadline range that depends on the 
density measure p. If p has a value of zero, any deadline 
difference is acceptable (e.g. when a job is being con- 
sidered for insertion at the beginning of a sequence). 
Higher density values reflect the fact that more jobs are 



256 Laguna and Velarde 

7 8 9 10 11 12 13 
I I I I I I 

1(9  I 2(10  I iil   il 6(14  

[ 3(11) ] 4(12) ] 5(13) 

14 15 16 
I I I t 

] 7(15) [ 

]i~ii~ii!:i~ii::i ] 8(16) I 

Fig. 2. Schedule for an eight job problem with two machines 

scheduled in positions that are earlier than the one 
occupied by the job under consideration. Swapping or 
inserting high density positioned jobs with large deadline 
difference is generally considered unattractive, because 
many of the jobs in early positions are required to decrease 
their completion times. 

To illustrate this, consider the schedule S of an eight job 
problem with two machines shown in Fig. 2. All jobs have 
two units of processing time and unitary earliness penalties. 
Deadlines are shown between parentheses to the right of 
each job index. F(S) is currently equal to 5 due to early 
completion of jobs 1, 3, 4 and 6. Suppose that the swap 
move SP(2, 8) is under consideration. Its move value is 
equal to 19. This large move value (almost four times F (S)) 
is the result of decreasing the completion times of jobs 3, 4, 
5 and 8. For this example dmax has a value of 1.75, and thus 
it eliminates S(2, 8) from consideration as a candidate 
move (note that d 8 -  d2 = 6). The use of this scheme 
significantly reduces the computational burden of evaluat- 
ing a large number of these unattractive moves. 

At  each iteration TSH selects the best candidate move 
available that is admissible according to the tabu restric- 
tions being imposed. These restrictions are such that after 
an insert move is executed the transferring job is classified 
tabu and is not allowed to move during a prescribed 
number of iterations, tabu_.size. After a swap move, the 
tabu job is the one that experienced the largest reduction in 
its individual earliness penalty (this job is now in a better 
position than it was prior to the move). A tabu move (one 
that involves the exchange of any tabu job) may be 
admissible, provided its execution results in an objective 
function value that is better than the one of the incumbent 
solution (i.e. the aspiration level). 

The notion of best move is related to the search state (i.e. 
search history and solution state). The following is the set 
of conditions that compose the choice rule for the selection 
of the best move. 

(i) If at least one improving move is available, select the 
most improving move, such that the sum of its move value 
and the value of the last executed move are different than 
zero. 

(ii) If no improving move that meets condition (ii) is 
available, select the deteriorating move with the smallest 

move value from those that exchange the non-tabu job with 
the largest individual earliness penalty. 

Condition (i) states that an improving move is always 
preferable,  provided this move does not cancel the effect 
that the previously executed move had on the objective 
function value. This condition, for example, is able to 
detect and avoid the execution of two consecutive insert 
moves with a null net effect on the objective function value 
(i.e. insert moves that are equivalent to a null swap move). 
Condition (ii) implements the principle that if a better  
solution will be found later in the search, jobs with large 
individual penalties must be moved. These moves are 
classified as essential. Due to the diversifying power of 
essential moves, their execution is particularly important in 
search states where no admissible move meets condition 
(i). We have also observed that large improving moves 
executed early in the search are in fact essential moves. 

Calculating a move value, of either an insert or a swap 
move, requires in the worst case O(n) time. Therefore,  
given an initial solution the values of all candidate moves 
are calculated and stored in random access memory 
(movalue array). After a move is executed an updating 
procedure recalculates only those move values that might 
have changed as a result of modifications in the current 
schedule. This strategy was successfully used by Laguna, 
Barnes and Glover (1990). 

Figure 3 shows a pseudo-code for the search heuristic, 
that uses MSH-random constructions and TSH as a local 
search procedure (this GRASP-TS hybrid will be referred 
to as GTS).  Each solution attempt consists of generating 
four initial solutions that vary from the most random 
(a = 1) to the deterministic one (a = 0). The procedure 
stores the three solutions below throughout the entire 
search. 

S : The current trial schedule. 
S"  : The best schedule found for the current a. 
S* : The best overall schedule. 

Every time an initial solution is generated the move values 
for all candidate moves and the tabu structure are initial- 
ized (line 6). The tabu structure consists of a single array, 
tabu_time, that records the most recent iteration number at 
which a job was classified tabu. The updating of the current 
best solution, S", and its associated objective function 
value, F(S~), occurs either after an initial solution is 
generated (line 4) or after an improving move is executed 
(line 11). The local search is abandoned if more than 50 
moves are executed without improving the objective 
function value of the best solution found for the current 
value of a (note that this value may be different than F(S*) 
which is the overall best). Line 13 updates the overall best 
schedule if a better  solution was found from the previous 
starting-point. 

An additional criterion not shown in Fig. 3 is used to 
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1 F(S*) 4-  ,~ 1 

2 0~4-- 1.0 2 
3 do { 
4 S a 4- MSH-random(o0 4 

5 $4 -  S a 5 
6 inifialize(movalue, tabu_time) 6 
7 do { 7 
8 best_move 4- find best(S) 8 
9 S ~-- execute(best_move) 

9 10 update(movalue, tabu time) 10 
11 i f  (F(S) < F(Sa)) S a 4-  S 

11 
12 } while (moves without improving F(S a) < 50) 12 
13 i f  (F(S a) < F(S*)) S* 4-- S a 13 
14 ct 4- ~t - 0.25 14 
15 } while (ct > 0) 15 

16 
17 Fig. 3. A pseudo-code for GTS 18 

19 
20 

break ties between competing best solutions. If two trial 21 
schedules result in the same objective function value, the 22 
one with the smaller makespan  is preferred.  This rule is 23 
particularly important  in multi-stage production systems 
for which the solution of the WE problem in one stage 
provides the deadlines (or due dates) for the preceding 
stage. Thus,  the rule allows additional slack time to the 
early stages of the production system. 

4 .  B r a n c h - a n d - b o u n d  p o s t - p r o c e s s o r  

The type of moves embedded  in GTS allows for a quite 
extensive search through different job partitions, however 
the search is rather  limited within a particular job assign- 
ment  (note that swap moves of immediate  neighbors are 
the only ones allowed within a machine). Therefore ,  it is 
likely for a solution to consist of a very good partition 
(possibly optimal) for which some sequences are not 
optimal.  Since the number  of jobs assigned to each 
machine is relatively small for the problems studied here 
(nk-~ 10), a branch-and-bound post-processor (BBP) was 
created to find (or confirm) optimal job sequences on each 
machine. BBP is a procedure that may be applied to 
solutions at different levels, as follows: 

Level 
1 
2 
3 

Applied to 
S* after all a values are explored. 
S~after  local search is abandoned at the current a.  
S after every move. 

Level 2 includes 1, but 3 does not necessarily include 2. 
Using BBP at level 3 is computationally too expensive. The 
application at level 2 is beneficial only if after post- 
processing one of the inferior S ~ solutions improves in such 

YS 4--- [Xk(1) . . . . .  Xk(nk) ] 

i 4 - n  k 

rck(i+l) 4--- n + k 

CL(i) ~-- candidates(YS, i) 
do { 

whi le  (CL(i) ;~ r and i _> 1) { 

nk(i) 4- next branch(eL(i)) 

CL(i) 4- CL(i) - nk(i ) 

i f  (F L < F(Hk)) { 
i f  (i = 1) { 

Ilk 4- IIk 
F(]-I~) 4- F L 

} else { 
YS 4-- YS - ~k(i) 

i 4 - i -  1 

CL(i) 4- candidates(YS, i) 
} 

} 
} 
YS 4-- YS 

i 4 - i + l  
U •k(i) 

if  (CL(i) ;~ 0) YS 4- YS U nk(i ) 
} wh i l e  (i -< nk) 

Fig. 4. A pseudo-code for BBP 

a way that it becomes better  than the post-processed S*. 
Since during preliminary experimentat ion this phe- 
nomenon was not observed,  we opted for applying BBP at 
the first level. 

Figure 4 presents a pseudo-code for BBP. The best 
solution found by the GTS procedure,  S*, consists of m 
sequences II~ (k = 1, . . . ,  m) and a set of completion 
times c*, therefore it is required for BBP to be called m 
times. After  each time, the best sequence for machine k, 
I lk,  is either confirmed to be optimal or replaced (in this 
case completion times for the jobs assigned to k are 
modified accordingly). As before,  we define YS as the set 
of jobs yet to be scheduled which initially contains all jobs 
assigned to machine k (line 1). A variable i is used as a 
pointer  to the current tree level being explored (levels are 
examined from the last position in the sequence to the first, 
see line 2). CL(i) is the list of unexplored branches at the ith 
level. This list is initialized every time the search moves to a 
lower level (lines 4 and 16). CL (i) is found as proposed by 
Chand and Schneeberger,  (1988), where it was used for the 
reaching process of the DP algorithm. 

T = m i n  {C,~.k(i + 1) - -  l'trk(i+ 1), maxj~vs  (dj)} 

A = minjldj > T(,? 

CL(i)  = {/Idj> T - A , j  ~ YS} 

The value of A is used to allow idle time immediately before 
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job r + 1). It is easy to verify that no optimal schedule 
contains an idle time greater than or equal to A. 

Branches are selected for exploration (line 7) in increas- 
ing r-ratio values. Every time a branch is selected, it is 
deleted from the candidate list (line 8). The fathoming 
criterion consists of comparing the value of a lower bound 
FL with the value of the incumbent solution (line 9). The 
lower bound is calculated as follows. Let s = c~ (i~ - t~,~ (i) 
be the starting-time at level i, then 

n k  

FL = E (d=,o) - C=,O)) (P=,(i)) + E (dj - s) pj 

i=i jldj > ~ 

If a branch is not fathomed (i.e. FL < F(Ilk)), the search 
moves to a lower level. If the new level is the first position, 
the incumbent solution is updated (lines 11 and 12). 
Back-tracking is performed by the instructions in lines 
20-22. The combined merit of GTS and BBP is assessed in 
the following section, where the result of computational 
experiments is presented. 

5. Computational experiments 

The GTS procedure is designed to seek an optimal solution 
to instances of the WE problem disregarding any assump- 
tions about the r ratios or deadlines. It is known, for 
example, that MSH optimally solves the single machine 
case of the WE problem when for all jobs either the r ratios 
or the deadlines are equal (Chand and Schneeberger, 
1988). However, for practical purposes, these assumptions 
are veryunrealistic. 

In the manufacturing environment that motivated our 
study, scheduling decisions are made one month in ad- 
vance. This creates a 60-day planning horizon for which all 
deadlines fall within the last half of the period (i.e. 
31---dj- < 60 for j = 1, . . . ,  n). Deadlines also have the 
characteristic of being clustered around certain days of the 
week (specifically, from Wednesday to Friday). In an 
attempt to create instances that capture this particular 
demand behavior, we designed the following problem 
generator 

d / =  U(O, 2) + 7 (1 + U(O, 3)) q- 30 
tj = U(1, 7) 

Pi = U(1, 2ti) 

Using the uniform distributions above, five sets of five 
problems were generated with the number of jobs ranging 
from 20 to 100. The number of machines was set equal to 
n/lO for all problems. 

GTS requires (in addition to a seed for the random 
number generator) a value for the size of the short-term 
memory function (i.e. tabu_size). This value must be 

sufficiently large to avoid short-term cycling. In our case, 
[X/~ 1 (where [xi is the smallest integer greater than or equal 
to x) was found to be an acceptable lower bound on the 
value of tabu_size. In our context, tabu_size directly 
depends on the number of jobs, since moves are classified 
tabu as a result of the existence of tabu jobs. The maximum 
value for tabu_size is therefore n - 1 (i.e. when only one 
job is not tabu at any particular time). The minimum value 
for tabu_size, when similar tabu restrictions are imposed, 
has been found to be in the neighborhood of 7 (Laguna, 
Barnes and Glover, 1990). Our choice of a lower bound for 
tabu_size is merely empirical, but it is in agreement with 
results reported in the literature. 

An initial experiment was performed, in which tabu_size 
was set to its lower bound and the arbitrary seed value of 
32164 was used, with the following goals in mind 

(1) Measuring the merit of using the BB post-processor. 
(2) Estimating the quality of the solutions obtained by 

GTS by comparing them with the solutions found by the 
MSH procedure. 

(3) Estimating the average computational effort in- 
volved in a solution attempt for each problem size. 

Tables 1 and 2 summarize the results of this experiment. 
Table 1 gives the percentage decrease in the total objective 
function (TOF) value over the MSH procedure, achieved 
by GTS with and without post-processor (the TOF value is 
simply the sum of the objective function value for each of 
the five problems in the set). Table 2 reports the CPU run 
times for these two procedures. The procedures were 
implemented in C and run on a 386/16 microcomputer. 
Table 1 shows that for problems with 20 and 40 jobs the best 
schedules found by GTS contained optimal job sequences 
on all machines. For larger problems (n > 40) the post- 
processor was able to improve upon the best GTS solu- 

Table 1. Percentage decrease in the total objective function value 

Problem size 

Procedure 20 40 60 80 100 

GTS 10.3 13.8 4.6 10.0 10.9 
GTS/BBP 10.3 13.8 4.9 10.3 11.5 

Table 2. Average cPu  time in minutes 
i ~ ' f , '  

Problem size 

Procedure 20 40 60 80 100 

GTS 0.81 5.65 10.68 
GTS/BBP 0.83 5.73 10.85 

17.51 
17.64 

i i i 

27.90 
28.O2 
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Table 3. Percentage deviation from best known solutions 
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Solution attempt (a) 

Problem size (n) 0 1 2 3 4 5 6 7 8 

20 0.06 0.00 0.06 0.06 0.06 0.06 0.06 0.23 0.46 
40 0.54 0.89 0.74 0.31 0.70 0.46 0.39 0.23 0.50 
60 3.04 2.75 2.63 2.20 2.78 1.19 2.12 2.16 1.25 
80 1.73 1.49 2.09 1.76 1.51 1.62 1.48 2.09 1.92 

100 2.61 2.67 2.98 2.61 2.25 2.42 2.26 2.29 2.80 

Total 2.01 1.92 2.15 1.80 1.79 1.51 1.61 1.81 1.76 

tions. The improvements are naturally due to the presence, 
within these solutions, of non-optimal job sequences. 
Table 2 shows that, for our test problems, the use of the 
post-processor did not result in a significant increase on 
CPU run time. Therefore, GTS/BBP was used for the 
remaining part of the computational experimentation. 
There also appears to be a non-exponential growth in the 
average CPU time required to acquire solutions as the 
number of jobs and machines grows larger. 

A more extensive experiment was undertaken to deter- 
mine a tabu_size value (or a set of values) that could be 
considered superior for the class of problems under study. 
The experiment consisted of 8 additional solution attempts 
to each problem instance using GTS/BBP. For each 
attempt, a, the short-term memory was set to 

tabu_size = [~/~1 + a for a = 1 . . . .  ,8  

Table 3 shows the percentage deviation between the TOF 
value obtained using a particular tabu_size and the best 
TOF value known for the given problem set (the best 
known solution for each problem is taken to be the 
minimum over all solution attempts). The last row in this 
table gives the total percentage deviation, calculated by 
adding the objective function values for all problem sizes. 
Note first that (n, a) = (20, 1) is the only case where all 
solutions found corresponded to the best known solutions. 
The best memory size settings (i.e. a values) for problems 
with 40, 60, 80, and 100 jobs are 7, 5, 6, and 4, respectively. 
The most consistent memory size corresponds to an a value 
of 5, since overall it results in the smallest percentage 
deviation from the best known (i.e. 1.51%). 

In order to confirm empirically the consistency of the 
solutions obtained by setting tabu_size to a value of 
[~/nl + 5, a final experiment was performed. This experi- 
ment consisted of 6 solution attempts to each test problem 
of all sizes using the specified memory size and a random 
seed. The resulting solutions yielded a total deviation of 
1.49% from the best known. This percentage deviation is 
very similar to the one reported in Table 1 for the same 

memory size, which strongly suggests the adequacy of the 
selected tabu_size value. 

6, Conclus ions  and final remarks  

The hybrid GRASP/tabu search approach with a branch- 
and-bound post-processor succeeds in finding solutions to 
the WE problem that are on the average at least 10% better 
than those found by the adapted Smith-heuristic. The 
solutions were found within a reasonable amount of time, 
considering the computer equipment utilized, and more 
importantly, taking into account that scheduling decisions 
(in the production environment we studied) are made once 
a month. In the case that the original schedule cannot be 
.completed due to breakdowns, unexpected production 
orders, quality problems, or accidents, our solution 
method can be used to generate a revised solution to the 
problem. Partially completed jobs along with the new 
orders are then considered for scheduling purposes on a 
number of machines that might be adjusted to take into 
consideration reduction in capacity. 

The use of BBP was only possible because of the 10-to-1 
relationship between the number of jobs and machines in 
the set of test problems. If the ratio n/m grows, post- 
processing using BBP becomes rapidly infeasible (e.g. 
when the number of machines is set to 3 for the set of 40 job 
problems, the average CPU times for GTS and GTS/BBP 
become 5.9 and 12.4 min, respectively). 

Within the scope of this research effort, we were unable 
to provide a stronger measure for the quality of our 
solutions (other than the one presented in Tables 1 and 3). 
Therefore, a natural direction for future research may 
consist of studying the properties of the MSH procedure as 
adapted to handle parallel identical machines, and the 
cases in which this approach performs well. In this way, a 
better understanding might be gained about the merit of 
applying GTS (with and without post-processing) to the 
multi-machine version of the weighted earliness problem. 
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