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Abstract 
This article presents: (i) a multiscale representation of grey-level shape called the scale-space primal sketch, which 
makes explicit both features in scale-space and the relations between structures at different scales, (ii) a methodology 
for extracting significant blob-like image structures from this representation, and (iii) applications to edge detec- 
tion, histogram analysis, and junction classification demonstrating how the proposed method can be used for guiding 
later-stage visual processes. 

The representation gives a qualitative description of image structure, which allows for detection of stable scales 
and associated regions of interest in a solely bottom-up data-driven way. In other words, it generates coarse segmen- 
tation cues, and can hence be seen as preceding further processing, which can then be properly tuned. It is argued 
that once such information is available, many other processing tasks can become much simpler. Experiments on 
real imagery demonstrate that the proposed theory gives intuitive results. 

1 Introduction 

Scale-space representation introduced by Witkin [70] 
and Koenderink [33] provides a well-founded 
framework for dealing with image structures, which 
naturally occur at different scales. According to the 
theory of this representation, one can from a given 
signal generate a family of derived signals by suc- 
cessively removing features when moving from fine to 
coarse scales. In contrast to other multiscate or multi- 
resolution representations, scale-space is based on a 
precise mathematical definition of causality, or scale 
invariance (Florack et al. [21]), and the behavior of 
structure as scale changes can be analytically described. 
However, the information in the scale-space embedding 
is only implicit in the grey-level values. The smoothed 
images in the raw scale-space representation contain 
no explicit information about the features in them or 
the relations between features at different levels of scale. 

The goal of this presentation is to present such an 
explicit representation, called the scale-space primal 
sketch, and to demonstrate that it enables extraction of 

significant image structures in such a way that the out- 
put can be used for guiding later stage processes in early 
vision. 

The treatment will be concerned with grey-level im- 
ages, and the chosen features will be blobs, that is, 
bright regions on dark backgrounds or vice versa. How- 
ever, the methodology applies to any bounded function 
and is therefore useful in many tasks occurring in com- 
puter vision, such as the study of level curves and 
spatial derivatives in general, depth maps, etc., and 
also, histograms, point clustering and grouping, in one 
or in several dimensions. 

1.1 Scale and Segmentation 

Many methods in computer vision and image analysis 
implicitly assume that the problems of scale detection 
and initial segmentation have already been solved. One 
example is edge detection, where the selection of step 
size in gradient computations leads to a well-known 
trade-off problem. A small step size leads to a small 



284 Lindeberg 

truncation error in the discrete approximation, but the 
noise sensitivity might be severe. Conversely, a large 
step size will in general reduce the noise sensitivity, 
but at the cost of an increased truncation error. In the 
worst case, a slope of interest can be missed and mean- 
ingless results be obtained, if the difference quotient 
approximating the gradient is formed over a wider dis- 
tance than the object considered in the image. Although 
here we shall mainly be concerned with static images, 
the same kind of problem arises when dealing with im- 
age sequences. Similarly, models based on spatial 
derivatives ultimately rely on the computation of dif- 
ference approximations from measured data. This 
implies that they always fall back to the basic scale 
problem that objects in the world and features in im- 
ages only exist as meaningful entities only over limited 
ranges of scale. 

A commonly used technique to improve the results 
obtained in computer vision and other fields related to 
numerical analysis is by preprocessing the input data 
with some amount of smoothing and/or careful tuning 
of the operator size or some other parameters. In some 
situations the output may depend strongly on these 
processing steps. In certain algorithms these so-called 
tuning parameters can be estimated; in other cases they 
are set manually. A robust image analysis method in- 
tended to work in an autonomous robot situation must, 
however, be able to make such decisions automatically. 
How should this be done? I contend that these prob- 
lems are in many situations nothing but disguised scale 
problems. 

Also, in order to apply a refined mathematical model 
like a differential equation or some kind of deformable 
template, it is necessary to have some kind of qualitative 
initial information, that is, a domain where the differen- 
tial equation is (assumed to be) valid or an initial region 
for application of the raw deformable template. Ex- 
amples can be obtained from many "shape-from-X" 
methods, which in general assume that the underlying 
assumptions are valid in the image domain in which 
the method is applied. A commonly used assumption 
is that of smoothness implying that the region in the 
image, to which the model is applied, must correspond 
to, say, one physical object or one facet of a surface, 
etc. How should such regions be selected automatic- 
ally? Many methods cannot be used unless this non- 
trivial part of the problem has been solved. 

How to detect appropriate scales and regions of in- 
terest when there is no a priori information available. 
In other words, how to determine the scale of an object 

and where to search for it before knowing what kind 
of object we are studying and before knowing where 
it is located. Clearly, this problem is intractable if 
treated as a pure mathematical problem. Nevertheless, 
it arises implicitly in many kinds of processes, for ex- 
ample, dealing with texture, contour, etc., and seems 
to boil down to an intractable chicken-or-the-egg prob- 
lem. The solution of the pre-attentive recognition prob- 
lem seems to require the solution of the scale and region 
problems and vice versa. 

The goal of this presentation is to demonstrate that 
such preattentive groupings can be performed in a 
bottom-up manner, and that it is possible to generate 
initial hypotheses about blob-like regions of interest as 
well as to give coarse indications about the scales at 
which the regions manifest themselves. The basic tools 
for the analysis will be scale-space theory, and a heur- 
istic principle stating that blob-like structures that are 
stable in scale-space are likely candidates to correspond 
to significant structures in the image. Concerning scale 
selection, scale levels will be selected that correspond 
to local maxima over scales of a measure of blob re- 
sponse strength. (Precise definitions of these notions 
will be given later.) It will be argued that once such 
scale information is available, and once regions of in- 
terest have been extracted, later-stage processing tasks 
can be simplified. This claim is supported by experi- 
ments on edge detection and classification based on 
local features. 

1.2 Detection of Image Structure 

The main features that arise in the (zero-order) scale- 
space representation of an image are smooth regions 
that are brighter or darker than the background and 
stand out from their surroundings. These will be termed 
blobs (a precise definition will be given later). The pur- 
pose of the suggested representation is to make these 
blobs, as well as their relations across scales, explicit. 
The idea is also that the representation should reflect 
the intrinsic shape of the grey-level landscape--it should 
not be an effect of some externally chosen criteria or 
tuning parameters. The theory should in a bottom-up 
fashion allow for a data-driven detection of significant 
structures, their relations, and the scales at which they 
occur. It will, indeed, be experimentally shown that the 
proposed representation gives intuitively reasonable 
:results, in which salient structures are (coarsely) seg- 
mented out. Hence, this representation can serve as a 
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guide to subsequent, more freely tuned processing, 
which requires knowledge about the scales at which 
structures occur. In this respect it can serve as a 
mechanism for focus-of-attention. 

Since the representation tries to capture important 
image structures with a small set of primitives, it bears 
some similarity to theprimal sketch proposed by Marr 
[53, 54], although fewer primitives are used. The cen- 
tral issue here, however, is to represent explicitly the 
scales at which different events occur. In this respect 
the work addresses problems similar to those studied 
by Bischof and Caelli [8]. They tried to parse scale- 
space by defining a measure of stability. Their work, 
however, was focused on zero-crossings of the Lapla- 
cian. Moreover, they overlooked the fact that the scale 
parameter must be properly treated when measuring 
significance or stability. Here, the behavior of struc- 
tures over scale will be analyzed in order to give the 
basis of such measurements. Of course, several other 
representations of the grey-level landscape have been 
proposed without relying on scale-space theory. Let us 
also note that Lifshitz and Pizer [40] have studied the 
behavior of local extrema in scale-space. However, we 
shall defer discussing relations to other work until the 
suggested methodology has been described. 

The idea of scale-space representation of images, 
suggested by Witkin [70], has, in particular, been devel- 
oped by Koenderink and van Doom [33, 34, 36], Babaud 
et al. [3], Yuille and Poggio [71], Hummel [28], Linde- 
berg [41, 47], and Florack et al. [21]. This work is 
intended to serve as a complement addressing computa- 
tional aspects, and adding means of making significant 
structures and scales explicit. The main idea of the ap- 
proach is to link features at different scales in scale-space 
into higher-order objects, called scale-space blobs, and 
to extract significant image features based on the ap- 
pearance and stability of these objects over scales. 

As a guide to the reader, it should be remarked that 
certain subsets of this material have been presented in 
other articles (see the references). The aim with this 
presentation is to provide a coherent overview, including 
precise definitions and applications that have not been 
presented elsewhere. An extensive treatment with algo- 
rithmic details can be found in the author's thesis 
(Lindeberg [43]). 

2 The Scale-Space  Pr imal  Sketch 

The scale-space representation of a signal is an embed- 
ding of the original data into a derived one-parameter 

family of successively smoothed signals, intended to 
represent the original data at multiple scales. Given a 
two-dimensional continuous signalf  : IR 2 ~ IR, the 
scale-space L : IR e × IR+ ~ IR is defined as the solu- 
tion to the diffusion equation 

1 V2 1 OiL = ~ L = ~ (0~1xl + Oxz~) L (1) 

with initial condition L('; 0) = f, or equivalently by 
convolution with the Gaussian kernel g : IR 2 x 
I R + \ { 0 }  ~ ]R 

L('; t) = g('; t) * f ,  

where 

(2) 

1 e _(x~z+~)/(2t) g(x; t) = (3) 

and x = (xl, x2) E IR e. The parameter t E IR+ is 
denoted scale parameter, and corresponds to the square 
of the standard deviation of the Guassian kernel 
t = o  2. 

From experiments one can (visually and subjec- 
tively) observe that the main features that arise in 
this scale-space representation seem to be blob-like, that 
is, they are regions either brighter or darker than the 
background (see figure 8). Especially, such regions that 
appear to stand out from the surroundings in 
the original image seem to be further enhanced by 
scale-space smoothing. The suggested scale-space 
primal sketch focuses on this aspect of image struc- 
ture. The purpose is to build a representation for mak- 
ing such information in scale-space explicit. Therefore, 
there is a need to formalize what should be meant by 
a "blob." 

2.1 Grey-Level Blob 

What properties should be required tYom a blob defini- 
tion? It is clear that a blob should be a region associated 
with (at least) one local extremum. However, it is also 
essential to define the spatial extent of the region around 
the blob, and to associate a significance measure with 
it. Ehrich and Lai [20] considered the extent problem. 
They allowed peaks to extend to valleys, a definition 
that will give nonintuitive results, for example, for small 
peaks on large slopes. Koenderink and van Doom [33] 
briefly touched upon the problem with reference to 
work by Maxwell [55] concerning level curves and 
critical points. The definition proposed here is related 
to those arguments. 
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Fig. 1. Illustration of the grey-level blob definition for a two-dimen- 
sional signal, with some descriptive quantities of a grey-level blob; 
volume, area, and contrast. This figure shows bright Mobs on a dark 
background. Generically, a grey-level blob is given by a pair con- 
sisting of one extremum and one saddle point, denoted delimiting 
saddle point. 

The blob definition on which this work is based 
should be evident from figure 1. The basic idea is to 
let the blob extend "until it would merge with another 
btob" To illustrate this notion, consider a grey-level 
image at a fixed level of scale, and study the case with 
bright blobs on a dark background. Imagine the image 
function as a flooded grey-level landscape. If the water 
level sinks gradually, peaks will appear. At some in- 
stances two different peaks become connected. The cor- 
responding elevation levels or grey-levels are called the 
base-levels of the blobs, and are used for delimiting 
the spatial extent of the blobs. The support region of 
the blob is defined to consist of those points that have 
a grey-level exceeding the base-level and can be reached 
from the local maximum point without descending 
below the base-level of the blob. 

Hence, a bright blob will grow and include points 
having lower grey-levels until it would meet with 
another blob. In this sense the blob definition can be 
regarded as conservative, since no attempt is made to 
include points in other directions. From this construc- 
tion, the grey-level btob is defined as the three-dimen- 
sional volume delimited by the grey-level surface and 
the base-level. The three-dimensional grey-level blob 
volume constitutes a combined measure of the contrast 
and the spatial extent (area) of the blob. 

2.1.1 Grey-Level Blob Definition. A precise mathe- 
matical defmition of the grey-level blob concept can 

be stated as follows: Consider again the case with bright 
blobs on dark background, and assume a continuous 
nondegenerate ~ grey-level function f : IR 2 ~ IR at a 
fixed level of scale. Consider a local maximum A E 
/R 2. For any grey-level z < f (A)  let 

Xz ~a) = ~the cormected component of 

[(X, ~') E IR 2 )< IR : z ~-~ ~" <: f (x)]  

which contains (,4, f (A)))  (4) 

and define the s e t s  G(z A) and H (A) a s  follows: A point 
(B, ~0) E X (A) b e l o n g s  to G (A) ( n  (A)) i f  and  o n l y  if  
there exists a path P(ad(A)),(B, r0) from (A, f (A))  to 
(B, ~'0) such that (i) every point on the path belongs to 
Xz ~a), and (ii) the derivative of ~" along this path 

~Ip(AC(A)),(B,~.O) < 0 (~I;(Af(A)),(B,~) ~ 0) .  The base-level 
of the blob Zbase(A) is then defined as the maximum 
value of z such that 

Zb~(A) = max Z: G~z A) # HCz A), (5) 
z<f(A) 

where the notation C stands for the closure of a set C. 
(Zbase(A) is the grey-level value of the delimiting sad- 
dle point S = Sdelimit(A) associated with A). The grey- 
level blob associated with the local maximum A is the 
set of points 

Gblob(A) t-2_(A) = '-'zb~(a) (6) 

with the (three-dimensional) grey-level blob volume 

Gvol(A) = t dx  dz. (7) 
a(x , z)E Gblob(A) 

The projection of this region onto the spatial plane is 
called the support region, 

Osupport(A ) = {x E IR 2 " (x ,  ~') E Gblob(A) 
for some ~'}, (8) 

and the difference in grey-level between the extremum 
point and the base-level gives the blob contrast 

Cblob(A ) = f (A )  - Zbase(A). (9) 

It is worth stressing that the grey-level blob is treated 
as an object with extent both in space and grey-level. 
The definition is expressed in terms of two-dimensional 
continuous signals, but can be extended to arbitrary 
dimensions as well as to discrete grids, if the paths are 
given by a suitable connectivity concept (e.g., eight- 
connectivity for a two-dimensional square grid), and 
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the derivative condition fl~a,B < 0 is replaced by a 
difference conditionf(x (k+l)) _ f (x  0)) < 0 along the 
path {x (k)}. Local minima can be treated analogously, 
and every local minimum point gives rise to a dark blob 
on a bright background. 

2.1.2 Properties. It can be easily verified that a blob 
will be connected. Moreover, the base-level of a bright 
blob is in one dimension attained at a minimum point, 
in two dimensions at a saddle point. Consequently, the 
blobs are directly determined from topological proper- 
ties of the grey-level landscape, namely the first-order 
singularities. 

These blobs are not purely local features, as are ex- 
trema, but regional. An inherent property of the stated 
definition is that it leads to a competition between parts; 
the presence of another nearby blob might neutralize 
a Nob or reduce its size. In other words, features mani- 
fest themselves only relative to the background. These 
aspects reflect important principles of the approach. 

Note that this definition leads to separate systems for 
bright and dark blobs. This implies that some points 
may be left unclassified. Consequently, the given defini- 
tion will--in contrast to, for example, the sign of the 
Laplacian of the Ganssian--only attempt to make a par- 
tial (and hopefully safer) classification of the grey-level 
landscape. 

In one dimension the bright and dark blobs of a 
signal will be closely related, since a minimum point 
which delimits the extent of a bright Nob will also con- 
stitute the seed of a dark blob. In two dimensions the 
situation is slightty different, since a saddle point that 
delimits the extent of a bright blob will not delimit the 
extent of any dark Nob, unless the signal is degenerate. 
Therefore, in two dimensions, a point in a blob will 
in general belong to either a dark blob or a bright Nob. 
In certain types of situations, however, it may indeed 
happen that some points are classified as belonging to 
both a dark blob and a bright Nob, see figure 2 for 
an example. If  for some reason this type of phenomenon 
is not desired, then it can be easily prevented by mod- 
ifying the blob definition slightly so that the blob is 
allowed to "delimit its own extent." 

2.1.3 Grey-Level Blob Tree. I f  the imaginary water 
level used for constructing grey-level blobs in figure 
1 is allowed to decrease below the base-level of a Nob, 
then the grey-level blob will merge with the adjacent 
region sharing the same saddle point. By considering 
all such events under variations of the water level, a 

Fig. 2. Example with a dark blob contained in a bright blob. This 
phenomenon can be avoided if the Nob definition is modified such 
that a blob is allowed to delimit its own extent in such situations. 
Then, it will be guaranteed that no point belongs to both a dark and 
a bright Nob. (M + = maximum point, M+ minimum point, S = 
saddle point). 

tree-like structure can be defined with successive inclu- 
sion relations. Every arc corresponds to a range in grey- 
level where the topology is locally the same, and the 
grey-level blobs constitute the leaves. 

This representation, termed grey-level blob tree, has 
a qualitative similarity with the relational tree studied by 
Ehrich and Lai [20]. Simple self-explanatory examples 
demonstrating its construction are given in figure 3. 
Similarly to a leaf, every arc in the tree can be associ- 
ated with a three-dimensional volume, as well as a sup- 
port region and an area measure. The formal procedure 
for defining such relations is by treating every encoun- 
tered delimiting saddle point as the seed of a new region, 
and then proceeding with the successive construction 
of grey-level blobs and arcs with decreasing water level. 
In this approach, every delimiting saddle point repre- 
senting two merging regions is treated in the same way 
as an ordinary maximum, once a merge between the 
two regions at the saddle point has been registered. 

By simultaneously considering the bright and dark 
grey-level blob trees of a signal, it is possible to ex- 
press formal relations between blobs of reverse polar- 
ity. The saddle points and the level curves through those 
constitute the links, since these are the only entities oc- 
curring in both systems. 

Finally, it should be pointed out that what has been 
defined here is a grey-level blob (and a corresponding 
tree) at one level of scale. When such objects are linked 
across scales, they result in scale-space blobs (and cor- 
responding trees), which will be described in section 2.3. 

2.2 Motivation for a Multiscale Hierarchy 

It is easy to realize that the concept of a grey-level blob 
at a single level of scale is not powerful enough for 
stable extraction of image structures. It leads to an 
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Fig. 3. Examples of grey-level blob trees: (left) for a one-dimensional signal, and (right) for a two-dimensional signal. The right figure shows 
a mountain-like grey-level landscape with three main peaks (marked by M+),  and one hole (marked by M - ) .  Arcs originating from bright 
blobs are drawn with filled lines (marked by '+ ' ) ,  and arcs corresponding to dark blobs are drawn by dashed lines (marked by ' - ' ) .  

I 
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Fig. 4, (Left) A high-contrast large peak with two superimposed low-contrast fine-scale peaks will not be detected as a greyqevel blob if the 
signal is considered at one scale only. (Right) A single noise spike can also substantially affect the relational tree. 

extreme degree of noise sensitivity, since two closely 
situated local extrema will neutralize each other. This 
means that a large peak distorted by a few superimposed 
local extrema of low amplitude will not be detected as 
one unit; only the fine-scale blobs will be found (see 
figure 4). 

Also the grey-level blob tree (and the relational tree) 
will be noise sensitive when considered at a single level 
of scale, since the hierarchical relations between differ- 
ent blobs are determined directly by the grey-levels in 
the valleys of the original signal. For example, thin elon- 
gated structures superimposed onto the data may com- 
pletely change the topological relations (see figure 4). 

In order to obtain more stable descriptors, it is 
natural to consider the behavior of the grey-level blobs 

and the grey-level blob tree in scale-space. Since no 
a priori information can be expected about what scales 
are relevant, the only reasonable approach is to con- 
sider all scales simultaneously. 

2.3 Scale-Space Blobs 

Given a grey-level blob existing at some level of scale, 
there will in general be a corresponding blob at both 
a slightly finer scale and a slightly coarser scale. Link- 
ing such grey-level blobs across scales gives four- 
dimensional objects, called scale-space blobs (see 
figure 5). (A formal defmition of how the linking is 
performed is given in appendix A. 1.) 



Detecting Salient Image Structures and Their Scales: A Method for  Focus-of-Attention 289 

X 

(a) 

Fig. 5. (a) Linking similar grey-level at adjacent levels of scale gives (b) scale-space blobs, that are objects with extent both in space, grey-level, 
and scale. (In this figure the grey-level coordinate has been omitted. The slices illustrate the support regions of the grey-level blobs,) 

At some level of scale it might be impossible to ac- 
complish a plain link between a grey-level blob at that 
scale and a corresponding blob at a slightly coarser or 
finer scale. A blob event has ocurred affecting the con- 
nectivity of the blobs. According to a classification in 
appendix A.2, there are four possible types of blob 
events with increasing scale: 

- -  annihilation: one blob disappears, 
- -  merge: two blobs merge into one, 
- -  split: one blob splits into two, 
- -  creation: one new Nob appears. 

In summary, the classification of blob events means that 
each blob event corresponds to an annihilation or a 
creation of a pair consisting of one saddle point and 
one extremum point. For example, the difference be- 
tween a blob annihilation and a Nob merge, is that in 
the first case, the delimiting saddle point of the Nob 

is contained in only one grey-level blob, while in the 
second case, it is part of two different grey-level blobs 
(see figure 6). 

The scale levels where these singularities take place 
delimit the extent of the scale-space blobs in the scale 
direction. Consequently, every scale-space blob will be 
associated with a minimum scale, denoted appearance 
scale tA, and a maximum scale, denoted disappearance 
scale to. The difference between the disappearance 
scale and the appearance scale gives the scale-space 
lifetime of the Nob? 

In merge and split situations the grey-level Nobs ex- 
isting before the bifurcation are regarded as belonging 
to different scale-space blobs than the grey-level blobs 
existing after the bifurcation. 

In special configurations it may happen that a Nob 
without a hole forms a torus, or that a toms fills in its 
hole. These events are also stable in the sense that a 
small disturbance of the original signal will not affect 

b) c) d) 

Fig. 6. Generic blob events in scale-space: (a) annihilation, (b) merge, (c) split, (d) creation. 
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the qualitative behavior. Here, such events will be con- 
sidered not to affect the scale-space blobs; the grey- 
level blobs existing before such an event will be re- 
garded as belonging to the same scale-space blob as 
the grey-level blobs existing after. 

2.4 Scale-Space Blob Tree 

Similar considerations can be applied to the evolution 
properties over scales of the grey-level blob tree. This 
gives a scale-space blob tree. Interestingly, the only 
bifurcations that can occur in scale-space are those that 
affect the leaves, that is, the grey-level blobs and the 
scale-space blobs. This is a direct consequence of the 
fact that both an extremum point and a saddle point 
must be involved in a bifurcation (appendix A.2), and 
every extremum point corresponds to a unique grey- 
level Nob, and hence a unique scale-space blob. 

The additional complexity that arises when consider- 
ing grey-level blob trees over scales compared to grey- 
level blobs is that a structural event called reordering 
may occur. It is the result of a relative change in grey- 
level between two different saddle points, which directly 
determine the ordering relations in the grey-level Nob 
tree, see figure 7 for an example. 

2.5 Grey-Level Blob Extraction: Experimental Results 

Figure 8 displays an example of extracting (dark) grey- 
level blobs at different scales in scale-space? It can 

be seen that at fine scales mainly small blobs due to 
noise and surface texture are detected. When the scale 
parameter increases, the noise blobs disappear gradu- 
ally although much faster in regions near steep gradi- 
ents. Notable in this context is that blobs due to noise 
can survive for a long time in scale-space if located 
in regions with slowly varying grey-level intensity. This 
observation shows that scale-space lifetime alone can- 
not be used as the basis for a significance measure, 
since it would substantially overestimate the signifi- 
cance of blobs due to noise. 4 

The buttons on the keyboard manifest themselves 
as blobs after a small amotmt of smoothing. At coarser 
levels of scale, they merge into one unit (the keyboard). 
One can also observe that some other dark details in 
the image, the calculator, the cord, and the receiver, 
appear as single blobs at coarser levels of scale. 

This example demonstrates that, as anticipated, the 
grey-level blob concept shows an extreme degree of 
noise sensitivity, which can be circumvented by the 
scale-space smoothing. But it is certainly far from a 
trivial problem to determine the proper amount of 
smoothing automatically, based on previous conven- 
tional methods. 

The aim with the suggested Nob linking across 
scales is to determine which blobs in the scale-space 
representation can be regarded as significant, without 
any a priori information about either scale, spatial loca- 
tion, or the shape of the primitives. 5 As we shall see 
later, the output from the linking procedure also enables 
determination of a suitable scale level for handling each 
individual blob. 6 

+ + + 

M1 M2 M3 

S1N s2M 
Fig. Z The additional complexity that occurs when considering grey-level Nob trees is the introduction of reorderings, which are changes 
in the ordering relations in the grey-level blob tree resulting from relative changes in grey-level between saddle points. This figure shows a 
simple example with bright blobs; in the left case z(S 0 > z(S2), while in the right case z(S~) < z(Sa). 
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F/g. 8. Grey-level and (dark) grey-level blob images of a telephone and calculator image at scale levels t = 0, 1, 2, 4, 8, 16, 32, 64, 128, 
256, 512, and 1024 (from top left to bottom right). 
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2.6 Measuring Blob Significance 

Since the ultimate goal of this analysis is to extract im- 
portant structures in the image based on the appearance 
and significance of scale-space blobs in the scale-space 
representation, there is an absolute need for some meth- 
odology for comparing significance between different 
levels of scale. In other words, what is desired is a 
mechanism for judging whether a blob existing only at 
coarse levels of scale can be regarded as more signifi- 
cant or less significant than a Nob with extent primarily 
at fine levels of scale. 

The approach proposed here is to use the four- 
dimensional volumes of the scale-space blobs in scale- 
space (defined in appendix A. 1.3). It is suggested that 
it is a useful entity for a significance measure, since 
it comprises both the spatial extent, the contrast, and 
the lifetime of the blob. Qualitative motivations for in- 
corporating these entities into the significance measure 
can be summarized as follows: 

spatial extent x: In the absence of further information, 
a Nob having large spatial extent may be treated as more 
significant than a corresponding smaller blob. 

contrast  z: In the absence of further information, a 
high-contast blob may be treated as more significant 
than a similar blob with lower contrast. 

lifetime t: In the absence of further information, a blob 
having a long lifetime in scale-space may be treated as 
more significant than a corresponding blob having a 
shorter lifetime. In general, a blob Bt far away from 
another blob//2 will survive longer in scale-space than 
a blob//3, similar to B1, but nearer to B2. Moreover, 
the lifetime of a blob will in general be longer if there 
are no spatially coincident structures at other scales. 
Hence, two special cases implied by this heuristic prin- 
ciple are that 

(1) a blob B 1 far away from another blob B 2 will be 
treated as more significant than a blob B3 
similar to B1, but nearer to B2 ] 

(2) a Nob, for which there are no spatially overlapping 
freer or coarser scale structures, will be treated 
as more significant than a similar blob, for which 
such interfering structures at nearby scales exist. 

If  the significance measure, however, is to be based on 
the scale-space blob volume, it is of crucial importance 
that the coordinates are measured in proper units, since 
in principle they could be transformed by arbitrary 
monotone functions. 

2.6.1 Measuring Scale-Space Lifetime. Consider first 
the measurement of scale-space lifetime. A natural 
choice of scale parameter for a continuous signal case 
is the logarithm of the ordinary scale parameter. Based 
on this idea, one could be inspired to define scale-space 
lifetime as log tD - log t A, where tD and tA denote the 
disappearance and appearance scales of the scale-space 
blob respectively. It seems reasonable that this would 
give a good description at coarse scales, since it is well 
known that changes in scale-space occur logarithmic- 
ally with scale. For example, the scale parameter is 
usually sampled such that the ratio between successive 
scale values is constant. 

Such an approach would, however, lead to unreason- 
able results for discrete signals at fine levels of  scale, 
since then a blob existing in the original signal (at 
t = 0) would be assigned an infinite lifetime.8 Simi- 
larly, it can be observed that to - tA does not work 
either, since then the lifetime of blobs at coarse scales 
in scale-space would be substantially overestimated. 

Consequently, there is a need for introducing a 
transformed scale parameter r = %ff(t) such that 
scale-space lifetime measured by 

rlife = 7 D -- 7 A = reff(tD) -- 7eff(tA) (10) 

gives a proper description of the behavior in scale-space 
also for discrete signals. This scale parameter should 
neither favor or not favor fine scales over coarse scales. 

At first glance the problem of transforming the scale 
parameter may seem somewhat ad hoc. What properties 
are required from an effective scale parameter? The ap- 
proach that will be adopted here is to assume that the 
expected remaining lifetime of a local extremum should 
not vary with scale. More precisely, it will be assumed 
that the probability that a certain local extremum disap- 
pears after a small amount of smoothing At, expressed 
in effective scale, should be constant over scales, that is, 
the relative decay rate should be independent of scale. 9 

Assume that it is known how the expected number 
of local extrema per unit area varies with scale. In other 
words, assume that 

p(t) = {expected density of extrema at scale t} 01) 

is known. The relative decay rate requirement can be 
stated as 

- O,( logp)  = C = constant. (12) 
P 

Integration and introduction of new arbitrary constants 
C1 and C2 gives 
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r = redt) = G + C2 logp( t ) .  (13) 

Without toss of generality, C1 can be set to zero. It is 
just an offset coordinate, and cancels in the scale-space 
lifetime. Similarly, C2 just corresponds to an arbitrary 
but unessential linear rescaling of the effective scale 
parameter. 

So far no assumptions have been made about the 
dimensionality of the signal, or whether it is continuous 
or discrete. What is left to determine is how the den- 
sity of local extrema can be expected to vary with scale. 

For a large class of continuous signals, the number 
of local extrema decreases with scale approximately as 
t ~ (Lindeberg [48]). This result can be derived from 
a one-dimensional stationary, normal white-noise proc- 
ess as well as a corresponding process with a spectral 
density of the form o~ -¢ with 0 _ /3 < 3. It can also 
be shown from dimensional analysis that in arbitrary 
dimensions N, the density of local extrema can be ex- 
pected to decrease with scale as t -N/2. Under these 
conditions, the effective scale is given by a logarithmic 
transformation 

reff(t) = - C2 a log t. (14) 

For discrete signals, the density of local extrema can 
be expected to show the same qualitative behavior at 
coarse scales, where the grid effects are negligible. At 
fine scales, however, the t -~ behavior cannot hold, 
since it is based on the assumption that the original 
signal contains equal amounts of structure at all scales. 
The discrete signal is limited by its finite sampling 
density. 

These ideas are illustrated in figure 9, which shows 
the logarithm of the number of local extrema in a finite 
image as a function of the logarithm of the ordinary 
scale parameter t. The left diagram shows simulated 
results for a large number of white-noise images gener- 

ated from three different distributions, normal, rec- 
tangle, and exponential distribution. The right diagram 
shows the average of these results. Note that a straight- 
line approximation is valid only in an interior scale 
interval. At fine scales there is interference with the 
inner scale of the image given by its sampling density, 
and at coarse scales there is interference with the outer 
scale of the image given by its finite size. 

The notion of effective scale takes this notion of in- 
ner scale into account, and enables a precise defini- 
tion of scale-space lifetime also at fine levels of scale. 
Combined with the concept of scale-space for discrete 
signals it provides the necessary tool for investigating 
fine scale structures. For implementational purpose, 
p (t) is estimated from synthetic simulation results for 
a set of reference data. Then, the transformation func- 
tion is determined by 

Pref(0) 
Zeff(t ) = log , (15) 

p r~f( t ) 

where Pref(t) denotes the average density of local 
extrema in the simulations on the reference data. In 
the current implementation, the reference data is se- 
lected as a large set ( ~  10 2) of  white-noise im- 
ages. A motivation for this choice is given in next 
section. 

2.6.2 Transformed Grey-Level Blob Volumes. Simi- 
larly, the grey-level blob volumes need to be trans- 
formed, since the average volume can be expected to 
vary substantially with scale. When the scale parameter 
increases, the average contrast can be expected to 
decrease, and the average area to increase. What about 
the grey-level blob volume? Experimental results dem- 
onstrate that it actually decreases at fine scales and in- 
creases at coarser scales, see figure 10, 

(a): log(# extrema) 
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Fig. 9. Experimental results showing the number of local extrema as function of the scale parameter t in log-log scale: (a) measured values, 
(b) accumulated mean values. Note that a straight-line approximation is valid only over a limited range of scales. 
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Fig. 10. Experimental results showing (a) the mean value, and (b) the standard deviation of the grey-level blob volumes as a function of scale 
for white-noise images of different distribution. 

Within the parts of the graphs where a linear ap- 
proximation is valid, the mean value, Vm(t), and the 
standard deviation of the grey-level blob volume, 
Vo(t), vary with scale approximately as 

Vm(t) - ~ V~(t) - f i - ,  (16) 

while corresponding experiments demonstrate that the 
variation of the area and contrast is of the form 

1 
A(t)  - t, C(t) - (17) 

as can be expected from dimensional analysis or a study 
of a single Gaussian blob. 

If these effects are not taken into account, the 
significance of coarse-scale blobs will be substantially 
overestimated. It is clear that the blob behavior depends 
strongly upon the image (since we actually want to use 
it for segmentation). Is it then possible to talk about 
expected behavior? 

A conservative approach is to consider white-noise 
data, that is, images without any structured relations 
between adjacent pixels. If statistics are accumulated 
on how blobs can be expected to behave in such im- 
ages, then the result wilt be an estimate of to what ex- 
tent accidental groupings can be expected to occur in 
scale-space. 

If a grey-level blob at some level of scale has a 
volume smaller than the expected volume for white- 
noise data, then it can hardly be regarded as signifi- 
cant. On the other hand, if at some level of scale the 
blob volume is much larger than the expected blob 
volume; and in addition, the difference in blob volume 
is much greater than the expected variation around the 
average value, then it may be reasonable to treat the 
blob as significant. 

A natural normalization is performed by subtracting 
a measured grey-level blob volume Gvo 1 by the mean 

value, Vm(t), and dividing by the standard deviation, 
Vo(t). This gives a transformed grey-level blob volume 

Gvo I - Vm(t ) 
Vprel = V~(t) (18) 

Since, however, such a quantity may take negative 
values, it is not suitable for integration (which is a 
necessary step in the computation of the scale-space 
blob volume). Therefore, in the current implementa- 
tion, the effective grey-level blob volume is defined in 
the following way, which empirically turns out to give 
reasonable results, 

f 1 + Vprel if Vprel > 0, 
veer Vtrans(Gvot; t )  

e Vp ro~ otherwise. 
(19) 

With this definition, the effective volume of the mean 
value is one. For larger values it grows linearly with 
Vprel. Thus, Vef f and Vprel show the same qualitiative 
behavior for the significant grey-level blobs. For smaller 
values of Vprel, V~ff decreases to zero, and the qualita- 
tive difference between Vpr~l and Veff, increases as the 
significance decreases. 

Hence, a qualitatively correct behavior is obtained 
for the important blobs, and it can be expected that this 
solution should not affect the result too seriously. It 
should also be mentioned, that in order to adapt the 
amplitude of the signal to the reference data, Vm and 
Vo are rescaled linearly from a least-squares fit be- 
tween the actual and the expected behavior of these 
entities. 

Finally, these transformed grey-level btob volumes 
are integrated over the scale-space blob according to 
(31) in appendix A. 1.3. A discussion about other pos- 
sible approaches to normalizing the scale-space Nob 
volmne is given in section 8.4. 



Detecting Salient Image Structures and Their Scales: A Method for Focus-of-Attention 295 

2.7 Resulting Representation 

To summarize, the data structure proposed is a tree-like 
multiscale representation of blobs at all levels of scale 
in scale-space including the relations between blobs at 
different scales. Grey-level blobs should be extracted 
at all levels of scale; the bifurcations in scale-space 
should be registered; grey-level blobs stable over scales 
should be linked across scales into scale-space blobs; 
and the normalized scale-space blob volumes should 
be computed. 2o 

Since the representation tries to capture significant 
features and events in scale-space using a small set of 
primitives, it is called a scale-space primal sketch. In 
the resulting data structure constructed according to this 
description, every scale-space blob contains explicit in- 
formation about the grey-level blobs it consists of. The 
grey-level blobs are detected at (sampled) scale levels 
obtained from an adaptive scale linking and refinement 
algorithm outlined in appendix A.4. Further, the nor- 
malized scale-space blob volumes have been computed, 
and the scale-space blobs "know" about the type of 
bifurcations that have taken place at the appearance and 
disappearance scales. There are also links to the other 
scale-space blobs involved in the bifurcations. Hence, 
the representation explicitly describes the hierarchical 
relations between blobs at different scales, see figure 
11 for a schematic illustration. 

I annihilation 

In the next section it will be shown how some direct- 
ly available information from this representation can be 
used for extracting significant image structures. Then, 
applications will be given of how such output from the 
scale-space primal sketch can be used for tuning later- 
stage processes and guiding the focus-of-attention. 

3 Detecting Salient Blob Structures and Their Scales 

A major motivation for this research has been investiga- 
tion of whether the scale-space model allows for deter- 
mination and detection of stable phenomena. In this sec- 
tion it will be demonstrated that this is indeed possi- 
ble, and that the suggested representation can be used 
for extracting regions of interest with associated stable 
scales from an image in a solely bottom-up data-driven 
way. The treatment is based on the assumption that: 

Structures, that are significant in scale-space, are 
likely to correspond to significant structures in the 
image. 

This statement has been expressed on a general form, 
since it can be speculated that the approach can be 
applied also to structure types other than the blobs con- 
sidered here. ~l More precisely, since the primitives that 
will be used are scale-space blobs, the heuristic selec- 
tion method is formulated as follows: 

scale-space 
blobs 

ld: 

Id: 
Significance 
(4D volume) 
Appr, scale 
Min.scale 
Max.scale 
Grey-level blobs 

/ \  
merge 

~ ~  tmax 
o 

o 

train 

I I 
Fig. 11. The scale-space primal sketch based on grey-level blobs can be seen as a tree-like multiscale representation of blobs with the scale- 
space blobs as basic primitives (vertexes) and the relations (bifurcations) between scale-space blobs at different levels of scale as branches. 
(When grey-level Nob trees are considered as well, the scale-space primal sketch becomes a three-dimensional graph with hierarchical rela- 
tions along the grey-level dimension as well.) 
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Assumption 1: Ranking of blob structures on sig- 
nificance: In the absence of other evidence, a scale- 
space blob having a large normalized scale-space 
blob volume in scale-space is likely to correspond 
to a relevant blob-like region in the image. 

A scale-space blob will, in general, exist over some 
range of scales in scale-space. When there is a need for 
reducing the amount of data represented, and to select 
a single scale and region as representative of the scale- 
space blob, the following postulates are suggested• 

Assumption 2: Scale selection: Maximum response 
over scales: In the absence of other evidence, the 
scale at which the scale-space blob assumes its max- 
imum normalized grey-level blob volume over scales 
is likely to be a relevant scale for representing the 
blob. 

Assumption 3: Selection of spatial representative: 
In the absence of other evidence, the spatial extent 
of a scale-space blob can be represented by the sup- 
port region of the blob at the scale level selected ac- 
cording to assumption 2. 

The ranking on significance depends on the actual scal- 
ing of the four coordinates in the scale-space represen- 
tation. Therefore, the extraction method implicitly relies 
upon the assumption that it should be sufficient to 
transform the coordinates once and for all as was done 
in section 2.6. 

Assumption 4: Normalization with respect to ref- 
erence data: The coordinate axes in the scale-space 
representation can be normalized on the basis of the 
behavior in scale-space of reference data. 

Below, experimental results will be given demonstrating 
how these assumptions can be used for segmenting out 
intuitively reasonable regions from various types of im- 
agery. First, however, motivations will be given to why 
these assumptions have been stated. 

3.1 Motivations for the Assumptions 

A central problem in low-level vision concerns what 
should be meant by image structure. In other words, 
which features in an image should be regarded as sig- 
nificant, and which ones can be rejected as insignifi- 
cant or as due to noise• As we discussed in the introduc- 
tion, this problem seems impossible if stated as a pure 
mathematical problem, as is the segmentation problem 

if seen in isolation. Nevertheless, since there are in- 
dications that biological vision systems are able to per- 
form natural preattentive groupings in images (Witkin 
and Tenenbaum [69], Lowe [51]), one may speculate 
whether there are any inherent properties in data that 
can be used for defining such groupings. 

The scale-space primal sketch constitutes an attempt 
to express such groupings for blob-like structures by 
a formal mathematical framework. 12 The technique 
consists of constructing primitives from the scale-space 
representation, which are defined solely in terms of the 
singularities that occur in scale-space. 

3.1.1 Stability in Scale-Space: Salience. When 
Witkin [70] coined the term scale-space, he observed 
a marked correspondence between perceptual salience 
and stability in scale-space: 

•..intervals that survive over a broad range of scales 
tend to leap out to the eye . . .  

Assumption 1 constitutes an extension of this observa- 
tion to a heuristic principle for extracting blob-tike im- 
age structures. The significance measure is, however, 
not based on the scale-space lifetime alone, since as 
mentioned in section 2.5, blobs due to noise can sur- 
vive over large ranges of scale, if located in regions 
with slowly varying grey-level. 

Observe how this measure of significance relates to 
a definition of structure in terms of transformational 
invariance. If a feature is to be useful ~br recognition, 
it must necessarily be stable with respect to small dis- 
turbances. Otherwise it would hardly be useful, since 
then it would be impossible to compute it accurately. 
Here, this stability requirement is used for actually 
formulating an operational method for detecting image 
structures--by subjecting the image to systematic 
parameter variations, and explicitly measuring the 
stability of the structures (here, blobs) under parameter 
variations (here, scale variations). 

In line with this idea, assumption 1 states that the 
scale-space blobs that are the most stable ones under 
variations of the scale parameter in scale-space, are the 
most likely ones to correspond to significant image 
structures. Of course, the reverse statement does not 
hold. There are many other sources of information, for 
example, lines in line drawings, which are not captured 
by a blob concept, and scale-space smoothing. 

Note, that this use of transformational invariance is 
different than what is usually meant by invariance in 
an algebraic or a geometric sense; the transformational 
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invariance of the scale-space blobs concerns local top- 
ological properties which are stable over finite inter- 
vals of  parameter variations. 

3.1.2 Reduction of the Representation: Abstraction. 
Because of complexity arguments, the entire parameter 
variation information from the low-level modules can- 
not be transferred to the higher-level modules in a vision 
system. 

Assumption 2 and assumption 3 express such a 
desire to represent a scale-space blob with a grey-level 
blob at a single level of scale, in order to give a more 
compressed representation--an abstraction--for further 
processing. 

The motivation for selecting the scale at which the 
maximum of the normalized grey-level blob volume is 
assumed is that it should reflect the scale where the 
blob response is maximally strong. It turns out that this 
scale will often be close to the appearance scale of the 
scale-space blob, except at blob splits and blob crea- 
tions, for which the grey-level blob volume may be zero 
at the appearance scale. ~3 

It is worth noting that assumption 2 implies a pro- 
jection from a four-dimensional scale-space blob to a 
three-dimensional grey-level Nob, and that assumption 
3 implies a projection from that grey-level blob to its 
two-dimensional support region. 

3.2 Basic Method for Extracting Blob Structures 

The basic methodology for extracting significant blobs 
from an image should now be obvious from the above 
presentation. 

- -  Generate the suggested scale-space primal sketch, 
where blobs are extracted at all levels of scale, and 
linked across scales into scale-space blobs. 

- -  Compute the normalized scale-space volume for 
each scale-space blob based on the notion of effec- 
tive scale and effective grey-level blob volumes. 

- -  Sort the scale-space blobs in descending significance 
order, i.e., with respect to their normalized scale- 
space blob volumes. 

- -  For each scale-space blob determine the scale where 
it assumes its maximum grey-level blob volume, and 
extract the support region of the grey-level blob at 
that scale. 

3.3 Experimental Results 

Figures 12-13 show the result of applying this 
procedure to two different images, one with a tele- 
phone and a calculator, and one with a set of  toy 
blocks. 

Fig. 12. The 50 most significant dark blobs from a toy block image. (Note how these images have been produced--they are not just blob 
images at a few levels of scale. Instead every" Nob has been marked at its representative scale. Finally, the blobs have been drawn in different 
images so as to avoid overlap.) 
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Fig. 13. The 50 most significant dark blobs from a telephone and calculator image. 

For display purpose the N most significant dark 
scale-space blobs have been extracted. Each blob is 
displayed at its representative scale, that is the previ- 
ously mentioned scale at which the scale-space blob 
assumes its maximum grey-level blob volume. The 
spatial representative of each blob (which is the blob 
support region of the grey-level blob at the represen- 
tative scale) is marked in a binary image, where black 
indicates the existence of a significant dark blob, and 
white represents background. In order to avoid overlap, 
the display routine shifts to a new fresh image each time 
the addition of a new blob would imply overlap between 
two different blobs. 

We can see that in the toy block image, the individual 
blocks are extracted. Also, at coarser scales, adjacent 
blocks are grouped into coarser scale units, and the im- 
perfections in the image acquisition near the boundaries 
are pointed out. In the telephone scene, the buttons, 
the keyboard, the calculator, the cord, and the receiver 
are detected as single units. In order to show the spatial 
relations between the blobs at different scales, figures 
14 and 15 show the blob boundaries superimposed onto 
each other. More experimental results, including bright 

blobs, are presented in following sections; see also 
(Lindeberg [43], Lindeberg and Eklundh [46]). 

3. 4 Further Treatment of the Generated Blob 
Hypotheses 

The number of scale-space blobs selected for display 
above is, of course, rather arbitrary. Note, however, that 
there is a well-defined ranking between the blobs. If 
one studies their significance values (see table 1 and 
figures 14-17), one can observe that those blobs we 
regard as the most significant ones have significance 
values standing out from the significance values of the 
other ones. Hence, it seems plausible that a few regions 
can be extracted just based on this observation. In more 
general situations, there is a need for feedback and 
reasoning. 

The output information from this representation 
should not be over-estimated. Since it is a low-level 
processing module, the output should be interpreted 
mainly as indicators signaling that "there might be 
something there of about that size--now some other 
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Table 1. Significance values and selected scale levels for the 20 most significant scale-space blobs computed from the toy block image, Note 
that a few blobs have significance values clearly standing out from the other. 

Significance Scale Blob label 

1450.55 32.00 1760 
1266.43 64.00 1767 
1030,53 50.80 1764 
591,16 80.60 1768 
297.60 812.90 1770 
284.72 645.10 1769 
150.64 45.25 1761 
131,99 28,51 1758 
73,69 45.25 t 763 
63.51 35.91 1065 
35.92 28.51 1759 
35,42 22.65 1753 
20.45 8.00 1703 
17.43 8.99 1702 
12.84 11,99 1723 
9.94 28.51 1757 
6,84 4.00 1256 
6.20 9,53 1708 
5.33 14.25 1725 
5.10 2.00 1440 

Fig, 14. Boundaries of the dark scale-space blobs extracted from the toy block image. (Left) Original image. (Middle left) The 50 most signifi- 
cant dark blobs, (Middle right) Low threshold on the significance measure set in one of the "gaps" in the sequence of significance values 
(between 74 and 131), (Right) High threshold on the significance measure set in another "gap" (between 298 and 591). (The significance 
values are shown in table 1,) 

Fig, 15. Corresponding Nob boundaries from the telephone and calculator image, 

I ~ X X ~  X ~ ~ X X ~ " log (s ignif icance)  

Fig, 16. Significance values of the 50 most significant blobs from the toy block image, The significance value of each blob has been marked 
with an "x" along a horizontal logarithmic scale. The vertical lines indicate the manually selected thresholds used in figure 14. 

~ X  X X  X X ) log (significance) 
Fig, 17. Corresponding significance values and manually selected thresholds for the blobs from the telephone and calculator image in figure 15. 
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module should take a closer look" From this viewpoint 
it can be noted how well the extracted blobs describe 
blob-like features in the previous images, considering 
that the blobs have been extracted almost without any 
a priori information. 

In principle, a reasoning process working on the out- 
put from the scale-space primal sketch can operate in 
either of two possible modes: 

- -  Use a threshold on the significance measure. In a 
real system, such a threshold may--in some situa- 
t ions-be set from given context information and 
expectations. 

- -  Evaluate the generated hypotheses in decreasing 
order of significance, i.e., first try to interpret the 
first hypothesis in a feedback loop, then consider 
the second one, etc. Continue as long as the hypoth- 
eses deliver meaningful interpretations for the 
higher-level modules. 

An inherent property of this representation is that it 
does not have any limiting requirement that there is just 
one possible interpretation of a situation. Instead it gen- 
erates a variety of hypotheses. Given some region in 
space, several hypotheses may be active for it (or parts 
of it) concerning different structures at different scales. 

A principle advocated in this work is that the quali- 
tative scale and region information extracted from the 
scale-space primal sketch can be useful for guiding 
other visual processes, and will simplify their tasks. 
Now, examples will be given of how such integrations 
of the scale-space primal sketch with other processing 
modules can be performed. 

4 G u i d i n g  E d g e  Detec t ion  w i t h  B iob  I n f o r m a t i o n  

As a first application of the suggested methodology, an 
integration with an edge-detection method known as 
edge focusing (Bergholm [5]) will be described. 

The main idea is to use the scale and region infor- 
mation for guiding an edge-detection scheme working 
at an adaptively determined level of scale. It will be 
demonstrated that this task can be simplified, and that 
thresholding on gradient magnitude can be avoided. 
Given a significant scale-space blob, edge detection is 
performed at the appropriate scale of the scale-space 
blob. Then a matching step is carried out between the 
support region of the blob and the edges in a neighbor- 
hood of the btob. Finally, the matched edges are tracked 
to finer scales in order to improve the localization; see 
figure 18 for a schematic overview. 

It is not maintained that the approach to be presented 
describes any "optimal way" to solve every occurring 
subproblem. Instead, the intention is to exemplify how 
a connection between the scale-space primal sketch and 
other processing modules can be done. 

4.1 Edge Detection at a Coarse Scale 

A rather simple edge detector is used deliberately. The 
image is smoothed to the scale associated with the scale- 
space blob. Then, derivatives along the two coordinate 
directions are estimated by difference approximations, 
and a nonmaximum suppression step (Canny [14], Korn 
[38]) is performed (without thresholding on gradient 
magnitude) in order to obtain thin edges, t4 In order to 
suppress spurious noise points, only edge segments of 
length exceeding, say 2 pixels, are accepted. 

4. 2 Matching Blobs to Edges 

Associating blobs with edges leads to a matching situa- 
tion. The matching procedure used for associating blobs 
with edges is based on the following criteria: 

Geometric Coincidence. The edge segments should 
"encircle," "be included in," or "intersect" the blob. A 
convenient way to express such a criterion is by requiring 

scale information edge focusing 

blobs from the 
scale-space 
primal sketch 

=> ,) => 
/ 

edge detection + localized edges 
matching at at finer scales 
coarse scale 

/ 
Fig. 18. Schematic view over the proposed integration of the scale-space primal sketch module with edge focusing. 
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Fig. 19. The geometric coincidence condition means that the edge 
should surround the blob, be included in it, or intersect it--it should 
be impossible to draw a straight line separating the edge from the 
blob (b). In example (a) edges E 1 and E 2 are treated as matching 
candidates of the blob, while edges E 3 and E 4 are not. 

it to be impossible to draw a straight line separating 
the edge from the blob, see figure 19. 

A simple way to approximate this criterion computa- 
tionally is as follows: Let B C IR 2 be the set of points 
contained in the support region of a blob, and let E C 
IR 2 be the set of points covered by an edge segment. 
Further, given any region R and any arbitrarily rotated 
coordinate system (~', ~7) E IR 2, define the extreme 
coordinate values ~'min, ~max E ]R by 

~-min(R) = min ~', ~'m~x(R) = max ~'. (20) 
(~',~7)ER (~',~/)ER 

Now, an edge segment E is regarded as a matching can- 
didate of a blob B if 

~'r~n(E) < ~'max(B) ~'max(E) -> ~'min(B) (21) 

hold in a sufficiently large number of directions. For 
practical implementation, this condition is required to 
hold along both the coordinate directions of a standard 
Cartesian coordinate system, as well as a correspond- 
ing coordinate system rotated by 45 degrees. 

Proximity. The edge segment should not be too far 
away from the blob boundary. In other words, the edge 
segment should comprise at least some point located 
near the boundary of the blob. This condition can be 
stated as 

min IIx  -xBII2 - d(t__~) (22) 
XEEE ;XBE B 2 ' 

where d(t) represents a characteristic length at scale 
t. 15 The purpose of this criterion is to prevent (interior 
and exterior) edges far away from the biob boundary 
from being associated with the blob; see figure 20(a). 

Voronoi Diagram of the Grey-Level Blob Image: 
The edge segment should not be strongly associated 

BI 

i 

J 

/ B2 

l~ig. 20. (a) The purpose of the proximity criterion is to prevent edges 
far away from the blob boundary from being associated with the blob, 
(b) The purpose of the Voronoi region matching is to prevent edges 
strongly related to one blob from being associated with other nearby 
blobs. 

with other blobs. A natural way to express such a 
criterion is in terms of a Voronoi diagram of the grey- 
level blob image at the selected scale. An edge segment 
is regarded as a Voronoi matching candidate of a blob 
if it has at least one point in common with the Voronoi 
region associated with the grey-level blob; see figure 
20(b). In fact, this type of criterion ~rns out to be useful 
also to other matching problems. 

Composed Matching Procedure: For an edge seg- 
ment to be accepted as a matching candidate of a blob, 
it must satisfy all these criteria; see figure 21 for an 
illustration. Hence, the matching is relatively restric- 
tive. It is also improved by the fact that it is performed 
at a scale at which a blob has manifested itself. Once 
it is known that a spatial region has given rise to a large 
blob at some level of scale, it seems unlikely that con- 
flicting edges should appear at the same scale, since 
most interfering structures ought to be suppressed by 
the scale-space smoothing. 

The main problem with this matching procedure is 
that it does not include any mechanism for splitting long 
edge segments into shorter ones. Hence, certain edge 
segments can be very long and spread far away from 
the blob boundary; see the example in figure 22. 

4. 3 Blob-Initiated Edge Focusing 

Edge focusing (Bergholm [5]) is a method for follow- 
ing edges through scale-space. The basic principle is 
to detect edges at a coarse scale, where the detection 
problem can be expected to be easier, and then track 
the edges to a finer scale, in order to improve the 
localization, which can be very poor at coarse scales. 

In this application the focusing procedure is initiated 
from several scale levels, since the significant blobs 
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Fig. 21. The matching procedure between blobs and edges tbr one blob from the telephone and calculator image. (a) The support region of 
a dark scale-space blob (black). (b) Edges detected at the scale given by the blob. (c) All grey-level blobs at the same level of scale. (d) Voronoi 
diagram of the grey-level blob image. (e) The Voronoi region corresponding to the given blob. (f) The proximity stripe around the blob edge. 
(g) Resulting edges matched to the blob. 

from the scale-space primal sketch manifest themselves 
at different scales. Hence, the blobs are first presorted 
in decreasing scale order. The procedure starts with the 
coarsest scale blob, detects edges at that scale, and 
matches those to the blob. This gives the input data for 
the edge-focusing procedure, which folloves these edges 
to the scale given by the second blob. Then, the edge- 
detection and matching steps are repeated, etc. 

Figure 22 illustrates some steps from this procedure 
applied to the telephone and calculator image. In order 
to reduce the number of blob hypotheses treated, a 
threshold has been introduced on the significance value. 
The "final result" is shown in the lower right corner. 

Observe that this method, called blob-initiated edge 
focusing, is not just another edge detector, but that the 
edge elements obtained in this way are more likely to 
correspond to meaningful entities, since they are ex- 
plicitly grouped into edge segments, and are associated 
with blobs and explicit scale information. Note that 
label information for the edge segments can be easily 
inherited during the edge-focusing process. ~6 

With this integration experiment, two of the tuning 
parameters in the edge-focusing algorithm have been 
eliminated. What remains undetermined is the stop 
scale down to which the edge focusing procedure should 
be performed. In this work it has been throughout set 
to t = 1, a scale where the sampling effects due to the 
discrete grid start to become important. It seems plaus- 

ible that some further guidance for this selection could 
be obtained by studying the behavior of the focused 
edges in scale-space as done by (Sj6berg and Bergholm 
[64]; Zhang and Bergholm [72]; and Lindeberg [49]). 

The integration of the two algorithms exemplifies the 
previously mentioned guidance of focus-of-attention. 
Note that the processing initiated by the scale-space 
primal sketch is performed only for a small subset of 
the image data. In this sense the approach bears simi- 
larity with the idea of a "focused beam" derived by 
Tsotsos [66] from complexity arguments; see also the 
experimental work by Culhane and Tsotsos [18]. 

5 Automatic Peak Detection in Histograms 

The scale-space primal sketch is well suited for 
automatic cluster detection, since it is designed for 
detection of bright blobs on dark background and vice 
versa. Hence, it lends itself as a natural module for peak 
detection in algorithms based on histogramming tech- 
niques. Although it is well known that histogram-based 
segmentation hardly can be expected to work globally 
on entire images (due to illumination variations, inter- 
ference because of many regions, etc.), such methods 
can often give useful results locally in small windows, 
where only a few regions of distinctly different char- 
acteristics (e.g., color or grey-level) are present. 
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Fig, 22. Illustration of the composed blob-edge focusing procedure for the telephone and calculator image. The left column shows the active 
blob hypothesis; its hlob support region has been marked with black. The middle colunm shows the edge image at the level of scale given 
by the previous blob; matched edge segments are drawn black while the other edge pixels are grey. The right column shows the result after 
focusing, just before the new blob is considered. The image in the lower right corner displays "the final result," that is, the edges that are 
related to the dark blobs in the image. The scale and significance values for the different blobs are from top to bottom (101.6, 14.1), (50.8, 
252,8), (32.0, 11.4), (25.4, 660.9), (14.3, 40.8), (6.4, 63.6), and (1.3, 13.2) respectively. 
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5.1 Experimental Results: Histogram-Based Color 
Segmentation 

Figure 23 and figure 24 illustrate how the scale-space 
primal sketch can consitute a helpful tool in such histo- 
gram modality analysis of  multispectral data. It shows 
histograms of the (two-dimensional) chroma informa- 
tion, together with blobs detected by the scale-space 
primal sketch, and backprojections of  the blobs. 17 We 
see that the extracted blobs induce a meaningful parti- 
tioning of the histogram, corresponding to regions in 
the image with distinctly different colors. 

Of  course, there is a decision finally to be made 
about which peaks in the histogram should be counted 
as being significant. However, it seems plausible that 
the significance values given by the scale-space blob 
volumes reflect the situation in a manner useful for such 
reasoning, especially since the regions around the peaks 
are extracted automatically. In these examples, (single) 

thresholds have been set manually in "gaps" in the 
sequences of significance values; see the captions of  
figures 23-24.  

It can also be noted that this peak-detection concept 
will be less sensitive to quantization effects in the his- 
togram acquisition than many traditional peak-detection 
methods. The problems due to too fine a quantization 
in the accumulator space will be substantially reduced, 
since the scale-space blurting will leak to a propagation 
of information between different accumulator cells. 
Thus, even though the original histogram may have been 
acquired using "too many and too small" accumulator 
cells, large-scale peaks will be detected anyway, since 
the contents of  their accumulator cells will merge to 
large-scale blobs in scale-space after sufficient amounts 
of blurring. 

Finding peaks in histograms is a problem that 
arises in many contexts. Let us point out that the case 
with color-based histogram segmentation has been 

Fig. 23. Histogram-based color segmentation of a fruit bowl image: (a) Grey-level image. (b) Histogram over the chrorna information. (c) 
Boundaries of the 6 most significant blobs detected by the scale-space primal sketch. (d)-(i) Backprojections of the different histogram blobs 
(in decreasing order of significance). The pixels corresponding to the various blobs have been marked in black. (The region in figure (f) is 
the union of the regions in figures (d), (e), and (i).) The significance values of the accepted blobs were 42.6 (background), 8.3 (grapes), 
3.6 (oranges), 3.1 (apples), 3.0 (bowl), and for the rejected blobs 2.0 and less (2.0, 1,9, 1.8, 1.4, 1.3, 1.1, 1.1, 1.1 . . . .  ). 
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Fig. 24. Similar histogram-based color segmentation of a detail from an office scene. The image shows a small window from a bookcase 
with two binders (yellow and blue) on a shelf made of (yellowish) wood. The displayed blobs have significance 187.9 (blue binder, large blob), 
173.7 (blue binder, small blob), 170.1 (yellow binder), 80.6 (shelf), and 66.7 (yellow binder and shelf). As can be seen, two blobs correspon- 
ding to the blue binder have been detected. This is a common phenomenon in the scale-space primal sketch, that arises because a large blob 
merges with a small (insignificant) blob and forms a new scale-space blob. Two such duplicate blobs corresponding to the yellow binder (significance 
18.0) and the shelf (significance 17.9) have been suppressed. The remaining blobs had significance 2.5, 2.0, 2.0, 2.0, 1.2, 1.2, 1.2, 1.1, and less. 

considered just as one possible application of the scale- 
space primal sketch to histogram analysis. Because of  
the general-purpose nature of  this tool, there are poten- 
tial applications for similar techniques such as Hough 
transforms, texture classification, etc. in two as well 
as other dimensions. For related work, see Carlotto 
[15], and Mokhtarian and Mackworth [56]. 

6 Junction Classification: Focus-of-Attention 

More generally, the scale-space primal sketch can serve 
as a primitive mechanism for focus-of-attention. As an 
illustration of this, an experimental work will be briefly 
described, where the scale-space primal sketch has been 
used for guiding the focus-of-attention of  an active bead- 
eye system applied to a specific test problem of classi- 
fying junctions. 

The presentation is aimed at showing how the sug- 
gested approach can be used when addressing some of  
the most fundamental problems in active analysis: (i) 
how to generate hypotheses about the existence of ob- 
jects, (ii) how to determine where to look, and (iii) at 
what scale(s) to analyze image structures. 

6.1 Background: Junction Classification by Active 
Focusing 

It is well known that junctions provide important cues 
to three-dimensional structure (Malik [52]). Since most 
edge detectors cannot be expected to give accurate 
results at junctions, direct methods for junction detec- 
tion have been proposed. 

Brunnstr6m et al. [11] have demonstrated that a 
reliable classification of junctions can be performed by 
analyzing the modalities of  local intensity and direc- 
tional histograms during an active focusing process. The 
basic principle of  the method is to accumulate local 
histograms over the grey-level values and the directional 
information around candidate junction points, which 
are assumed to be given by some interest-point operator. 
Then, the numbers of peaks in the histograms can be 
related to the type of junction according to table 2. 

The motivation for this scheme is that in the neigh- 
borhood of  a point where three edges join, there will 
generically be three dominant grey-level peaks corre- 
sponding to the three surfaces that meet. I f  the point 
is a 3-junction (an arrow-junction, or a Y-junction) then 
the edge-direction histogram will (generically) contain 
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Table 2. Basic classification scheme for local intensity and direc- 
tional distributions around a candidate junction point. (Adapted from 
Brunnstrtm et al. [11].) 

Intensity Edge Direction Classification Hypothesis 

unimodal any noise spike 
bimodal unimodal edge 
bimodal bimodal L-junction 
trimodal bimodal T-junction 
trimodal trimodal 3-junction 

three major peaks, while two directional peaks can be 
expected at a T-junction. Similarly, at an L-junction 
there will in general be two intensity and two direc- 
tional peaks. Noise spikes and edges must be consid- 
ered, since interest-point operators tend to give false 
alarms at such points. Situations with more than three 
peaks in either the intensity or the directional histo- 
gram are treated as nongeneric or as corresponding to 
surface markings. 

6.2 Required Context Information 

Taking such local histogram properties as the basis for 
a classification scheme leads to two obvious questions: 
Where should the window for accumulating the statis- 
tics be located and how large should it be? 

The problem of detecting candidate junctions has 
been extensively studied in the literature (Kitchen and 
Rosenfeld [32]; F6rstner and Gfilch [22]; Koenderink 
and Richards [35]; Florack et al. [21]). A useful entity 
for junction detection is the curvature of  level curves. 
In order to give a stronger response near edges, this 
entity is usually multiplied by the gradient magnitude 
raised to some power k. A natural choice is k = 3. This 
gives a polynomial expression 

= ILx~L 2 + Lyyl2 - 2 L~yLxLyl (23) 

which turns out to be skew invariant (Blom [9]). The 
result of computing this rescated level-curve curvature 
from the toy block image at a scale given by a scale- 
space blob is shown in figure 25(b). Local maxima in 

computed at a certain scale in scale-space can be 
treated as junction candidates at that scale. 

Problems that have not been very much treated con- 
c e m  at what scales the junctions should be detected, 
and how to determine regions of  interest around those. 
Corners are usually regarded as pointwise properties, 
and thereby treated as very-fine-scale features. Realistic 
corners from man-made environments are, however, 
usually rounded. This means that small-size operators 
will find them noisy images. 

In order to extract junction candidates, it is proposed 
that it can be useful to perform blob detection on the 
level-curve curvature data. Such blobs are termed 
curvature blobs. Figure 25(c) shows the result of ap- 
plying this operation to the data in figure 25(b). Note 
that a set of  regions is detected corresponding to the 
major corners of  the toy block. Note also that the sup- 
port regions of  the blobs serve as natural descriptors 
for a characteristic size of a region around the candidate 
junction, which can be used for setting the window size 
for the histogram classification step. 

Of  course, direct setting of a window size immedi- 
ately valid for correct histogram localization seems to 
be a very difficult, or even an impossible, task. I f  the 
window is too large, then other structures than the cor- 
ner of interest may be included. Conversely, if  it is too 
small, the histograms could be severely biased, and 
deviate far from the ideal appearance if the physical 
comer  is rounded. A too-small window may also fall 
outside the actual comer  if  the interest point is 
associated with a localization error. 

Therefore, the proposed approach is to use the 
support region of  the curvature blob for determining 

Fig. 25. Blob-initiated detection of junction candidates in the toy block image. (a) Support region of a scale-space blob (marked with black). 
0~) The rescaled level-curve curvature computed at the scale of the scale-space blob. (c) Boundaries of the 50 most significant curvature blobs 
detected by applying the scale-space primal sketch to the curvature data. (d) Curvature blobs matched to the original scale-space blob by spatial 
overlap, under the additional condition that the scale of the curvature blob must not exceed the scale of the original scale-space blob that 
invoked the analysis. 
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generous upper and lower bounds on an interval of win- 
dow sizes, and then applying the focusing procedure 
described by Brnnnstrtm et al. [11]. The intention is 
that a systematic variation of window size combined 
with a consistency check over parameter variation 
should allow for a more robust modality determination. 
The method is based on the assumption that stable 
responses will occur for the model that best fits the data, 
which closely relates to the scale variation principle 
in section 3.1.1. 

A trade-off with this approach is that the localiza- 
tion of the corner will in general be affected by the 
smoothing operation. Therefore, it should be empha- 
sized that the main goal of this first step is to detect 
candidate junctions at the possible cost of poor local- 
ization. Then, if improved localization is needed, it can 
be obtained from a separate process, using edge and 
curvature information at finer scales (Lindeberg [49]). 

6.3 Experimental Technique 

Figures 26-29 illustrate some of the main processing 
steps in the composed classification method (Brunn- 
strtm et al. [12]), which is integrated with an active 
head-eye system (Pahlavan and Eklundh [57]) allow- 
ing for algorithmic control of the image acquisition. 
Figure 26 shows an overview image of a scene under 
study together with the 20 most significant dark and 
bright scale-space blobs. Each such region constitutes 
a hypothesis about the existence of an object, a facet of 
an object, or an illumination phenomenon in the scene. 

In figure 27 the cameras of the head-eye system 
have been redirected toward one of the dark blobs cor- 
responding to the central toy block, and a new image 
of higher resolution has been acquired around the 
region of interest. This step simulates foveation. At the 
scale of the scale-space blob (transformed with respect 
to the increased sampling density), the level-curve curv- 
ature is computed, and curvature blobs are detected us- 
ing the scale-space primal sketch; see figure 27(c). 

In figure 28 the algorithm has zoomed in further to 
one of the curvature blobs, and invoked a histogram 
classification procedure tuned to the size of the curva- 
ture blob. This junction was classified as a 3-junction 
based on three peaks stable with respect to variations 
in window size, detected in the grey-level and direc- 
tional histograms respectively. Figure 29 shows cor- 
responding results for an L-junction. 

To summarize, this experiment indicates how the 
scale-space primal sketch can be used in dynamic situa- 
tions like focus-of-attention. Such mechanisms are nec- 
essary if computer vision systems are to perform their 
tasks in a complex and dynamic world. It should be 
emphasized that the treatment here describes on-going 
experimental work, and that there is still more work 
to be done concerning control strategies of the reason- 
ing process. Nevertheless, the presentation illustrates 
some basic ideas of how the suggested approach can 
be used in an active vision situation, and specifically, 
how qualitative scale and region information can be 
used for guiding a junction detection module by detect- 
ing curvature blobs from grey-level data. 

7 Other Possible Applications 

Let us finally mention a few other problem areas where 
the approach can be applicable. 

Texture Analysis 

A basic problem in many shape-from-texture algorithms 
concerns how to detect texture elements (Julesz and 
Bergen [30]; Blostein and Ahuja [10]; Vorhees and 
Poggio [67]; G~irding [23]). Since the scale-space pri- 
mal sketch does not require any prior scale information, 
and scale levels can be automatically adapted to size 
variations in image data, it is a useful tool for such 
analysis. 

Figures 30-31 show experimental results for one 
synthetic and two realistic images. Note that in both 
cases a set of blobs is extracted with a size gradient 
that can be used as a cue to the three-dimensional 
structure. 18 

Perceptual Grouping 

In the presented experiments we have seen that the blobs 
extracted from the scale-space primal sketch often in- 
duce intuitively reasonable groupings of various pat- 
terns. For example, in figure 31 (a-c) in principle only 
the individual squares were ranked as important, while 
in figure 31(d-f) vertical stripes were also found. See 
also the dot pattern example in figure 32. Note that the 
grouping process is not given by any of the prespecified 
logical rules, but by a differential equation combined 
with a set of geometric constructions. 
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Fig. 26, (a) Overview image of a scene under study. (b-c) Boundaries of the 20 most significant dark and bright scale-space blobs respectively. 

Fig. 2Z Zooming in to a region of interest given by a scale-space blob from the previous processing step. (a) A window around the region 
of interest, set from the location and the size of the blob. (b) The rescaled level-curve curvature computed at the scale of the blob. (c) The 
boundaries of the 20 most significant curvature blobs obtained from blob detection in the curvature data, 

Fig. 2& Zooming in to a junction candidate given by a curvature blob. (Left) Maximum window size for the focusing procedure set from 
the size of the curvature blob, (Middle left) Backprojected peaks from the intensity histogram. (Middle right) Lines computed from the backprojected 
peaks from the directional histogram, (Right) Schematic illustration of the classification restdt in which a simple junction model has been 
adjusted to the data. (This junction candidate was classified as a 3-junction.) 

Fig. 29. Similar classification result for an L-junction. 
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Fig. 30. Multiscale blob detection on a synthetic-texture image generated from perspective projection of a planar surface with a sinusoidal 
grey-level pattern. (a) Grey-level image with added white Gaussian noise with standard deviation 10% of grey-level range. (b) The 75 most 
significant dark blobs. (c) The 75 most significant bright blobs. 

Fig. 31. Multiscale blob detection applied to two different views of a real-world surface texture. (Left) Grey-level image. (Middle and right) 
The 100 most significant dark blobs (marked either as blob regions or blob boundaries). 

© 
© 

(a) (b) (c) (d) 

Fig. 32, Multiscale blob detection on a dot pattern image. (a) Original grey-level image. (b) Boundaries of the 50 most significant blobs. (c) 
Low threshold on the significance measure, (d) High threshold on the significance measure. Note that all dots are detected and that a number 
of intuitive groupings are performed. 
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Object Detection and Matching 

The blobs delivered from the scale-space primal sketch 
can serve as coarse landmarks for different types of 
matching purposes. The relation given by, say, matches 
between a blob and a set of edges and junctions, provides 
a sparse set of  features, which could be used, for exam- 
ple, for delimiting the search space in model matching. 
Another possible application is to use the blobs for initi- 
ating object models, like deformable models (Kass et al. 
[31]; Terzopoulos et al. [65]; Pentland [58]), or geon 
primitives (Biedermann [6]; Dickinson et al. [19]). Ex- 
perimental work indicates that the approach may be use- 
ful for establishing coarse correspondences in sequence 
data; see also (Koller et al. [37]). Blobs are concep- 
tually easy to match over time based on spatial overlap. 

8 Summary and Discussion 

The proposed representation is similar to the primal 
sketch suggested by Marr [53, 54], in the sense that 
it is a two-dimensional representation of the significant 
grey-level structures in the image. It is also computed 
under extremely weak assumptions. And, although it 
is a region-based and not an edge-based representation, 
it is more qualitative, without strong assumptions about 
the shapes of the primitives. It consists of blobs (ex- 
tremum regions) at multiple scales in scale-space, and 
allows for 

-- automatic detection of salient (stable) scales, if they 
exist, 

--  ranking of blob-like structures in order of signifi- 
cance, and 

--generation of hypotheses for grouping and 
segmentation. 

This implies that candidate regions are generated for 
further processing, as well as information about the 
scale. We have seen that the proposed representation 
gives clues to subsequent analysis, and that it can guide 
focus-of-attention mechanisms. At the same time it is 
obtained with no a priori assumptions, and, in prin- 
ciple without tuning parameters. The only free param- 
eter is the number of blobs to be selected for further 
analysis (or display). 

The underlying principle used for extracting blob 
structures is that structure should be invariant under 
transformations in parameter space. The suggested 
method consists of three steps; (i) vary the parameter 
systematically, (ii) detect (locally) stable states (inter- 
vals), (iii) choose a representative descriptor as an ab- 
straction of each stable interval, and pass only this infor- 
mation on to the higher-level modules. In this specific 
case, the parameter that is varied is the scale parameter in 
the scale-space representation, and the significance mea- 
sure is defined in terms of a four-dimensional volume in 
scale-space. The methodology can, however, be applic- 
able also in other types of situations. One example, con- 
cerning junction classification, is described in section 6. 

8.1 Scale-Space Experiences 

Let us finally point out a few aspects of scale-space 
representation that have been given little or insufficient 
attention in the literature, and have to be dealt with 
when building a representation of the type proposed. 

Suppression of Local Extrema Due to Noise. First, it 
is noteworthy, that the amount of noise in real images 
usually leads to a large number of local extrema. These 
extrema may disappear rather early if they are sub- 
sumed by some more prominent extremum. However, 

Fig. 33. (a) An unusual situation, where one could possibly talk about a global stable scale for a whole image. (b) This property manifests itself 
as a plateau in a graph showing the logarithm of the number of local extrema as a function of (effective) scale. (c) For realistic images of'moder- 
ate complexity it will, however, usually not be possible to find such globally stable states. Even if there were a number of prominent plateaus cor- 
responding to locally stable structures at different scales, adding a large number of such profiles would give a relatively uniformly decreasing curve. 
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if they are located regions with smoothly varying grey- 
level, they will exist over a large range of scale. This 
effect is alleviated, but not remedied, by annihilation 
between nearby noise extrema. Even though the ampli- 
tude can be expected to decrease rapidly, it is not clear 
that a globally valid threshold can be set on objective 
grounds. This problem is related to the issue of esti- 
mating the noise level in an image, which hardly can 
be addressed without some constraining assumptions, 
as in Voorhees and Poggio [67]. 

Stable Scale Is a Local Property. Another property, 
indicated in section 2.5, is that images of scenes of even 
moderate complexity rarely have a global scale, at 
which all structure above the noise level is present (fig- 
ure 33). Sable scales are local properties associated 
with objects, not with entire images. This aspect is ex- 
plictly dealt with in the proposed representation. 

Stable Scale Is a Multivalued Function. Moreover, 
given some region in space there may be several stable 
scales associated with that region, corresponding to 
structures at different scales. Therefore, the ask of find- 
ing "a best scale" for treating a certain point is in 
general an impossible problem (except for very sim- 
ple images, for which there is only one such stable scale 
associated with each point in the image). 

In this context it should be remarked that the scale 
value given by assumption 2 does not necessarily reflect 
the size of the corresponding blob region in the image. 
Although, in general, large values of the scale parameter 
can be expected to correspond to large-scale structures, 
there is no direct relationship. Under certain conditions 
(typically when there are no superimposed finer-scale 
structures) a large-scale structure may, in fact, be 
assigned a small-scale value. Therefore, the scale value 
obtained from assumption 2 should rather be interpreted 
as an abstract scale parameter, reflecting the smallest 
amount of  smoothing for which the blob manifests itself 
as a single blob entity. 

Decreasing Amplitude of  Feature Points. The 
behavior of local extrema in scale-space has been studied 
also by Lifshitz and Pizer [40]. They link points across 
scales based on iso-intensity, using integral paths of the 

2 vector field (Lxi Lt, Lx 2 Lt, - (L2xl + Lx2) ), and con- 
struct a "stack" representation, in which the grey-level 
at which an extremum disappears is used for defining 
a region in the original image by local thresholding at 
that grey-level. The representation is demonstrated to 

be applicable for certain segmentation problems in 
medical image analysis. However, Lifshitz and Pizer 
observe the serious problem of noncontainment. It 
essentially means that a point, which at one scale has 
been classified as belonging to a certain region (asso- 
ciated with a local maximum), can escape from the 
region when the scale parameter increases. Moreover, 
such paths can be intertwined in quite a complicated 
way. 

The main cause of the problem in iso-intensity link- 
ing is that grey-levels, corresponding to features tracked 
over scales, will change under scale-space smoothing. ~9 
For example, concerning a local extremum, it is a 
necessary consequence of the diffusion equation that 
the grey-level at a maximum point must decrease with 
scale. This problem is avoided in the scale-space primal 
sketch, in which the linking is explicitly based on 
qualitative feature points (here, local extrema). 

8.2 Relations to Previous Work 

There are earlier attempts to derive similar representa- 
tions of the grey-level landscape. Rosenfeld and his co- 
workers (Gross [26]; Sher and Rosenfeld [63]) have 
studied blob detection in pyramids, for example, using 
relaxation methods. Blostein and Ahuja [10] detect tex- 
ture elements based on zero-crossings at multiple scales 
and a significance measure based on a background noise 
assumption. There is also a wealth of literature on 
pyramids (see, e.g., Levine [39]; Burt [13]; Crowley 
and lhrker [16]; Cr~vley and Sanderson [17]). The tex- 
ton theory (Julesz and Bergen [30]; Voorhees and 
Poggio [67]) essentially also treats the blob-detection 
problem. There are finally a number of representations 
based on intensity changes (Marr [54]; Bergholm [5]; 
Watt [68]; Baker [4]); and approaches working at higher 
levels, like the token based-symbolic grouping by Saund 
[62]. Also of interest is the approach by Haralick et 
al. [27], which allows a more detailed representation, 
but only at a single spatial scale. 

The suggested approach differs from these in three 
important aspects. Firstly, it can be seen as preceding 
the edge-based schemes in that it selects the appropriate 
scales and regions, intrinsically defined by the image 
itself, in a complementary daa-driven manner. Sec- 
ondly, it is a hierarchical representation of image struc- 
tures at all scales with explicit information about their 
significance and relations, and a competition between 
parts at different locations and scales. Finally, it is 
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derived in a formal way using the well-defined notion 
of scale-space, which allows a precise study of events 
at different scales. 

One can ask more generally, what is the relation be- 
tween the suggested representation and the zero-cross- 
ings of the Laplacian. Given a function f :  IR 2 -~ IR, 

define a bright (dark) Laplacian sign blob as a con- 
nected region satisfying V 2L < 0 (>  0). Since at any 
local maximum (minimum) it holds that V2L < 0 (>  
0), it follows that to every grey-level blob there is a 
unique Laplacian sign blob of the same polarity. How- 
ever, the reverse relation is not valid; given a bright 
(dark) Laplacian sign blob, there may be one maximum 
(minimum), several maxima (minima), or even no max- 
imum (minimum) in that region. 

In fact, a representation similar to the grey-level- 
btob tree at a single scale has been studied indepen- 
dently by Blom [9], who Considers the nesting struc- 
ture of level curves through critical points. The major 
differences are that Blom considers a degenerate (non- 
Morse) critical point, and that he points out that a hex- 
agonal discrete grid has certain theoretical advantages. 
In this work, grey-level volumes are associated with 
the different arcs of the nesting tree, and the repre- 
sentation is embedded in scale-space. 

8.3 lnvariance Properties 

Since the scale-space primal sketch is defined solely 
in terms of topological properties as local extrema, level 
curves through saddle points, and bifurcations between 
critical points, it obeys a number of natural invariance 
properties. Invariance with respect to translations and 
rotations of the spatial domain is trivial. Further, given 
a certain scale level, the topological relations of the 
grey-level blob tree are preserved under arbitrary mono- 
tone intensity transformations. Under evolution in scale- 
space, the invariance of the hierarchical relations is 
restricted to linear intensity transformations. Such 
transformations also leave the relative ranking of blobs 
on significance unaffected. Trivially, under uniform 
rescatings of the spatial coordinates, x ~ sx (s E IR + ), 
a singularity at a point (x0; to) in the scale-space 
representation of the original signal is transferred to a 
new point (sx0; S2to). This means that the hierarchical 
relations are preserved, and the appearance and dis- 
appearance scales of the scale-space blobs are multi- 
plied by constant factors. Concerning the ranking on 
significance, it is clear that the logarithmic measure 

ref f is invariant to uniform rescalings, and hence the 
scale-space lifetime. The intention with the transforma- 
tion function V~ans is that also the integrand should be 
well behaved under this operation, z° 

8. 4 Alternative Approaches and Further Work 

Let us finally mention a few issues that are subject to 
future work: 

Normalization. In the current implementation, the 
normalization of the scale parameter and the grey-level 
blob volume has been based on white noise data. The 
reason for this is that it constitutes a conservative 
choice, and makes theoretical analysis simple. If statis- 
tics are accumulated on how blobs in such data can be 
expected to behave over scales, then the result is an esti- 
mate of to how large extent accidental groupings take 
place in scale-space. By experiments, this normalization 
based on white-noise images has been demonstrated to 
give reasonable results. Moreover, concerning scale- 
space lifetime, it has been theoretically shown, that for 
continuous signals such reference data gives rise to the 
same transformation function (r - log t) as other self- 
similar distributions (section 2.6.1). This selection 
should, however, not be interpreted as excluding that 
other approaches, which are equivalent in the con- 
tinuous case, may lead to different results for discrete 
signals. For example, some interesting alternatives to 
consider would be (i) to let the vision system accumu- 
late statistics for a large (representative) selection of 
different types of realistic imagery, or, (ii) if possible, 
consider some discrete analogue of colored noise with 
a (scale invariant) Fourier spectrum of the form 
to: l -N, where N denotes the dimension. 

A possible problem with the subtraction of the mean 
grey-level blob volume (18) is that it makes the normal- 
ized grey-level blob volume sensitive to the actual scal- 
ing of the data. Therefore, in order to reduce this sen- 
sitivity, the tabulated values are rescaled linearily from 
least-squares fit between the real and the tabulated 
values. A possible way to avoid this problem, and also 
to avoid the heuristically chosen transformation func- 
tion in (19), is by redefining the normalized grey-level 
blob volume as 

Gvol 
Voff-  Vm(t) (24) 

and then taking as normalized significance values 
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Seff - Svol - Sin(t) (25) 
S~(t) ' 

where Sm and So denote mean values and standard 
deviations of scale-space blob volumes computed from 
reference data. This method has not yet been imple- 
mented, mainly because the simulation work for build- 
ing the normalization tables is much larger. 

Multiple Blob Instances. The scale-space primal 
sketch leads to separate systems of bright and dark 
scale-space blobs. Moreover, a spatial region may give 
rise to multiple blob responses; typically as the result 
of a large blob merging with a smaller blob and form- 
ing a new scale-space blob. An obvious problem con- 
cerns how to integrate blobs at different polarity and 
at different scales. In general, it is argued that this prob- 
lem can hardly be addressed in isolation, but has to 
be related to a visual task. The following are some basic 
properties that can be used by a reasoning system. 

Given a fixed level of scale, the problem of inte- 
grating bright and dark blobs can be approached by 
considering the grey-level blob tree, which constitutes 
the natural link between grey-level blobs of reverse po- 
larity; see also Blom [9]. Concerning the behavior over 
scales, it is clear that a tree describing bifurcations be- 
tween scale-space blobs will be strongly coupled to the 
grey-level blob tree. For example, for the simple noise- 
free pattern in figure 1, a tree describing the bifurca- 
tions between scale-space blobs can be expected to be 
identical to the grey-level blob tree of the original 
signal. In the presence of noise, however, the hierarch- 
ical relations will be different. More generally, blob 
splits and blob creations are blob events without cor- 
respondences in the grey-level blob tree. 

Other natural descriptors to define between different 
blobs are (i) whether two blobs overlap, and (ii) whether 
one blob is completely contained in another one. In this 
way, the problem with multiple responses from a single 
region may be approached. This is, however, a subject 
for further analysis and experimentation. 

9 Conclusions 

A multiscale representation of grey-level image struc- 
ture has been presented similar to the primal sketch 
idea. It can be used for extraction of important btob- 
like regions from an image in a solely bottom-up data- 
driven way, without any a priori assumptions about the 
shape of the primitives. The representation, which is 

essentially free from tuning parameters and ad hoc er- 
ror critieria, gives a qualitative description of the grey- 
level landscape with information about approximate 
locations, spatial extent, and an appropriate scale for 
relevant regions in the image. In other words, it gener- 
ates coarse but safe segmentation cues, and can serve as 
a hypothesis generator for higher-level processes. It has 
been demonstrated how such information can serve as a 
guide to an edge-detection scheme working at a locally 
adapted level of scale and that it is applicable for auto- 
matic cluster detection, modality analysis of histograms, 
as well as junction detection and junction classifica- 
tion. More generally, the approach provides a mechan- 
ism for focus-of-attention and for guiding other tow- 
level processes. 

The methodology is based on a number of postulates 
(assumptions 1-4 in section 3) stated without proof. 
Their interpretation essentially is that in the absence 
of further information (i) significance blob-like struc- 
tures in scale-space are likely to correspond to signif- 
icant regions in the image, and (ii) that scale levels 
should be selected where the normalized blob response 
is maximal. Starting from these assumptions and scale- 
space theory, several theoretical results have been ob- 
tained. Moreover, by integrating the scale-space primal 
sketch with several other visual modules and by apply- 
ing the methodology to different types of images, it has 
been experimentally demonstrated that the proposed 
methodology gives intuitive results, and that it generates 
highly useful results for further processing. This is the 
main support for the validity of the approach. 
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N o ~ s  

1. Unless otherwise stated, the signals are throughout assumed to 
be Morse, i.e., all critical points are assumed to nondegenerate, 
and all critical values are assumed to be distinct. 

2. It turns out that some transformation of the scale parameters is 
necessary in order to capture the concept of scale-space lifetime 
properly (see section 2.6). 

3. This behavior of the grey-level blobs over scales may be regarded 
as somewhat complex by a reader unfamiliar with these concepts. 
A detailed theoretical analysis is given by Lindeberg [45]. 

4. Of course, the contrast of such blobs decreases, but it is far from 
clear that it is possible to set a threshold on objective grounds. 

5. Except for the fact that scale-space smoothing favors blob-like 
bell-shaped objects. 

6. The word indi~dualis emphasized here, since stable scales when 
they exist are, in general, local properties associated with ob- 
jects (or parts of objects)--not with entire images. However, the 
assumption of a globally stable scale is sometimes used implicitly 
in computer vision algorithms, for example, when edge detec- 
tion is performed using uniform smoothing all over an image. 
Instead, it is argued that better performance can be obtained by 
adapting the scale levels to the local image structure, see sec- 
tions 4-6 for examples. 

7. Note in this context that if two blobs (B 2 and B 3 above) are 
closely located, there will in general be a large blob correspond- 
ing to the union of these two blobs at coarser scales in scale- 
space. Hence, although the smaller one of these blobs (B 3 
above) may be assigned a small significance value, the union 
of these two blobs will be assigned a larger significance value, 
and hence attract the focus-of-attention to the union of the two 
adjacent structures. 

8. A brief review of the scale-space concept for discrete signals 
is given in appendix A.3. 

9. For one-dimensional signals, the number of local extrema in a 
signal is guaranteed to decrease monotonically with scale. In two 
and higher dimensions the situation is more complicated, since 
the number of local extrema can in fact increase locally with 
scale-space smoothing due to creations of saddle-extremum pairs. 
However, the expected number of local extrema, treated as an 
average over many signals can always be expected to decrease. 

10. As explained in previous sections, grey-level blob trees can be 
treated in a similar way. Since, however, the problem of" nor- 
malizing the spatial and grey-level coordinates has so far been 
studied only concerning the grey-level blobs and the scale-space 
blobs, the remaining part of this presentation will be concerned 
with these objects. 

11. For example, it seems plausible that the lifetime of an edge in 
scale-space is an important property for measuring significance. 
As will be demonstrated in section 6, a multiscale btob-detection 
approach can be useful in junction detection, provided that a 
proper transformation of the intensity domain is performed as 
preprocessing. 

12. It should be stressed that no c la im are made here that the pro- 
posed approach is an appropriate description of the mechanisms 
in biological vision. When relations to biological vision are 
discussed, it is only as a source of inspiration. 

13. More precisely, at blob creations the grey-level blob volume of 
the new blob is always zero. At blob splits, the grey-level btob 
volume of the blob associated with the new local extremum is 
zero, while the volume of the other blob may be nonzero (see 
the polynomial representative of the fold singularity (32)). 

14. Edges are defined as the ridges of the gradient magnitude map, 
i.e., the points for which the gradient magnitude assumes a max- 
imum in the gradient direction. 

15. For implemen~onal purpose, this characteristic length is deter- 
mined as the square root of an experimentally determined blob 
area Am(t ) at scale t. It is accumulated in the same way as the 
statistics of the grey-level blob volume V m (t). 

t6. Clearly, the problem of relating a blob to edges becomes trivial 
if a separate focusing process is invoked for each scale-space blob. 

17. The color images have been converted from the usual RGB 
format to the CIEu*v ~ 1976 format (Billmeyer and Saltzman 
[7]), which separates the intensity and the chroma information. 
The histograms are formed only over the (two-dimensional) 
chroma information, ignoring the (one-dimensional) intensity 
information. 

18. A shape-from-texture method using a (simplified) blob-detection 
method of this type is presented by Lindeberg and G~rding [50]. 

19. A similar problem arises in the motion-constraint equation for 
optical flow, where it is usually assumed that the intensity value 
of a physical point is preserved under motion. However, as 
Pentland [59] has demonstrated, the photometric distortions can 
under certain conditions be much larger than the geometric 
effects due to motion. 

20. If a perfectly scale-invariant reference signal could be determined; 
then a scale-invariant normalization would be trivially obtained. 
This is, however, very hard to accomplish on a discrete grid, 
which has a certain preferred scale given by the distance between 
grid points. 

21. Generically, these events occur at isolated scales, and only two 
different critical points have the same critical values. 

22. In one dimension, the only possible events are annihilations of 
pairs consisting of one maximum point and one minimum point-- 
the number of local extrema in the scale-space of a one- 
dimensional signal is always guaranteed to decrease with scale. 

Appendix 

A. 1 Definition of Scale-Space Blob 

Thi s  a p p e n d i x  sec t ion  d e s c r i b e s  h o w  a s c a l e - s p a c e  b l o b  

is f o r m a l l y  d e f i n e d  f r o m  a t w o - d i m e n s i o n a l  c o n t i n u o u s  

s igna l .  

A. 1.1 Extremum Path and Saddle Path. C o n s i d e r  a 

c r i t i ca l  p o i n t  x0 E IR 2 at  s o m e  s c a l e  to E IR+ in  s ca l e -  

space .  I t  is  g i v e n  by  
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The implicit function theorem ensures that if the Hes- 
sian matrix 

I ..TfLi(xo;to) = Oxlx2L Ox2x 2 (x0;t o) 

is nonsingular at this point, then there exists some 
smooth function r0 : I,o ~ IRZ 

x = ro(t) (28) 

such that x0 = to(to), and for every t in some neigh- 
borhood !, 0 of t o the point (r0(t); t) is a critical point 
for the mapping x ~ L(x; t). By continuation, such 
local paths can be extended to curves as long as the 
Hessian matrix remains nonsingular. It can be easily 
shown that the type of critical point remains the same 
as long as the Hessian matrix is nonsingular. 

In other words, if (Xo; to) is a local maximum 
(minimum/saddle), then there exists a curve through 
this point, such that every point on the curve is a local 
maximum (minimum/saddle) at that scale. The curve 
is delimited by two scale levels train and tmax, at which 
the Hessian matrix degenerates (except at the boundary 
cases tmi, = 0 or tmax = oo). At all interior points the 
extremum point is nondegenerate. Such a curve r0 : 
[trnin, tmax] ~ IR 2 is called an extremum path (saddle 
path). 

A. 1.2 Scale-Space Blob. Concerning grey-level 
blobs, this result means that a unique linking of grey- 
level blobs across scales can be performed as long as 
both the extremum point and the saddle point determin- 
ing the extent of the grey-level blob remains nonsingu- 
lar. In summary, a scale-space blob is defined as the 
union of all grey-level blobs associated with the ex- 
tremum points along a segment of an extremum path 
where such a unique linking can be performed. 

In order to express this statement precisely, let 
IrWin, tm~] ~ [tmin, tmax] be a (maximal) subset of an 
extremtun path, along which the delimiting saddle point 
Saeum (ro(t)) associated with the extremum point ro(t ) 
is always nondegenerate. At some distinct scales it may 
happen that the delimiting saddle point jumps from one 
saddle path to another. In such non-Morse situations, 
when two saddle points have the same grey-level, both 
saddle points are required to be nondegenerate, zl At 
the end points, either of r(t~in) and Sdelimr(t~ain) and 
also either of r(t~x) and Sdeiirnr(tmax) are degenerate 
critical points (unless tmi n = 0 or trnax = OO). 

Then, the scale-space blob associated with this seg- 
ment r6 : [t~n, t~aax] ~ IR2 is the set 

Sblob(rr) = { ( x , z ;  t) E IR 2 × IR × IR+ 

: (t~ain < t " ( tmax )  

A [(x, z) 6 Qlob(r~;(t))]} (29) 

where Gblob(rr(t) ) is the grey-level blob associated 
with the extremum point r~(t) in the scale-space repre- 
sentation L at scale t. 

A.1.3 Scale-Space Blob Volume. Strictly, in this coor- 
dinate system the scale-space blob volume is 

f (x dx dz dt Svol(r~) = ,z;t)ESblob(rO ) 

= f t  Gvo 1 (r~(t))dt (30) 
~[t;~jn,t;,,x] 

However, when the scale-space blob volume is to be 
used as a significance measure in the scale-space primal 
sketch, it turns out that some transformations must be 
performed. One would like structures at different scales 
to be treated uniformly, such that the significance mea- 
sure neither favors fine scales over coarse scales nor 
the opposite. Therefore, the normalized scale-space 
blob volume is defined by 

Svol,norm(r0) 

= f , l/trar~ [G~ol (r~(t)); t] d(reff(t) ) 
t~[t~n,tma~x] 

(31) 

where 7ef f : IR+ -'~ IR+ is a transformation function 
mapping the ordinary scale parameter t to a transformed 
scale parameter z called effective scale (see section 
2.6.1), and Vtrans : IR × IR+ ~ ]R is a corresponding 
transformation function normalizing the variations of 
the grey-level blob volumes into a more uniform 
behavior over scales (see section 2.6.2). 

A.2 Scale-Space Blob Events 

The implicit function theorem used in a previous ap- 
pendix section guarantees that linking of nondegenerate 
critical points is a well-defined operation. When the 
Hessian matrix becomes singular, bifurcations may 
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occur. Useful techniques for analyzing the behavior at 
such points can be obtained from a branch of 
mathematics known as singularity theory; see Poston 
and Stewart [60] and Gibson [24] for application- 
oriented introductions, and Arnold et al. [2] and 
Golubitsky and Schaeffer [25] for more rigorous 
treatments of the subject. 

In summary, the following result holds concerning 
the behavior of critical points in scale-space. In two 
dimensions, the only generic (structurally stable) bifur- 
cations are annihilations and creations of pairs con- 
sisting of one extremum point and one saddle point 
(Koenderink and van Doorn [34]; Lifshitz and Pizer 
[40]; Lindeberg [45]; Johansen [29]). 22 A natural model 
of this so-called fold singularity is the polynomial 

x 3 + 3Xl(t - to) + (x 2 + t - to), (32) 

which also satisfies the diffusion equation. The posi- 
tions of the critical points are given by 

(xl(t), x2(t)) = _+(~/t0 - t, 0) (t -< t 0) (33) 

that is, the critical points merge along a parabola. At 
the bifurcation point, the drift velocity tends to infin- 
ity. This property demonstrates that any algorithm for 
following extrema over scales needs a mechanism for 
adaptive scale sampling. 

Concerning scale-space blobs, this classification 
means that two distinct types of cases can be distin- 
guished, depending on whether the saddle point in- 
volved in the bifurcation is part of one or two grey- 
level blobs. A saddle point delimiting the extent of only 
one grey-level blob is said to be nonshared, while a 
saddle point belonging to two grey-level blobs is said 
to be shared. Hence, in the generic case, the following 
four cases are possible at a structurally stable bifurca- 
tion (see figure 6 for an illustration, and Lindeberg [43, 
45] for a more extensive description): 

- -  blob annihilation--annihilation of an extremum- 
saddle pair where the saddle path is nonshared 
before the binfurcation, 

- -  blob merge--annihilation of an extremum-saddle 
pair where the saddle path is shared with another 
scale-space blob before the bifurcation, 

- -  blob split--creation of an extremum-saddle pair 
where the saddle path is shared with another scale- 
space blob after the bifurcation, 

- - b l o b  creation--creation of an extremum-saddle 
pair where the saddle path is nonshared after the 
bifurcation. 

A.3 Scale-Space for Discrete Signals 

Given a discrete signal f :  77 z --* IR, the scale-space 
L : 7"]2 X LI~+ "-* IR is for some 3, E [0, 1] defined as 
the solution to the semidiscretized diffusion equation 

1 2 1 3t L = ~ V  v L = ~ [(1 - 3') V 2 L + 3,VZL)] (34) 

where the five-point operator V 3 and the cross- 
operator Vzx are two common discrete approximations 
to the Laplacian operator given by (below the notation 
f-l,a stands for f (x l  - 1, x2 + 1) etc.): 

2 
(Vsf)0,0 = f -L0 + f+l,0 + f0,-1 + 3~,+1 - 43~,0, 

( V22 f)0,0 

1 
= ~ ( f - l , -1  + f - l ,+ t  + J+1,-1 + f+l,+l - 4 f0,o). 

In the special case when 3' = 0, the two-dimensional 
scale-space is given by separable convolution with the 
one-dimensional discrete analogue of the Ganssian 
kernel 

T(n; t) = e -t In(t ) (35) 

where In(t ) denotes the modified Bessel functions of 
integer order (Abramowitz and Stegun [1]). This is the 
scale-space concept (Lindeberg [41, 47]) that underlies 
all implementations described in this presentation. 

A. 4 Algorithmic Aspects 

When building the scale-space primal sketch represen- 
tation of an image, there are several computational 
aspects that need to be treated. The algorithm for 
building the suggested data structure consists of two 
major modules; an algorithm for fini~ng grey-level 
blobs (or grey-level blob trees) at a single level of scale, 
and an adaptive scale linking and refinement procedure. 
Because of lack of space, the algorithm cannot be 
described here. An early description can be found in 
Lindeberg and Eklundh [44], while a more complete 
treatment is given in Lindeberg [43]. 
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