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Abstract. Let X be a smooth sectional surface of an (n + 2)-fold with nonnegative
Kodaira dimension. In this paper we improve Lanteri and Sommese estimates of the
degree of the discriminant locus of X when n = 2.

1. Let Lg be a very ample line bundle on a smooth, projective
surface S. In this paper we investigate the problem of finding an upper
and lower bound for the degree ¢ of the discriminant locus of singular
elements of | Lg|. In [6] A. LANTERI has proved that if S is of general
type then

6>3d+ 17 (1.1)
where d = L L.

A.J. SOMMESE in [11] has shown that
6 < 48  (0y) (1.2)

if S'is a smooth element of | L |, where L is a very ample line bundle
on a threefold X with nonnegative Kodaira dimension. Furthermore,
Sommese has found that S is of general type and that there is an
ample line bundle I on an algebraic manifold X such that S is the
blow up #: X — X of X at a finite set F of points and =g S — S is the
map of S onto its minimal model Se| L |.

In [2] the author improved (1.1) and (1.2) in the case in which S
satisfies the same hypothesis as in [11]. Namely

6d<6<36%(0g if Kygis nef (1.3)
16/3d + 6 < 6 <48y (Og) — 10 if Kjis not nef. (1.4
Moreover (1.3) is sharp.
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In this paper we generalize (1.3) and (1.4) in the case S is the
intersection of n smooth transverse elements 4,,..., 4, of | L|, where
L is a very ample line bundle of an (n + 2)-dimensional manifold X
with nonnegative Kodaira dimension. In particular we prove that

‘ %(n+3)2d+n+10 if K¢ is not nef
5<{ 5 (1.5)
Qﬁf—%gﬁiifld if K is nef.
If n = 2 then
, 74—5;(((95) - % if Ky is not nef
6<{uo (1.6)
TX(@s) if K is nef.

If n > 3 then
(n+3)7°
SPh+ )Ty 2k
We study also the case in which the above inequalities are sharp.
The case n = 1 has been studied in [2].

Oy) . (1.7)

2. Let X be an (n + 2)-dimensional, connected, projective mani-
fold with nonnegative Kodaira dimension, i.e. I'(K¥) # 0 for some
m> 0. Let 4,,..., A, be n smooth transverse elements of | L |, where
L is a very ample line bundle on X. Let S be the intersection of all
the 4;,. We denote by Lg and Ky|s the restrictions to § of L and
K, respectively. Then Ki= K,|;® Li=(K,® L")-L. We set
d=Lg Lg, A = K- Lyand ¢} = Ky Ks. Then we have (see [11], § 1,
p-27))

i) S is of general type

ii) There exists an ample line bundle £ on an algebraic manifold
X such that

a) X is the blow up =: X - X of X at a finite set F of points

b) =|s:S— S is the map of S onto its minimal model S.
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iii) If welet d= Ls-Lg, 4 = Ks L5, & = K¢ K
then
nd<nA<é 2.1
and equality occurs if and only if K% is trivial for some m > 1.
Let ¢;(X) be the i-th Chern class of X. We put ¢; = ¢;(S) and
¢ = ¢;(S), i =1,2. Then we have:
(X)) L-...-L=cl=2nA+ n*d
n-times
aqX)-L-...-L = ~4+nd

(n + 1)-times
(2.2)

o(X)-L-...-L=c¢,—n4 +md‘
n-times
Assume that K; is nef. Since we have (see [9])
Be,(X)~c2(X)-L-...-L>0,
n-times
(2.2) implies that
352>512+n4‘+912~"ﬂa. 2.3)

Using (2.1) we obtain that

A

Coh =

i

n(n+1) 4
5 d.

Moreover, since S is of general type we have (see [8])
3¢= ¢ (2.5)

which holds even if K is not nef. (2.5) and Riemann—Roch Theorem
imply that ¢ < 94 (0).
Let J, (X, L) be the first jet bundle of L in X. We have

(U (D)= — e, (X +(n+3)L

n+2)y(n+3)

X L) =c(X)—n+2)c(X)- L+ e
and

(2.4)

L-L

AU (X, L) L-...-L=c}+64+9d
[ ——

n-times
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2.6
U (XL L. L=c,+24+3d. 2.6)

n-times

Since J; (X, L) is spanned by global section we have (see [5, p. 216])
A (X, D) - (X, D) L-...-L>0.

n-times
Hence
ci+44+6d>=c, (2.7)
which implies that
E+4d+6d=¢,. (2.8)

Moreover, the degree 6 = 6(S) of the discriminant locus of singular
sections of Ly is given by (see [4])

0=0c,(Ji(S,Ly)) = e,(Jy(X, L)) = ¢, + 24 + 3d. (2.9)
3. Assume that X, )f',L and L are as in §2. If we denote with

r=#|F|. Then we have ¢’ =c+r,d=d+r, A=A4—r and by
(2.1) it follows that

nd — ¢t A—nd
n 1 <r< Pt 3.1
We set :
a=A4—nd, b=cf—ln2d, h=9y(0) — c*.
We have
azn+1)r=0
b=2m —-1D)r=0 (3.2)
h=0.
Moreover

d=L0109-n-1b
n

A=%(9x((9s)——h-—b)+a=nd+a

A=93(0)—h=n*d+ b

o= 3x((OS)+h=%n2d+%b+§h
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3 , 1 i
6=;(n+ 3 x(Og — F[(?: —mn+Dh+Q2n+3)b—2nr°dl =

1 1, 4
== 3Yd+ b+ -h+2a.
3(n+) t3b+3h+2a

With the new notations (3.1) becomes

na-—>b a
<r< .
n+1 4 n+1 3:3)
Therefore
v=b—(n-1a=0. (G4
Moreover 9y (Os) < é; = ¢f + r=9 (0 — h + r implies that
na—»b
h=r> 3.5
i (3.5)
and hence
n=@m+Dh—na+b=0. (3.6)
Setting
5y =53 = M@+ D+ Qn+ )b~ 20°d
and
B.=1/3(b+4h+6a)
we have
1
%, = P[G —n)y +3ny . (3.7

Hence g, > 0 and if n < 3 then «, > 0.

(3.8) Lemma. Let X, X, L and L be as above. Assume that K} # Oy
for every m = 1. Then .

Da>Mm+ Dr,i) h>riii)h=21,iv)a> 1,
Vyo=b—m—Daz1,vi)yy,=m+1)h~na+b=n+1.

Proof.1) By (3.2) it follows that a = (n + \)r.If a = (n + 1) r then

2 _+b

#=nd+ 1
n

n a—nd—l— a
n+1 _( n+1>
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d=d+

1l
Hence A = nd, é = n*d + y,. If y, > 1 then ¢é2- d > A which contra-
dicts the Algebraic Index Theorem. If y, =0 then ¢ =nd = n*d
implies that K¥ = Oy for some m. Therefore a > (n + 1) r.

ii) By (3.5) it follows that 42> r. Assume that = /A. Then
¢t = 9 4 (Os) which is impossible (see [12], [1, p. 39—40], [10, Example
1.3, p.244] and [11, Remark 1.9.4]). Hence r < A.

iii) As in ii) #> 1 otherwise 9 y (Us) = c?.

iv) If a =0, then we have ¢i =n*d + b, 4 =nd If b> 1 then
¢?-d > A* which contradicts the Algebraic Index Theorem. If 5 = 0,
then ¢? = n4 = n?d which together with (3.1) imply that r = 0 and
K% = 0y for some m. Hence a > 1.

v) By (3.4) it follows that y, > 0. Assume that y, = 0, then (3.3)

implies that . asr< ! ° which is impossible. Therefore
Yo = 1.
N na—b . .
vi) Since 1 < r<h, it follows that y, > 1. If y; = s with
s=0,..nthen "4 =0 _p_ 5
n+1 n+1

Thus & — n_q-s—l < r < h which gives a contradiction. [

(3.9) Theorem. Let X, X, L and L be as above. Then for n> 2

a) 62%(n+3)2d+n210

if Ky is not nef

b) 52(n+2)2(n+3)é,>(n+2)2(n+3)d if Ky is nef.

Ifn=2

c) 6<Z§x((93 ——z if Ky is not nef
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d) 6<%x(@s) if Ky is nef.

Ifn=3
e) 6 < 124(0y)
Ifn=4

(n+3)*
n+ 1)+ 2%
Moreover, inb) and in d) the equality occurs if and only if X has a torus
as finite cover and in e) the equality occurs if and only if K§ = Oy for
some m= 1.

(3.10) Remark. The case n = 1 has been studied in [2].

f)6<6 ©y).

Proof of Theorem (3.9). a) and c) are a direct consequence of
Lemma (3.8) and the fact that

§ = %(n + 3)2y(Og) — &, = %(n—t— 3)2d+ B, .

e) In this case we use (2.1) to get 6 < é, + ¢ = 12(0g). The
equality occurs if and only if in (2.1) we have equalities which happen
if and only if K% = 0y for some m # 0.

b) follows directly by (2.1) and (2.4).

d) Using (2.3) and (2.1) we obtain that for any 1> 0
d=06+24+3d<(U+)é+ (7/4-3/41)
and in particular when 4 = 3/7 we get d).

f) Using (2.7) and (2.1) we obtain that for any 1 > 1> 0
S=06424+3d< (1 =Dé+ %[(1 +20)Q2n+3)+ in’1é
_n*=2n-3

TR 4+ 2n+3
Moreover in b) and in d) we have equality if and only if

and in particular when 2 we get f).

G =nld=n*d
- 3.1
{5z=n(n2+ l)d (3.11)
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By (2.2) and the ampleness of L, (3.11) is equivalent to
{01 X =0
¢y (X) =0

which happens if and only if X has a torus as finite cover (see [2,
Corollary 2, p.5]. I

(3.12)
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