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Using a recently derived non-linear partial differential equation describing the tempera- 
ture field we have performed computer calculations on the evolving convection patterns 
in different geometries. In this way we calculate the generation of various patterns e.g. 
of rolls or hexagons. 

1. Introduction 

The formation of convection patterns in fluid layers 
heated from below has been subject to numerous 
experimental and theoretical studies (for a list of 
references see e.g. [1, 2, 3]). 
The basic work by Schliiter et al. [4] and Segel [5] 
was carried further, in particular by Newell and 
Whitehead [6]. The latter authors derived equations 
for the mode amplitudes including their slow tem- 
poral change and finite band width excitations. 
Graham [7, 8] and Haken [9, 10] extended the 
treatment to include fluctuating forces. The latter 
included effects which violate the inversion sym- 
metry of the central horizontal layer in the liquid. It 
had been shown previously (e.g. [11]) that these 
effects can give rise to hexagons while without them 
only rolls are formed. 
An elegant equation for the formation of rolls was 
derived by Swift and Hohenberg [12]. Their equa- 
tion was solved numerically under rectangular 
geometries [13] and shows the build-up of rolls. A 
detailed analytical study based on Lyapunov-func- 
tions has been performed by Cross [14]. The present 
paper is based on generalized Ginzburg Landau 
equations [3] which describe in particular the con- 
vection instability and which were condensed into a 
convenient equation for a field amplitude ~(x, t). 

an order parameter equation in the form of a partial 
differential equation for a two-dimensional time de- 
pendent function kg which is proportional to the 
horizontal disturbances of the steady temperature 
field [15]. In lowest nontrivial order this equation 
reads: 

r t)= [5-(1 -A) 2] ~(x, t)+ ,~ ~2(x, t)- ~3(x, t) 
(1) 

where 6=0 if the Boussinesq-approximation is valid. 
This equation had been derived for the special case 
6--0 by Swift and Hohenberg in an entirely different 
fashion [12]. The individual terms of that equation 
were discussed by Cross [16]. The simplest way to 
include non-Boussinesq-terms in the Navier Stokes 
equations is to extend the temperature dependence 
of the density: 

p(T) =Po [1 - -7(T-  To) + ~ ( r -  To) 2] (2) 

where ~ vanishes in the Boussinesq-approximation 
(e.g. [2]). Other possibilities are given by the temper- 
ature dependence of the viscosity [17] or of the 
thermometric conductivity, or by the influence of the 
surface tension on a stress - free upper surface by 
introducing another parameter, called Marangoni- 
number [18, 1]. 

2. The Basic Equation 

Starting from the Navier Stokes equations, the heat 
equation and the continuity equation, one can derive 

3. The Meaning of W, Boundary Conditions 

Let v be the three-dimensional velocity field and 0 
the deviations from the steady temperature field. In 
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the lowest order of 7 j we obtain the relations: 

Of(z)  a~(x, t) 
vi - i = 1, 2 

8z 3x~ 

V 3 = f ( z ) A  ~(x, t) (3) 

0 =g(z) 7J(x, t), 

where the functions f ( z )  and g(z) are fixed by the 
linear problem and by the boundary conditions in 
the z-direction [19]. If we assume free boundary 
conditions in the xl - x 2  - plane and vanishing 0 on 
the boundaries, equations (3) lead to: 

a ~ (x) 
7J(x)= an =0  (4) 

for x on the sidewalls and u perpendicular to them. 

4. Lyapunov-Functional 

An important property of (1), not only for the 
numerical treatment, is the existence of a potential 
L, called Lyapunov-functional [14, 7, 10, 3] from 
which one can variationally derive (1), so that 

at  - a~e (5) 

where L [ ~ ]  is given by 

L [ ~ ]  

e~  - ~  67t +7  +((A+l)70z].  (6) 

For metastable or stable states of the system, 
5L[~] 

=0. In the absence of any fluctuations, L 
hTJ 

can be shown to be a Lyapunov-functional in the 
strict sense, decreasing monotonically with time until 
a metastable or absolutely stable state is reached, 
which, however, requires an infinitely long time. 
Stability-analysis based on the Lyapunov-potential 
defines regions in the e-g-plane  where rolls, hex- 
agons or even both patterns are stable (Fig. 1, see 
also [20]). In the latter case the resulting patterns 
will depend on the initial conditions. 

5. Numerical Results 

To solve the equation (1) on a computer (VAX 
11/750), we apply a forward Euler time integration 
scheme leading to a nonlinear set of equations of the 
form 

tP(X, t ,+  1) 

= 7J(x, t . )+ [L~(x,  t .)+bTt2(x, t . ) -  ~3(x, t.)] At.  (7) 

I :-hexagons 
0.6 

both 
no ~~ 

/ Po l l s  

I I I I I I I I I D 

1 ) . 3  solutions 

/ ]-hexagons 

Fig. 1. Stability regions for hexagons and rolls in the e-6-plane. 
There exists a region where both patterns are stable 

where L is a linear biharmonic operator, and 

tn + 1 -~ tn + A t n 

~(x, to) is the initial field, which represents 
random domains. 
L is calculated for a mesh of k times l points by 
using a finite difference method. In our numerical 
experiments we used mesh sizes of 100 x 100 up to 
160 x 160 points, depending on the geometry and the 
aspect ratio of the layer. 
Starting from (6) one can easily calculate the 
Lyapunov-function. Under the boundary conditions 
(4), (6) reads: 

L[~]=-�89 6 ~ 3 + ~ u ~ 0 ) .  (8) 
\ 2  3 

The integral can be approximated by a double sum 
running over k and I. A typical time behaviour of L 
is shown in Fig. 2 for the transition from a random 

L ~ 0 0  2 0 0  T 

- 4 O  

. - ~  _ .  

Epsilon : 0 . '1  
D e l t a  = : l .O  

Fig. 2. Typical time dependence of a Lyapunov-function, here for 
the transition from a random dot pattern to a hexagonal pattern 
(see also Fig. 3) 
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[a] E D s i l o n  = 0 .~  D e l t a  ~ t . 0  [bJ E p s i l e n  = 0 .1  D e l t a  = i . O  [el E p s t l o n  - O . i  D e l L !  - 0 . 2  

L = - 8 8 . 9  T = 14.1 L = - 1 4 7 . t  T = 87 .~  L = - i 3 , O  "r = 14 .3  

(cJ E p s i l o n  ~ O . l  D e l t a  = t . 0  Id) EpsIIOO ~ O , i  D e l t a  = i , O  

L = - I B i . 6  T = 88 .3  L ~ ~ 8 9 . ?  T ~ gO0.2 

Fig. 3. Domains of positive (white) and negative (black) tempera- 
ture-field 7 ~ at various times t. The initial condition was random- 
dot. L is the Lyapunov functional. The cells have an aspect ratio 
of 32, the parameters are in the hexagonal region 

pal E p s i l o n  - O . i  D e l t a  - 0 . 2  

L = - 3 6 . B  T - 1 2 i , 7  

C o n t o u r  11nes:  / 0 . 5  * M l n  / 0 . 0 /  0 . 5  ~ H a x .  

Pal F .ps i l on  - 0 . 1  De l tm - 0 , 2  

L - - 3 2 . 1  T - 5 3 . 3  

(d) Epe i l pP  ~ O , t  D o l t s  ~ 0 , 2  

L - - 5 9 . 2  T m 296 ,4  

Fig. 5. Same as in Fig. 3, but for a pair of parameters in the 
metastable region 

Ia) E p s i l ~ n  = O.1 D e l t a  = ~ . 5  IbJ E p s $ l : n  = O . i  D e l t e  = 0 . ~  

L = - 1 7 , 7  T = 1 3 . 7  L = - 4 0 . 9  T = 4 0 . 0  

Fig. 4. Contour plot of the last state in Fig. 3 

dot pa t te rn  as initial condi t ion  to hexagons (see 
below). 
We examine the t ime development  for r a n d o m  dot 
pat terns as initial  condi t ion  for different geometries 
of the layers and  parameter  values. Fig. 3 shows the 
development  of a hexagonal  pattern.  Here and  in 
the next two figures the aspect ratio is 32. The 

(CJ Eps i lO~  = ~ ,~  DelL8 F 0 ,5  [d I ~ p s i l p n  = 0 . t  D e l t a  = 0 .5  

i 
Fig. 6. Situation for e = 0.1, ~ = 0.5, just in the hexagonal region 

parameters  are e=0.1 ,  3=1 .0 ,  the mesh consists of 
160 x 160 points. 
Ano the r  series is represented in Fig. 5. We used the 
same r a n d o m  dot state as in Fig. 3 bu t  the parame-  
ters were now in the metastable  region (e=0.1,  
6=0 .2)  and a roll pat tern  resulted. Now we change 
the parameters  again such that  we are just  in the 
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{a l  Eps i l on  = 0 .~  De l t a  = 2 ,0  

L = - 0 . t  T = 3 .7  

|b) Eps l l on  = 0 . t  De l t a  : 2.1~ 

L - - 253 .2  T - i 5 . 3  

(cJ Eps i l on  = O . i  De l t a  = 2 .0  

L = - 328 .4  T = 3 t , 9  

IdJ Egs i l on  = 0 . t  De l t a  = 2 ,0  

L ~ - 385+7  T = 62 .2  

Fig. 7. A random dot pattern as initial condition for an almost 
cylindrical cell. The parameters are in the hexagonal region, but 
the hexagons formed after T~16 are not stable because of the 
influence of the side walls 

mate arbitrary sidewalls of the layer. Figures 7 and 8 
give another example where we used a geometry 
close to a circular. The parameters in Fig. 7 were in 
the hexagon region and hexagons were in fact 
formed in the first part  of the transition but then the 
rolls grew from the sidewalls and a pattern resulted 
which we know from experiments in cylindrical 
cells* [-21]. 
To examine the influence of the square term in our 
basic equation for this geometry we performed the 
same calculation with 6 = 0  and e=0.1. The quite 
different result is shown in Fig. 8. If we compare our 
results with the experiments performed by Berg6 and 
Gollub, we see that non-Boussinesq effects obviously 
play there an important  role. 
All these pictures are in good qualitative agreement 
with experimental findings (e.g. Berg6 and Dubois 
[23], Koschmieder [24], Gollub and Steinmann 
[25]). After a rather fast transition period the final 
state is approached only asymptotically. This effect 
called "critical slowing down" is well known from 
nonequilibrium phase transitions [3]. 

6. Fourier Spectra 

(a l  Eps t l on  = 0 . t  De l t a  = 0 .0  I b ]  Egs l l on  = 0 . !  De l t a  = 0 .0  

L = O.O T = 0+0  L = - 0 . 7  T = i n . 3  

I c /  Eps l l on  = 0 .1  De l t a  = 0 .0  {a /  Eps l l on  ~ 0+ t  De l t a  = O.O 

L = 0 .2  T = 49 .0  L = - 1 . 8  T = 78 .4  

V_._I~ 

Fig.8. Same as in Fig. 7, but for 6=0. One can see, only parallel 
rolls are formed 

hexagon region (e=0.1, 6=0.5) and obtain Fig. 6. As 
one sees, even for these parameters rolls are formed 
in large parts of the layer, in the main near the 
sidewalls. 
With our numerical method we are able to approxi- 

In order to study which modes take part  in our 
solutions, we make a Fourier transformation of the 
form 

A(k) =j" dxt dx2 ~(x) exp [ ikx]  

which can be approximated by a double sum run- 
ning over the mesh points. 
Figure 9 shows the real part  of A(k) as a function of 
kx and k v for the pattern in Fig. 6d. As one sees, the 
excited modes describe a circle with the radius lkcf. 
The four peaks on the axis correspond to the two 
main directions of the rolls perpendicular to the 
sidewalls in Fig. 6d. 
The transformation of the hexagonal pattern 
(Fig. 3d) is shown in Fig. 10. To obtain more infor- 
mation, we sum up JA(k)J 2 over JkJ as a function of 
the angle q5 in the kx-kv-plane.  The result is shown 
in Fig. 11 where the three directions of k which form 
the hexagonal cells are evident. 
The same technique, but for patterns obtained by 
the experiment was performed by Gollub and Mc- 
Carriar [26], who examined the Fourier spectra of 
roll patterns for several Rayleigh-numbers. 

* At the recent Nobel Symposium "The Physics of Chaos and 
related Phenomena" J. Gollub showed experimental results, 
which are in good quhlitative agreement with Fig. 7, presented by 
one of us (H.H.) at the same Symposium 
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2. 
~I A (r > 

d m ns onal  our er-s   trum O ,y modes 
with [kl ~lkc[ take part in the final state 

v< 
~o ~ao 

Fig. l l .  Angular dependence of the mean value of IA(k)l 2 in- 
tegrated over Ikl. The three peaks correspond to the three modes 
which build up the hexagonal solution 
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