
Journal o f Intelligent Manufacturing (1991) 2, 253-260

A search heuristic for just-in-time
scheduling in parallel machines

M A N U E L L A G U N A 1 and JOSI~ L U I S G O N Z , ~ L E Z V E L A R D E 2

1US West Postdoctoral Fellow, Graduate School of Business and Administration, Campus Box
419, University of Colorado at Boulder, Boulder, CO 80309-0419, USA
2Centro de Sistemas de Manufactura, Divisi6n de Graduados e Investigaci6n, 1TESM, Sucursal
de Correos J, Monterrey, NL 64849, Mdxico

Received November 1990 and accepted March 1991

In recent years the Just-in-Time (JIT) production philosophy as been adopted by many
companies around the world. This has motivated the study of scheduling models that embrace
the essential components of JIT systems. In this paper, we present a search heurustic for the
weighted earliness penalty problem with deadlines in parallel identical machines. Our
approach combines elements of the solution methods known as greedy randomized adaptive
search procedure (GRASP) and tabu search. It also uses a branch-and-bound post-processor
to optimize individually the sequence of the jobs assigned to each machine.

Keywords: Tabu search, GRASP, just-in-time, scheduling

1. Introduction

The Just-in-Time (JIT) production system was developed
by Toyota Motor Co., Ltd, and has been adopted by many
companies around the world. JIT basically means to
produce the necessary units in the necessary quantities at
the necessary time. The main purpose of JIT systems is to
reduce costs associated with production processes thus
improving the total productivity of a company. The current
interest in JIT production has motivated the study of
scheduling models capable of capturing the essence of this
idea. Unfortunately, as shown in the review article by
Baker and Scudder (1990), very little has been done in
terms of developing solution procedures for scheduling
problems in JIT environments with more than one
machine.

In this paper we study the multi-machine weighted
earliness (WE) problem with deadlines. As opposed to due
dates, which may be violated at the cost of tardiness,
deadlines must be met and cannot be violated. The WE
problem is specially relevant to companies with point-of-
use manufacture. This manufacturing approach means that
the work-stations making the components are located
along the assembly line immediately before the assembly

0953-9875/91 $03.00 + .12 (~ 1991 Chapman and Hall Ltd.

operations they serve. In this way, point-of-use manufac-
ture increases productivity by reducing the amount of
work-in-process. At the same time, failing to meet dead-
lines causes the entire line to shut down.

We encountered an instance of the WE problem in the
last stage of a JIT system for the manufacturing of thread.
At this stage, n jobs are to be processed on m machines in
order to meet deadlines and minimize the total earliness
penalty. Each job, j, is described by a processing time, tj, a
deadline, dj, and an earliness penalty, pj. As a result of
scheduling decisions, jobj will be assigned a position in one
of the m machines and a completion time, denoted by cj.

A schedule, S, has the following form

s = {n, c}

where II = {Hi, H2 ,nm} is the partition of the n jobs
in m sequences, and c is the set of completion times for all
jobs. For each machine k, the following represents the
sequence in which jobs will be processed

[I/, = {Trk(1), 7rk(2) , 7rk(nk), n + k}

where ~rk (i) is the index of the job in position i on machine

254 Laguna and Velarde

k, and n + k is a dummy job that uniquely identifies the end
of each sequence. In mathematical terms, the WE problem
can be formulated as follows

Minimize

subject to
d -cj>-O

n

F(S) = (4 - e)p;
]=1

for j = 1 , . . . , n
and no two jobs overlap.

Since the single machine case of the WE problem is
NP-hard (Chand and Schneeberger, 1988) branch-and-
bound (Ahmadi and Bagchi, 1986) and dynamic program-
ming (DP) (Chand and Schneeberger, 1988) methods have
been developed for its solution. Chand and Schneeberger
(1988) also developed a heuristic based on a dispatching
rule that selects admissible jobs by their natural order (i.e.
in increasing value of rj, where rj = ti/pj). The performance
of this heuristic Was evaluated by comparing its solutions to
10 job problems against optima found with the DP
algorithm. Based on extensive computational experiments,
the authors were able to identify some weaknesses in their
heuristic. For example, problems with tightly clustered
deadlines do not have good heuristic solutions because the
method does not consider the effect of scheduling a job
prior to fellow candidates. The authors also do not
recommend the use of their DP procedures for problems
with more than 15 jobs. Finally, they identify a need to
develop better heuristics for realistic situations.

The primary purpose of our study is to develop a search
heuristic to provide high-quality solutions to the WE
problem. Our heuristic combines the ideas of two search
procedures: GRASP (Feo and Resende, 1989) and tabu
search (TS) (Glover, 1989; 1990 de Werra and
Hertz, 1989). The TS framework has emerged as an
effective approach for handling complex decision prob-
lems, and it stems from the general tenets of intelligent
problem solving (Glover and Greenberg, 1989). The
approach is considered to be a blend of artificial intelli-
gence and operations research, because it employs memory
functions to provide an interplay between learning and
unlearning that monitors and directs the search procedure.

In Section 2 we present the procedure used to construct
initial trial solutions. These solutions are then used to start
the TS method presented in Section 3. A branch-and-
bound procedure is introduced in Section 4. This procedure
is employed as a post-processor optimally to schedule jobs
already assigned to each machine. Computational experi-
ments, designed to measure the merit of our solution
approach, are shown in Section 5. Conclusions, final
remarks, and directions for future research are given in
Section 6.

2 . G R A S P c o n s t r u c t i o n

A greedy randomized adaptive search procedure
(GRASP) is a technique developed by Feo and Resende
(1989) for the approximate solution of combinatorially
difficult problems. GRASP typically consists of two
phases: the construction step and the local search proce-
dure. The construction phase is based on the idea that a
variety of good solutions can be generated by an intelligent
randomization of the selection step of a greedy heuristic.
These solutions are then passed to an exchange procedure
that searches for local improvements.

The greedy heuristic we examine for our application is
the modified Smith-heuristic (MSH) proposed by Chand
and Schneeberger (1988). We first adapt MSH to handle
more than one machine and then we integrate a random
component. In general terms MSH, as conceived by Chand
and Schneeberger (1988), schedules the admissible job
with the smallest time-to-penalty ratio (r ratio), starting
from the last position. A job is admissible if it belongs to the
set of jobs yet to be scheduled (YS), and its deadline is
greater than or equal to a variable T. This variable marks
the completion time that will be assigned to the selected
job.

The deterministic version of MSH for parallel machines
is shown in Fig. 1. The first six lines correspond to the
initialization step. The set of jobs yet to be scheduled, YS,
initially contains all jobs. The planning horizon, h, is
defined as the maximum deadline. Each machine is
assigned a dummy job and a Tvalue equal to the planning
horizon (since machines are filled starting from the last

1 YS ~ [1 n]

2 h 4-- max (di)
ie YS

3 for (k = 1 m) {
4 Tk (-- h

5 Ilk ~ {n+k}
6 }
7 flo {
8 Find q such that Tq = max (Tk)

k = l , . . . ,m
9 Find j such that rj = min (ri)

i~ YS, di>T q

lO cj -Tq
11 1-Iq 6-- l'Iq U {j]
12 YS <-- YS- {j}
13 for (k = 1 m) {
14 T k ~- max (di)

ie YS

15 i f (k = q) T k 4-- min (cj- tj, T k)
16 }
17 } wh i l e (YS # 0)

Fig. 1. MSH for parallel machines

A search heuristic for just-in-time scheduling in parallel machines 255

position, the only admissible jobs are initially those with
deadlines exactly equal to h). Lines 7-17 contain the
iterative process by which one job is scheduled at a time. In
line 8, the index of the machine with the minimum load is
found and is labeled machine q. The next job to be
scheduled, job j, is the one with the minimum r ratio among
all those found admissible (admissibility here depends on
the selection of machine q). Line 10 assigns the Tvalue o f
machine q as the completion time of the selected job j. Line
11 adds job j to the sequence of jobs in machine q. It is
important to note that job j is always being inserted in the
first position of the given sequence. Line 12 reflects the fact
that job j has already been scheduled. The updating of the
T values for each machine is carried out in lines 13-16.

A randomized version of the heuristic described above (a
procedure that will be referred to as MSH-random), may
be achieved by modifying the job selection step of line 9. In
MSH-random job j is randomly selected from a candidate
list, CL, of admissible jobs (i.e. i] i E YS and di >- Tq). The
candidate list is created by first defining r_min and r_max as
the minimum and maximum r ratio values, respectively, in
the set of admissible jobs. An admissible job i is then added
to the list if

r i <-- r_min + a (r_max - r_min)

where a(O -< a -< 1) is a parameter that controls the amount
of randomization permitted. If a is set to a value of zero,
MSH-random becomes the deterministic procedure de-
scribed in Fig. 1. On the contrary, the candidate list reaches
its maximum possible cardinality when a is set to a value of
one.

3. Tabu search

The solutions generated by MSH-random are used as
starting-points for a TS method. Tabu search uses flexible
memory structures to integrate intensification and
diversification strategies. In our implementation (a method
that will be referred to as TSH), we make use of a
traditional fixed size short-term memory function, as
opposed to more elaborate schemes for which attributes
are allowed to change their memory size individually. In
addition, TSH is designed to identify essential moves for
specific search states (Laguna and Glover, 1990). Essential
moves are those whose execution is considered necessary if
an improved solution is to be found. We will further
elaborate on this concept later in this section.

Given an initial solution TSH seeks an optimal solution
to the WE problem by making a succession of swap or
insert moves. The swap move SP (Trg (i), % (j)) allows jobs
in positions i and j of machines k and q, respectively, to
exchange positions. The insert move IN(zrg(i), %(j))
consists of transferring the job currently in position i of

machine k to a position immediately before job %(j) .
Every move has an associated move value which is com-
monly defined as the change on the objective function
value, i.e. if S and S' are the schedules before and after the
move, then

move_value = F(S ') - F(S)

In this context moves can be either improving, deteriorat-
ing, or null depending on whether their move_value is
strictly less than, greater than, or equal t o z e r o , respec-
tively.

A list of candidate moves, along with their associated
move values, is made available at every step of the search
procedure. The construction of the candidate list considers
the exclusion of moves that are expected to have large
positive move values. In general, these moves occur when a
job is being considered for a position in the schedule that
results in a decrease on the completion time of a number of
jobs. The candidate list is formed by all moves that fall in
one of the following categories

(1) A swap of immediate neighboring jobs on the same
machine, i.e. SP ('irk (i), 7rk (i + 1)) for i = 1 , . . . , nk - 1 and
k = l , . . . , m .

(2) A swap of two jobs on different machines such that
their absolute deadline difference is less than or equal to
the threshold value dmax, i.e. all SP(zrg(i), 7rq(j)) for
k 4= q such that

abs (d.rrk(i) -- d,rr q(j)) ~ dmax

where dmax = max (1 - p, 0.25)
(h - minv= l n (dr))

i - 1 j - l)
and p = max -- , -- -

n k nq

(3) An insert move IN(Trk(i), Zrq(j)) with the same
conditions as in (2), and p calculated as below

j - 1 p =
nq

The threshold value dmax is designed to detect and
eliminate from consideration unreasonably large de-
teriorating moves. Those moves are usually related to a
large difference between the deadline values of the jobs
being exchanged. The maximum deadline difference is the
deadline range (i.e. the difference between the planning
horizon h and the minimum deadline). The value of dmax is
a percentage of the deadline range that depends on the
density measure p. If p has a value of zero, any deadline
difference is acceptable (e.g. when a job is being con-
sidered for insertion at the beginning of a sequence).
Higher density values reflect the fact that more jobs are

256 Laguna and Velarde

7 8 9 10 11 12 13
I I I I I I

1(9 I 2(10 I iil il 6(14

[3(11)] 4(12)] 5(13)

14 15 16
I I I t

] 7(15) [

]i~ii~ii!:i~ii::i] 8(16) I

Fig. 2. Schedule for an eight job problem with two machines

scheduled in positions that are earlier than the one
occupied by the job under consideration. Swapping or
inserting high density positioned jobs with large deadline
difference is generally considered unattractive, because
many of the jobs in early positions are required to decrease
their completion times.

To illustrate this, consider the schedule S of an eight job
problem with two machines shown in Fig. 2. All jobs have
two units of processing time and unitary earliness penalties.
Deadlines are shown between parentheses to the right of
each job index. F(S) is currently equal to 5 due to early
completion of jobs 1, 3, 4 and 6. Suppose that the swap
move SP(2, 8) is under consideration. Its move value is
equal to 19. This large move value (almost four times F (S))
is the result of decreasing the completion times of jobs 3, 4,
5 and 8. For this example dmax has a value of 1.75, and thus
it eliminates S(2, 8) from consideration as a candidate
move (note that d 8 - d2 = 6). The use of this scheme
significantly reduces the computational burden of evaluat-
ing a large number of these unattractive moves.

At each iteration TSH selects the best candidate move
available that is admissible according to the tabu restric-
tions being imposed. These restrictions are such that after
an insert move is executed the transferring job is classified
tabu and is not allowed to move during a prescribed
number of iterations, tabu_.size. After a swap move, the
tabu job is the one that experienced the largest reduction in
its individual earliness penalty (this job is now in a better
position than it was prior to the move). A tabu move (one
that involves the exchange of any tabu job) may be
admissible, provided its execution results in an objective
function value that is better than the one of the incumbent
solution (i.e. the aspiration level).

The notion of best move is related to the search state (i.e.
search history and solution state). The following is the set
of conditions that compose the choice rule for the selection
of the best move.

(i) If at least one improving move is available, select the
most improving move, such that the sum of its move value
and the value of the last executed move are different than
zero.

(ii) If no improving move that meets condition (ii) is
available, select the deteriorating move with the smallest

move value from those that exchange the non-tabu job with
the largest individual earliness penalty.

Condition (i) states that an improving move is always
preferable, provided this move does not cancel the effect
that the previously executed move had on the objective
function value. This condition, for example, is able to
detect and avoid the execution of two consecutive insert
moves with a null net effect on the objective function value
(i.e. insert moves that are equivalent to a null swap move).
Condition (ii) implements the principle that if a better
solution will be found later in the search, jobs with large
individual penalties must be moved. These moves are
classified as essential. Due to the diversifying power of
essential moves, their execution is particularly important in
search states where no admissible move meets condition
(i). We have also observed that large improving moves
executed early in the search are in fact essential moves.

Calculating a move value, of either an insert or a swap
move, requires in the worst case O(n) time. Therefore,
given an initial solution the values of all candidate moves
are calculated and stored in random access memory
(movalue array). After a move is executed an updating
procedure recalculates only those move values that might
have changed as a result of modifications in the current
schedule. This strategy was successfully used by Laguna,
Barnes and Glover (1990).

Figure 3 shows a pseudo-code for the search heuristic,
that uses MSH-random constructions and TSH as a local
search procedure (this GRASP-TS hybrid will be referred
to as GTS). Each solution attempt consists of generating
four initial solutions that vary from the most random
(a = 1) to the deterministic one (a = 0). The procedure
stores the three solutions below throughout the entire
search.

S : The current trial schedule.
S" : The best schedule found for the current a.
S* : The best overall schedule.

Every time an initial solution is generated the move values
for all candidate moves and the tabu structure are initial-
ized (line 6). The tabu structure consists of a single array,
tabu_time, that records the most recent iteration number at
which a job was classified tabu. The updating of the current
best solution, S", and its associated objective function
value, F(S~), occurs either after an initial solution is
generated (line 4) or after an improving move is executed
(line 11). The local search is abandoned if more than 50
moves are executed without improving the objective
function value of the best solution found for the current
value of a (note that this value may be different than F(S*)
which is the overall best). Line 13 updates the overall best
schedule if a better solution was found from the previous
starting-point.

An additional criterion not shown in Fig. 3 is used to

A search heuristic for just-in-time scheduling in parallel machines 257

1 F(S*) 4- ,~ 1

2 0~4-- 1.0 2
3 do {
4 S a 4- MSH-random(o0 4

5 $4 - S a 5
6 inifialize(movalue, tabu_time) 6
7 do { 7
8 best_move 4- find best(S) 8
9 S ~-- execute(best_move)

9 10 update(movalue, tabu time) 10
11 i f (F(S) < F(Sa)) S a 4- S

11
12 } while (moves without improving F(S a) < 50) 12
13 i f (F(S a) < F(S*)) S* 4-- S a 13
14 ct 4- ~t - 0.25 14
15 } while (ct > 0) 15

16
17 Fig. 3. A pseudo-code for GTS 18

19
20

break ties between competing best solutions. If two trial 21
schedules result in the same objective function value, the 22
one with the smaller makespan is preferred. This rule is 23
particularly important in multi-stage production systems
for which the solution of the WE problem in one stage
provides the deadlines (or due dates) for the preceding
stage. Thus, the rule allows additional slack time to the
early stages of the production system.

4 . B r a n c h - a n d - b o u n d p o s t - p r o c e s s o r

The type of moves embedded in GTS allows for a quite
extensive search through different job partitions, however
the search is rather limited within a particular job assign-
ment (note that swap moves of immediate neighbors are
the only ones allowed within a machine). Therefore , it is
likely for a solution to consist of a very good partition
(possibly optimal) for which some sequences are not
optimal. Since the number of jobs assigned to each
machine is relatively small for the problems studied here
(nk-~ 10), a branch-and-bound post-processor (BBP) was
created to find (or confirm) optimal job sequences on each
machine. BBP is a procedure that may be applied to
solutions at different levels, as follows:

Level
1
2
3

Applied to
S* after all a values are explored.
S~after local search is abandoned at the current a.
S after every move.

Level 2 includes 1, but 3 does not necessarily include 2.
Using BBP at level 3 is computationally too expensive. The
application at level 2 is beneficial only if after post-
processing one of the inferior S ~ solutions improves in such

YS 4--- [Xk(1) Xk(nk)]

i 4 - n k

rck(i+l) 4--- n + k

CL(i) ~-- candidates(YS, i)
do {

whi le (CL(i) ;~ r and i _> 1) {

nk(i) 4- next branch(eL(i))

CL(i) 4- CL(i) - nk(i)

i f (F L < F(Hk)) {
i f (i = 1) {

Ilk 4- IIk
F(]-I~) 4- F L

} else {
YS 4-- YS - ~k(i)

i 4 - i - 1

CL(i) 4- candidates(YS, i)
}

}
}
YS 4-- YS

i 4 - i + l
U •k(i)

if (CL(i) ;~ 0) YS 4- YS U nk(i)
} wh i l e (i -< nk)

Fig. 4. A pseudo-code for BBP

a way that it becomes better than the post-processed S*.
Since during preliminary experimentat ion this phe-
nomenon was not observed, we opted for applying BBP at
the first level.

Figure 4 presents a pseudo-code for BBP. The best
solution found by the GTS procedure, S*, consists of m
sequences II~ (k = 1, . . . , m) and a set of completion
times c*, therefore it is required for BBP to be called m
times. After each time, the best sequence for machine k,
I lk, is either confirmed to be optimal or replaced (in this
case completion times for the jobs assigned to k are
modified accordingly). As before, we define YS as the set
of jobs yet to be scheduled which initially contains all jobs
assigned to machine k (line 1). A variable i is used as a
pointer to the current tree level being explored (levels are
examined from the last position in the sequence to the first,
see line 2). CL(i) is the list of unexplored branches at the ith
level. This list is initialized every time the search moves to a
lower level (lines 4 and 16). CL (i) is found as proposed by
Chand and Schneeberger, (1988), where it was used for the
reaching process of the DP algorithm.

T = m i n {C,~.k(i + 1) - - l'trk(i+ 1), maxj~vs (dj)}

A = minjldj > T(,?

CL(i) = {/Idj> T - A , j ~ YS}

The value of A is used to allow idle time immediately before

258 Laguna and Velarde

job r + 1). It is easy to verify that no optimal schedule
contains an idle time greater than or equal to A.

Branches are selected for exploration (line 7) in increas-
ing r-ratio values. Every time a branch is selected, it is
deleted from the candidate list (line 8). The fathoming
criterion consists of comparing the value of a lower bound
FL with the value of the incumbent solution (line 9). The
lower bound is calculated as follows. Let s = c~ (i~ - t~,~ (i)
be the starting-time at level i, then

n k

FL = E (d=,o) - C=,O)) (P=,(i)) + E (dj - s) pj

i=i jldj > ~

If a branch is not fathomed (i.e. FL < F(Ilk)), the search
moves to a lower level. If the new level is the first position,
the incumbent solution is updated (lines 11 and 12).
Back-tracking is performed by the instructions in lines
20-22. The combined merit of GTS and BBP is assessed in
the following section, where the result of computational
experiments is presented.

5. Computational experiments

The GTS procedure is designed to seek an optimal solution
to instances of the WE problem disregarding any assump-
tions about the r ratios or deadlines. It is known, for
example, that MSH optimally solves the single machine
case of the WE problem when for all jobs either the r ratios
or the deadlines are equal (Chand and Schneeberger,
1988). However, for practical purposes, these assumptions
are veryunrealistic.

In the manufacturing environment that motivated our
study, scheduling decisions are made one month in ad-
vance. This creates a 60-day planning horizon for which all
deadlines fall within the last half of the period (i.e.
31---dj- < 60 for j = 1, . . . , n). Deadlines also have the
characteristic of being clustered around certain days of the
week (specifically, from Wednesday to Friday). In an
attempt to create instances that capture this particular
demand behavior, we designed the following problem
generator

d / = U(O, 2) + 7 (1 + U(O, 3)) q- 30
tj = U(1, 7)

Pi = U(1, 2ti)

Using the uniform distributions above, five sets of five
problems were generated with the number of jobs ranging
from 20 to 100. The number of machines was set equal to
n/lO for all problems.

GTS requires (in addition to a seed for the random
number generator) a value for the size of the short-term
memory function (i.e. tabu_size). This value must be

sufficiently large to avoid short-term cycling. In our case,
[X/~ 1 (where [xi is the smallest integer greater than or equal
to x) was found to be an acceptable lower bound on the
value of tabu_size. In our context, tabu_size directly
depends on the number of jobs, since moves are classified
tabu as a result of the existence of tabu jobs. The maximum
value for tabu_size is therefore n - 1 (i.e. when only one
job is not tabu at any particular time). The minimum value
for tabu_size, when similar tabu restrictions are imposed,
has been found to be in the neighborhood of 7 (Laguna,
Barnes and Glover, 1990). Our choice of a lower bound for
tabu_size is merely empirical, but it is in agreement with
results reported in the literature.

An initial experiment was performed, in which tabu_size
was set to its lower bound and the arbitrary seed value of
32164 was used, with the following goals in mind

(1) Measuring the merit of using the BB post-processor.
(2) Estimating the quality of the solutions obtained by

GTS by comparing them with the solutions found by the
MSH procedure.

(3) Estimating the average computational effort in-
volved in a solution attempt for each problem size.

Tables 1 and 2 summarize the results of this experiment.
Table 1 gives the percentage decrease in the total objective
function (TOF) value over the MSH procedure, achieved
by GTS with and without post-processor (the TOF value is
simply the sum of the objective function value for each of
the five problems in the set). Table 2 reports the CPU run
times for these two procedures. The procedures were
implemented in C and run on a 386/16 microcomputer.
Table 1 shows that for problems with 20 and 40 jobs the best
schedules found by GTS contained optimal job sequences
on all machines. For larger problems (n > 40) the post-
processor was able to improve upon the best GTS solu-

Table 1. Percentage decrease in the total objective function value

Problem size

Procedure 20 40 60 80 100

GTS 10.3 13.8 4.6 10.0 10.9
GTS/BBP 10.3 13.8 4.9 10.3 11.5

Table 2. Average cPu time in minutes
i ~ ' f , '

Problem size

Procedure 20 40 60 80 100

GTS 0.81 5.65 10.68
GTS/BBP 0.83 5.73 10.85

17.51
17.64

i i i

27.90
28.O2

A search heuristic fo r just-in-time scheduling in parallel machines

Table 3. Percentage deviation from best known solutions

259

Solution attempt (a)

Problem size (n) 0 1 2 3 4 5 6 7 8

20 0.06 0.00 0.06 0.06 0.06 0.06 0.06 0.23 0.46
40 0.54 0.89 0.74 0.31 0.70 0.46 0.39 0.23 0.50
60 3.04 2.75 2.63 2.20 2.78 1.19 2.12 2.16 1.25
80 1.73 1.49 2.09 1.76 1.51 1.62 1.48 2.09 1.92

100 2.61 2.67 2.98 2.61 2.25 2.42 2.26 2.29 2.80

Total 2.01 1.92 2.15 1.80 1.79 1.51 1.61 1.81 1.76

tions. The improvements are naturally due to the presence,
within these solutions, of non-optimal job sequences.
Table 2 shows that, for our test problems, the use of the
post-processor did not result in a significant increase on
CPU run time. Therefore, GTS/BBP was used for the
remaining part of the computational experimentation.
There also appears to be a non-exponential growth in the
average CPU time required to acquire solutions as the
number of jobs and machines grows larger.

A more extensive experiment was undertaken to deter-
mine a tabu_size value (or a set of values) that could be
considered superior for the class of problems under study.
The experiment consisted of 8 additional solution attempts
to each problem instance using GTS/BBP. For each
attempt, a, the short-term memory was set to

tabu_size = [~/~1 + a for a = 1 ,8

Table 3 shows the percentage deviation between the TOF
value obtained using a particular tabu_size and the best
TOF value known for the given problem set (the best
known solution for each problem is taken to be the
minimum over all solution attempts). The last row in this
table gives the total percentage deviation, calculated by
adding the objective function values for all problem sizes.
Note first that (n, a) = (20, 1) is the only case where all
solutions found corresponded to the best known solutions.
The best memory size settings (i.e. a values) for problems
with 40, 60, 80, and 100 jobs are 7, 5, 6, and 4, respectively.
The most consistent memory size corresponds to an a value
of 5, since overall it results in the smallest percentage
deviation from the best known (i.e. 1.51%).

In order to confirm empirically the consistency of the
solutions obtained by setting tabu_size to a value of
[~/nl + 5, a final experiment was performed. This experi-
ment consisted of 6 solution attempts to each test problem
of all sizes using the specified memory size and a random
seed. The resulting solutions yielded a total deviation of
1.49% from the best known. This percentage deviation is
very similar to the one reported in Table 1 for the same

memory size, which strongly suggests the adequacy of the
selected tabu_size value.

6, Conclus ions and final remarks

The hybrid GRASP/tabu search approach with a branch-
and-bound post-processor succeeds in finding solutions to
the WE problem that are on the average at least 10% better
than those found by the adapted Smith-heuristic. The
solutions were found within a reasonable amount of time,
considering the computer equipment utilized, and more
importantly, taking into account that scheduling decisions
(in the production environment we studied) are made once
a month. In the case that the original schedule cannot be
.completed due to breakdowns, unexpected production
orders, quality problems, or accidents, our solution
method can be used to generate a revised solution to the
problem. Partially completed jobs along with the new
orders are then considered for scheduling purposes on a
number of machines that might be adjusted to take into
consideration reduction in capacity.

The use of BBP was only possible because of the 10-to-1
relationship between the number of jobs and machines in
the set of test problems. If the ratio n/m grows, post-
processing using BBP becomes rapidly infeasible (e.g.
when the number of machines is set to 3 for the set of 40 job
problems, the average CPU times for GTS and GTS/BBP
become 5.9 and 12.4 min, respectively).

Within the scope of this research effort, we were unable
to provide a stronger measure for the quality of our
solutions (other than the one presented in Tables 1 and 3).
Therefore, a natural direction for future research may
consist of studying the properties of the MSH procedure as
adapted to handle parallel identical machines, and the
cases in which this approach performs well. In this way, a
better understanding might be gained about the merit of
applying GTS (with and without post-processing) to the
multi-machine version of the weighted earliness problem.

260 Laguna and Velarde

References

Ahmadi, R. and Bagchi, U. (1986) Just-in-Time scheduling in
single machine systems Working Paper 85/86-4-21, The
University of Texas at Austin, USA.

Baker, K. R. and Scudder, G. D. (1990) Sequencing with
earliness and tardiness penalties: a review. Operations
Research, 38, 22-36.

Chand, S. and Schneeberger, H. (1988) Single machine schedul-
ing to minimize weighted earliness subject to no tardy jobs.
European Journal of Operational Research, 34, 221-30.

de Werra, D. and Hertz, A. (1989) Tabu search techniques: a
tutorial and an application to neural networks. OR Spectrum,
11,131-41.

Feo, T. A. and Resende, M. G. C. (1989) A probabilistic heuristic
for a computationally difficult set covering problem. Opera-
tions Research Letters, 8, 67-71.

Glover, F. (1989) Tabu search--Part I. ORSA Journal on
Computing, 1,190-206.

Glover, F. (1990) Tabu search--Part II. ORSA Journal on
Computing, 1, 4-32.

Glover, F. and Greenberg, H. J. (1989) New approaches for
heuristic search: a bilateral linkage with artificial intelli-
gence. European Journal of Operations Research, 39, 119-
30.

Laguna, M., Barnes, J. W. and Glover, F. (1990) Tabu search
methods for a single machine scheduling problem, Journal of
Intelligent Manufacturing, in press.

Laguna, M. and Glover, F. (1990) On target analysis and
diversification in tabu search. Technical Report, University
of Colorado at Boulder, USA.

