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Abstract 
This article studies 3-D interpretation of optical flow induced by a general camera motion relative to a surface 
of general shape. First, we describe, using the "image sphere representation,' an analytical procedure that yields 
an exact solution when the data are exact: we solve the epipolar equation written in terms of the essentialparameters 
and the twisted opticalflow. Introducing a simple model of noise, we then show that the solution is "statistically 
biased." In order to remove the statistical bias, we propose an algorithm called renormalization, which automatically 
adjusts to unknown image noise. A brief discussion is also given to the critical surface that yields ambiguous 
3-D interpretations and the use of the image plane representation. 

1 Introduction 

This presentation studies computational procedures for 
computing the 3-D interpretation of optical flow. Since 
the displacement of each image point is small (theo- 
retically infinitesimal), the computation is unstable and 
sensitivity affected by image noise if the computation 
is based on individual displacements. However, the use 
of optical flow has the advantage that the flow can be 
detected densely (usually at each pixel) over the entire 
image. Hence, it is expected that a reliable 3-D inter- 
pretation can be obtained by optimization over the en- 
tire image frame. 

If the surface is expressed as a parameterized equa- 
tion, say a polynomial or a collection of planar patches, 
the problem reduces to estimating the coefficients [1, 
24, 30]. The problem becomes very difficult if no sur- 
face model is assumed. An analytical solution can be 
obtained if spatial derivatives of the flow velocity are 
available [15]. An important clue is obtained from the 
fact that the flow due to camera rotation is depth inde- 
pendent [9], thereby globally continuous and smooth. 
Hence, a sudden change of the flow over a small 
number of pixels reflects a depth discontinuity [15, 
23]--the change indicates the translational component 
of the flow (motion parallax). More systematically, the 
translation velocity can be determined by optimally 

searching for a rotation velocity such that subtraction 
of the effect of rotation results in a flow that has a com- 
mon focus of expansion [22]. A more direct approach 
is to do numerical search to minimize the sum of the 
squares of the differences between the observed flow 
and the expected theoretical expression [4, 2, 5, 29]. 

On the other hand, analytical (linearized) pro- 
cedures were found for finite motion using point cor- 
respondences between two views [16, 28, 31]. Since 
optical flow is simply an infinitesimal limit of a finite 
image motion, an approximation for a small motion 
yields an algorithm for optical flow, and a linearized 
procedure for optical flow was proposed by Zhuang et 
al. [32]. Here, modifying the linearization of Zhuang 
et al. [32], we transform the algorithm of Weng et al. 
[31]--who solved the epipolar equation by least squares 
over a large number of feature points--into an algorithm 
for an optical flow. Adopting the "image sphere repre- 
sentation" we show that all we need to solve is the 
epipolar equation written in terms of the essential 
parameters and the twisted optical flow. 

It has been pointed out that the solution based on 
least-squares minimization is likely to be systematically 
biased [3]. In this article, we analyze this statistical bias 
by introducing a simple model of noise; we then pre- 
sent an algorithm called "renormalization" which 
removes the statistical bias by automatically adjusting 
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to unknown image noise. This is a generalization of the 
approach of Tagawa et al. [25, 26, 27], who also pro- 
posed iterative methods to remove statistical bias. A 
random-number simulation is given to observe its 
effectiveness. 

We also analyze the numerical instability that occurs 
when the field of view is very small, and show how the 
condition number grows as the field of view decreases. 
Finally, we give a brief discussion of the critical sur- 
face that yields ambiguous 3-D interpretations in rela- 
tion to the decomposability of the essential parameters 
and the use of the image plane representation. 

2 Optical Flow Equation 

Assume the following camera imaging model. The 
camera is associated with an XFZ coordinate system 
with origin O at the center of the lens and Z-axis along 
the optical axis (figure la). The plane Z = f is iden- 
tified with the image plane. We call the origin O the 
viewpoint; the constantf is often called the focal length. 

A point on the image plane is represented by the 
unit vector m starting from the viewpoint O and point- 
ing toward that point (figure lb). We call m the N-vector 
of the point [10]. The use of N-vectors is equivalent 
to the use of homogeneous coordinates. Mathematically, 
homogeneous coordinates can be multiplied by any non- 
zero constant. From a computational point of view, 
however, it is more convenient to normalize the three 
component into a unit vector. This is also equivalent 
to considering a hypothetical "spherical imaging sur- 
face" of unit radius centered at the viewpoint O. This 
representation has been (implicitly or explicitly) used 
by many authors (e.g., [17]) and was fully developed 
into a mathematical framework by Kanatani [10], who 
called it computational projective geometry. 

Consider a surface of general shape. Let r(m) be 
the distance of the surface point of N-vector m from 
the viewpoint O. If the camera moves with rotation 
velocity to around the viewpoint and translation velocity 
v relative the surface, an optical flow is induced on the 
image plane (figure Ib). We call the pair {~, 1,} the 
motion parameters. We also abbreviate the camera mo- 
tion with motion parameters {to, p} simply as "mo- 
tion {~, p}." 

We represent the flow by the time derivative m of 
the N-vector representing that point (i.e., the velocity 
on the hypothetical image sphere of unit radius) and 
call it the N-velocity. Since the N-vector m is normal- 
ized to a unit vector, the N-velocity m is always orthog- 
onal to m: 

(m, ha) = 0 (1) 

In this article, we use (., .) to denote inner product of 
vectors. 

The orthogonal projection of a vector a onto the 
plane of unit surface normal m is given by Pm a (figure 
lb), where 

P m =  I - mm r (2) 

This is a projection matrix: 

P~ = Pro, p 2  = em (3) 

Theorem 1: Camera motion {~o, ~ } relative to a sur- 
face of depth r(m) induces an optical flow 

Pm~ 
m = -o~ x m - - -  (4) r(m) 

Proof." Rotation of the camera with rotation velocity' 
o~ is equivalent to rotation of the scene with rotation 
velocity -to, which causes optical flow ha = - to  x 
m. Translation of the camera with velocity u is equiv- 
alent to translation of the scene with velocity -p .  

x~~ y l~'Y'Z) ~~~ 
0 ..... 7 

"~ ' ~Y Op.~ 

(o) (b) 
Fig. 1. (a) Camera imaging geometry and N-vector m. (b) Depth map r(m) and camera motion {,.,, p}. 
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Motions along the line of sight do not cause any image 
motion, so only the orthogonal projection -Pray is 
perceived (figure lb) and is inversely scaled by the 
distance r(m). Hence, in = -Pmv/r(m). The total 
flow is the sum of these two flow components. D 

Equation (4) was first used by Maybank [17] to 
analyze the uniqueness of 3-D interpretation, and is 
mathematically equivalent to the image-coordinate form 
derived by many researchers. 

3 3-D Interpretation of  Optical Flow 

We assume that a flow field m(m) is defmed over a solid 
angle ~2(S) corresponding to the field of view S (figure 
lb). From equation (4), we observe that if {w, v } and 
r(m) are a solution, so are {o~, k~,} and kr(m) for an 
arbitrary nonzero constant k, meaning that a large 
motion far from the viewer is indistinguishable from a 
small motion near the viewer. This is inevitable because 
the N-velocity in (= the rate of change of the line of 
sight) is nondimensional: we cannot derive quantities 
involving length from nondimensional data. Since it is 
easy to check if ~, = 0 (appendix A), we assume that 
v # 0 has already been confirmed, and normalize v into 
a unit vector. The sign of v is still indeterminate: if {~z, 
v } and r(m) are a solution, so are {~, - v } and - r (m) .  
However, one predicts a positive depth and the other 
a negative depth, so we can pick out the correct sign. 

If the motion parameters {o~, v } are correctly esti- 
mated, the depth r(m) is easily determined [4, 2, 17]. 
Consider the least-squares criterion 

Pm v 
lira + o~ x m + ~ f l  2 ~ min (5) 

Differentiating this with respect to 1/r(m), setting the 
result to 0, and solving it, we obtain 

r(m) = 1 - (m, v)2 (6) 
tm, w, ~'t - (m, v) 

where la, b, c] (=  (a, b × c) = (b, c × a) = 
(c, a x b)) denotes the scalar triple product of vectors 
a, b, and c. Let us call equation (6) the motion parallax 
equation. From this, the negative depth solution can 
be excluded. If r(m) > 0 cannot be imposed on every 
m E ~2(S) in the presence of noise, it is reasonable to 
ask for the "majority vote": 

f ~  [[m, v] - (in, v)] dn(m) > 0 (7) 
(s) 

Here, fa(s) dfl(m) denotes integration over the solid 
angle fl(S), but this is a mere notational convenience--it 
is understood to mean the summation over all the pixels 
at which the flow is defined. In real applications, the 
summation should be weighted by some certainty 
measure that assigns the reliability of the detected flow, 
since flow detection is reliable in highly textured 
regions but unreliable in regions with almost homoge- 
neous gray levels. 

4 Twisted Flow and the Epipolar Equation 

Instead of analyzing the flow field m(m), we rotate the 
N-velocity m by 90 ° around each m (figure 2) and call 
the resulting flow field m*(m) the twisted flow. Since 
the N-velocity m is orthogonal to m (equation (1)), the 
twisted flow in* is given by 

in* = m x m (8) 

0 
Fig. 2. Twisted flow m* 

If we define a symmetric matrix 

1 K = (~o, v) I - ~ (o~v T + v J )  (9) 

the following relationship holds: 

(m, Km) = (~o, Pm v) = (v, Pmo~) (10) 

We call the pair {K, v } the essential parameters. We 
say that a pair {K, v } consisting of a symmetric matrix 
and a unit vector v is decomposable if there exists a 
vector o~ such that K has the form of equation (9). 

Proposition 1. A pair {K, v } is decomposable if and 
only if 
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(p, K~,) = 0 

1 K = ~ (tr K)(I - ~pr) + K~I,T + ~,l,r K (11) 

Proof: If K has the form of equation (9) for some vec- 
tor to, it is easy to confirm equations (11) by direct 
substitution. Conversely, if K satisfies equations (11), 
define 

1 
to = ~ (tr K)r - 2K~, (12) 

Then, it is easy to confirm that K is expressed in the 
form of equation (9). [] 

Proposition 2. The twisted flow in* induced by 
camera motion {to, p } relative to a surface of depth 
r(m) has the form 

m x p  
in* = - P r o w -  r(m) (13) 

Proof." From theorem 1 and equation (8), we have 

M×Pmp 
ha* = - m  × (to × m) r(m) (14) 

It is easy to confirm that m × (to × m) = Pm~0 and 
m X P m ~ , = m  x J,. [] 

Theorem 2: A flow fieM in defines a depth r(m) if  
and only if there exist essential parameters {K, i, } such 
that 

(in*, p) + (m, Km) = 0, m ~ f~(S) (15) 

Proof: Equation (13) is written as 

m X g  
ha* + Pmw = r(m) (16) 

A scalar function r(m) that satisfies this equation ex- 
ists if and only if vector in* + Pinto is parallel to vec- 
tor m × ~, for all m E fl(S), that is, 

(ha* + Pinto) × (m × 1,) = 0 (17) 

If we note that (in*, m) = 0 and (Pmto, m) = 0, equa- 
tion (17) reduces to 

[(in*, ~,) + (PmO~, p)]m = 0 (18) 

From equation (10), we see that the condition for 
this to hold for all m E f~(S) is given by equation 
(15).  [ ]  

Mathematical equivalents of equation (15) have been 
derived by many researchers [2, 17, 32]. It can be 
shown that equation (15) is simply the infinitesimal limit 
of the fundamental constraint of finite motion known 
as the epipolar equation, on which the finite motion 
analysis is based [16, 28, 31] (appendix B). Hence, 
we call equation (15) the epipolar equation, too. 

The geometrical meaning of the epipolar equation 
for finite motion is that each feature point in the scene 
and the two viewpoints before and after the motion be 
coplanar (appendix B). The same meaning is attached 
to equation (15). If co = 0, equation (15) becomes 
(ha*, ,,) = 0, o r  Im, ha, p l = 0, which states that m, 
m, and p be coplanar. The second term (m, Km) com- 
pensates for the effect of camera rotation. 

The epipolar equation for finite motion is written 
in terms of the "essential matrix" (appendix B), to 
which is assigned the decomposability constraint that 
its singular values be 1, 1, and 0 [8]. This constraint 
exactly corresponds to the decomposability constraint 
of equations (11). 

5 Analy~cal Solution of 3-D Interpretation 

Since the formulation is parallel to finite-motion 
analysis, the procedures developed for finite motion can 
be applied in exactly the same way. Note that the 
epipolar equation (15) is linear in the essential param- 
eters {K, p }, which have nine components (since K 
is symmetric). Hence, if the twisted flow is observed 
at at least "eight" pixels, we obtain the infinitesimal 
version the eight-point algorithm [16, 28]. This type 
of linearization was first proposed by Zhuang et al. 
[32]. Consider the optimization 

J = f [(ha*, p) + (m, Km)] 2 d~2(m) ~ min 
JQ (s) 

(19) 

As in the case of finite motion, it is difficult to obtain 
an analytical solution that attains the exact minimum 
in the presence of noise, so we consider the linearized 
approach by regarding the essential parameters {K, 1, } 
as independent variables, ignoring the decomposabil- 
ity contraint (11) temporarily. 

Since J is a quadratic form in nine essential 
parameters, it is minimized by the eigenvector of the 
nine-dimensional coefficient matrix for the smallest 



3-D Interpretation of  Optical Flow by Renormalization 271 

eigenvalue [32]. However, it seems more reasonable 
to find the minimum under the constraint that 1, be a 
unit vector. Since J is a quadratic polynomial in K, 
matrix K is analytically expressed as a linear form in 
v. If it is substituted back, J becomes a quadratic form 
in v, which is minimized by the unit eigenvector of the 
coefficient matrix for the smallest eigenvalue. Since the 
decomposability constraint (11) may not be satisfied, 
we estimate the rotation velocity o~ by 

1 IlK - (,~, p) I + ~ (o~p T + voff)[] 2 --, rain (20) 

The solution is given as follows (appendix C): 

1 
~0 = ~ [ t r K  + 30 ' ,Kp)]  ~ , -  2Kv (21) 

This approach was first proposed by Tagawa et al. [25, 
26, 27]. 

In summary, our procedure is stated as follows. For 
a given twisted flow m*(m), define tensors ~ = (L/j), 
YF( = (Mi#), and ~(  = (Nijkl) by 

L/J = fn(s) in? inj* dfl(m) 

= J'o ini* mj mk dfl(m) MtJk (S) 

f 
J f~ m i my mk ml Nijkl (s) dfl(m) (22) 

Let N/jk} be the inverse of Ni#t defined by 

3 

Uij-k~ Nktmn = 6ira 6jn (23) 
k,l=l 

where 6ij is the Kronecker delta, taking value 1 if i = j 
and 0 otherwise (see appendix D for the computational 
procedure). 

Theorem 3: The translation velocity v = (vi) is 
given as the unit eigenvector of  the matrix A = (Aij) 
defined by 

3 

A U = L/J - Z Mik, N~lmn MJrn,, (24) 
k,l,m,n= 1 

for  the smallest eigenvalue. The rotation velocity o~ is 
given by 

1 
¢0 = ~ [ t r K  + 3(v, Kv)] p -  2Kv (25) 

where the matrix K = (Kij) is defined by 

3 

KiJ = - Z N ~  Mmk turn (26) 
k,l,m=l 

Proof: The function J defined by (19) is rewritten as 

3 3 

J =  Z ui Lij Pj + 2 Z ui Mijk KJk 
i,j = 1 t,j,k = 1 

3 

+ ~ K/J gi#l Kkt (27) 
i,j,k,l= l 

For a fixed I, = (vi), this attains its minimum when 
OJ/OKij = 0, which is written as 

3 3 

N(ikl Kkl = - ~_j Mmij Pm (28) 
k,l=l m=l 

The solution is given by equation (26). Equations (26) 
and (28) reduce equation (27) to 

n 1 _ - 1  ( 2 9 )  J =  ~ Pi ij Z MiklNklmnmjm Vj 
i,j= l k,l,m,n= l 

If we define matrix A = (Ae) by equation (24), we 
can write J = (v, Av), which takes its minimum when 
v is the unit eigenvector of A for the smallest eigen- 
value. D 

Note that tensors ~ and Y-Y'are computed from the 
observed flow, whereas tensor SUdoes not involve the 
flow: it is determined solely by the geometry of the field 
of view S. If the field of view S is small, the computa- 
tion of the inverse X -1 may be unstable: the solution 
of the linear equation (28) may be sensitively affected 
by the noise in the tensor Y-/~on the right-hand side. 

As is well known, the degree of numerical instability 
for solving simultaneous linear equations is measured 
by the condition number (= (the largest singular 
value)/(the smallest singular value)). For simplicity, 
assume a circular field of view S around the image 
origin o. Let ot be the angle between the Z-axis and 
the outermost line of sight (figure 3a). Then, m = 
(sin 0 cos ¢, sin 0 sin q~, cos 0) T in spherical coor- 
dinates, and we can replace the integral re(s) drY(m) by 
fo 2~ d4~ fo ~ sin 0 dO. Figure 3b shows the condition 
number of PC(i.e., of equation (28)) with respect to a. 
We can clearly see that the condition number rapidly 
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Fig. 3. (a) Circular field of view. (b) Condition number of Skq 

i i  90(deg) 

increases as the angle a decreases. Thus, a wide field 
of view is desirable for stable 3-D interpretation. 

6 Noise  and Statistical Bias 

Suppose the detected flow contains noise. The twisted 
flow observed at a pixel of N-vector m has the form 
m* = ~a* + Am* where ~a* is the exact value in the 
absence of noise. By defimtion, m* and m* are both 
orthogonal to m. Hence, the error component Am* = 
m* - l~. is also orthogonal to m. 

As a first approximation, let us assume that Am* 
is an independent random variable whose distribution 
is orthogonally isotropic around m with a constant root 
mean square (1. This means that the error of optical flow 
is approximately f a  in all orientations on the image 
plane in the sense of root mean square. From our 
model, we obtain 

(12 
E[Am* Am *r] = T (I - ram T) (30) 

where E[-] denotes expectation (see [11, 12] for detailed 
discussions on noise models). 

From the definition of tensors ~ = (L/j) and Y-i'K = 
(Mijk), their expectations are 

E[Lo] = f~(s) E[ini* inj*] dfl(m) 

E[M~k] = f E[thi*] mj mk dfl(m) (31) 
df~ (s) 

while tensor 9C =_ (N, Tkz ) is not affected by noise. 
Since E[m*] = Elm* + Am*] = l~* and 

Elm* m ,r] = E[(~a* + Am*)(~a* + Am*) T] 

= m* m *r + E[Am* Am *r] 

tl 2 
= m * m  *T + ~ - ( I -  mm r) 

we obtain 

E [ ~ ]  
(12 

= ~ + -~- (f~(S) I - M),  

(32) 

EtYZO = YZC 

(33) 

where Z) and ffigare the exact values of tensors ~ and 
YTl, respectively; M is the moment matrix defined by 

M = f mm T dfl(m) (34) 
Jf l  (s) 

Since ~ and ~r(are defined by summation over a very 
large number of pixels, we can expect the ~ = E[B]  
and ~ = E[~-'d] (the law of large number). Hence, 
from equation (24) 

(12 
A = A + T [ n ( S )  I - M] (35) 

where .~ is the exact value of A in the absence of noise. 
We can interpret this to be the expectation of A. Thus, 
the matrix A is statistical bias 

(12 
E[AA] = -~- [~(S) I - M] (36) 

Since the translation velocity v is the unit eigenvector 
of A for the smallest eigenvalue, it also has statistical 
bias E[AJ,] = O(E[AA]) = O(cr 2) according to the 
well-known "perturbation theorem" (e.g., see [11]). 
Hence, the rotation velocity ~o computed from it has 
also statistical bias. 
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7 Renormalization 

Define matrix A by 

= A - c [ f l (S) I  - M] (37) 

where c = 02/2. Then, the unit eigenvector of 
for the smallest eigenvalue is an unbiased estimator 
of the translation velocity v. However, the constant 
c is unknown. Ideally, it should be chosen so that 
E[A] = .~, but this is impossible unless the noise 
characteristics are known. On the other hand, if E[A] 
= A and if ff is the exact translation velocity, we have 
the relationship 

E[(~, Aff)] = (if, E[A]ff) = (if, Aft) = 0 (38) 

because J defined in (19) is rewritten as J = (v, A~,), 
which takes its absolute minimum 0 for the exact solu- 
tion ft. Hence, we seek a unit vector 1, and a constant 
c such that 0', A~') = 0 holds. If such ~, and c are not 
unique, we choose those for which c is minimum. This 
means 

(v, Av) ~ min (39) 
(v, (f~(S) I - M) ~,) 

Tagawa et al. [26, 27] pointed out that, if we put B = 
f~(S) I - M, the solution is given by the unit (general- 
ized) eigenvector problem A~, = cBv, and the solution 
is easily obtained by computing the "square root" of 
the positive definite matrix B (appendix E). 

Thus, we obtain the following procedure, which we 
call renormalization: 
renormalization (ill*) 

1. Compute tensors ~ = (L/J), YT( = (M/jk), and 9C 
= (N/jk l )  defined by equations (22), and compute 
the inverse ~---1 = (N/)~) of SU (appendix D). 
Also, compute the moment matrix M = (M/j) 
given by equation (34). 

2. Compute the matrixes A = (A/J) and B = (M/J) 
defined by 

3 

= - Nitmn mjm n (40) 
k,I,m,n= 1 

B/J = ~2(S) 6/j - M/J (41) 

3. Let c be the unit (generalized) eigenvector for the 
smallest (generalized) eigenvalue of the generalized 
problem Av = cBv. 

4. Compute matrix K by equation (26) and compute the 
rotation velocity ¢0 by equation (25). Return {to, I, }. 

From the above argument, we can also see that the 
(generalized) eigenvalue c measures the mean square 
noise level, which can also be veiwed as a goodness of 
fit  of the computed solution. If ul and u 2 are the unit 
eigenvectors of A = A - cB for the largest and inter- 
mediate eigenvalues hi and )`2, respectively, we can 
roughly interpret Ul and u2 as the orientations in 
which v is, respectively, the least and most likely to per- 
turb, and )̀ 1 and ),2 as indicating the degree of stability, 
although exact quantitative analysis is very difficult. 

The renormalization technique shown here can be 
applied to many other problems including vanishing- 
point and focus of expansion estimation and conic fit- 
ting [13, 14]. In such problems, iterations are necessary 
for adjusting the weights for the least squares, but the 
convergence is proved to be quadratic [13, 14]. 

Example. Figure 4a shows a simulated optical flow 
defined over an image frame of 512 ×512 pixels with 
f = 600 (pixels). The camera is supposedly moving 
inside a rectangular room whose walls are tessellated 
with squares tiles. The corresponding twisted flow is 
shown in figure 4b. Random Ganssian noise with stan- 
dard deviation 1 (pixel) is independently added to the 
x and y components of each flow velocity. The motion 
parameters {to, v } are computed 100 times, each time 
using different noise. Figure 5 shows one example of 
3-D reconstruction. The true shape is indicated by 
broken lines. 

Figure 6 shows the error histograms of the motion 
parameters {o~, v } without renormalization--figure 6a 
is the histogram of the difference in angular velocity 
(in deg/s) between the true rotation velocity ~ and the 
computed to; figure 6b is the histogram of the difference 
in orientation (in deg) between the true translation 
velocity ff and the computed v. We can clearly observe 
the existence of statistical bias. Figure 7 shows the cor- 
responding results computed by applying renormaliza- 
tion. We can see that the bias has diminished. 

8 Discussions 

8.1 Reinterpretation of Renormalization 

If m (or equivalently m*) is the source of noise, as we 
assumed in our analysis, the most reasonable approach 
from a statistical point of view is to minimize 
fa(s) H_~'hII 2 drY(m). Since Am = m - ~ and the true 
flow m has the form of equation (4), we have 
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(a) (b) 
Fig. 4. (a) Optical flow. (b) Twisted flow. 

[a) (b) 

Fig. 5. An example of 3-D reconstruction from the flow of figure 4: (a) Side view; (b) Top view. The broken lines indicate the true shape. 

..lilt_. 
t 1 

0 0.25 (deg/sec) 0 2 4 (deg) 

(a) (b) 

Fig. 6. (a) Histogram of error in rotation velocity without normalization. (b) Histogram of error in translation velocity without renormalization. 



3-D Interpretation of Optical Flow by Renormalization 275 

m 

0 0.25 (deg/sec) 

(o) 

II 

f~  [ Pmv 2 
J0 = m + o~ x m + r - ~  d~(m) --* min 

(s) 
(42) 

If the motion parallax equation (6) is substituted, it is 
easy to see (appendix F) that (42) reduces to 

/~  [(m*, v) + (m, Kin)] 2 dfl(m) --, rain J1 Ja (S) (v, Pm v) 
(43) 

As pointed out by Tagawa et al. [26], our renormaliza- 
tion technique can be viewed as replacing J1 as the 
following Jl': 

Jl '  fa(s) [(m*, v) + (m, Km)] 2 dg(m) 
= fa(s) (v, Pmv) drY(m) --' min 

(44) 

If the essential parameters {v, K} are regarded as inde- 
pendent (i.e., linearized) variables and the matrixes A 
and B are defined as in section 7, the above minimiza- 
tion reduces to 

(v, Av) 
J2 - (v, BI,) ~ min (45) 

because fa(s) Pm df](m) = B. 
This explains why the solution is unbiased. Since 

m ;e ~a, the function Jl '  is not necessarily minimized 
by the true motion parameters {~, ff }. Substituting ill* 
= ill* + Am* we obtain 

Jl '  = 

fa(s)[(v, (Am*Am*r)v) + (Am . . . .  ) + . . . ]  drY(m) 
fa(s)(V, Pray) df](m) 

(46) 

From equation (30) and E[Am) = 0, we obtain 

E[Jlq = fa(s~[02(v, Pray)/2 + ((~*, v) + (m, Kin)) 21 df/(in) 
fe(s)(r, Pray) d~(m) 

02 fa(s)[(m*, p) + (in, Km)l 2 d[2(m) (47) 
= -2- + (v, By) 

which is evidently minimized by the true motion 
parameters {~, if}. Thus, Jl '  is minimized by the true 
solution in expectation. This solves the unsolved bias 
issue discussed by Daniilidis and Nagel [3]. 

8.2 The Critical Surface 

Our analytical procedure yields a unique solution as 
long as the essential parameters {K, g } are uniquely 
determined. However, there exists a special type of ob- 
ject surface such that the epipolar equation (15) admits 
multiple solutions: it has the form (see appendix G) 

(r, [¢~r) = (v x t ,  r) (48) 

where [( is a symmetric matrix and ff is a unit vector 
such that {K, t} ~ {K, p}. Let us call this surface 
the weak critical surface. This is generally a quadric 
surface passing through the viewpoint O. 

However, if all spurious essential parameters are not 
decomposable, the solution is theoretically unique (but 
difficult to compute numerically). On the other hand, 
if equations (15) are satisfied by some spurious essen- 
tial parameters that are decomposable, the 3-D inter- 
pretation is inherently ambiguous, and the surface is 
called the (strong) critical surface. 

By definition, the (strong) critical surface is also 
the weak critical surface, but the converse does not 

Fig. Z (a) Histogram of error in rotation velocity with renormalization. (b) Histogram of error in translation velocity with renormalization. 

0 2 4 (deg) 

(b) 
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necessarily hold. Geometric properties of the critical 
surface have been studied in detail [6, 11, 17, 20]. For 
example, it is known (see appendix G) that: 

- -  The (strong) critical surface is generally a ruled 
quadric surface, and hence is a hyperboloid of one 
sheet or its degeneracy. 

--  The (strong) critical surface for translation veloc- 
ity r and spurious essential parameters {K, if} 
degenerates to two planes, one passing through the 
viewpoint O, if and only if the rotation velocity 
defined by {K, ~ } is orthogonal to v and 77. The two 
planes are orthogonal to each other. 

8. 3 Image Plane Representation 

So far, all equations are written in terms of the N-vector 
m (= N[(x, y, f)v]) and the N-velocity m. This means 
that the image is represented on an image sphere of unit 
radius centered at the viewpoint. On the other hand, 
many researchers favor the "image plane representa- 
t ion" in which an image point is represented by the 
position vector x = (x, y, f ) r  and image velocity is 
represented by x. However, the image sphere represen- 
tation and the image plane representation are mathe- 
matically equivalent, since m and x have the same in- 
formation: they both indicate the direction of the line 
of sight. 

Here, we translate some of our equations into the 
image plane representation for the sake of comparison. 
Let k = (0, 0, 1) T. Instead of the depth r(m), let us 
use Z(x) defined by r(m)m = Z(x)x or Z(x) = 
r (m) / l lx l l .  This means that the distance of the surface 
point corresponding to x from the XYplane is fZ(x). 

The position vector x is related to the N-vector m 
in the form 

x -  f in  (49) 
(k, m) 

from which we obtain 

~t = IlxllQxm (5o) 

where we define 

1 xk T (51) Qx = I  - ~  

Note that Qxa = - k  × (x × a)/f for any vector a. 
Applying equation (50) to equation (4) and noting that 
x = l/xltm and Z(x) = r(m)/l]xt[, we obtain 

Q1Plv 
= -Ql(O~ × x) Z(x) (52) 

Noting the identifies Qx(o~ × x) = -tlxtl = k × Pm~/f 
and QxPra = Qx, we obtain the flow equation in the 
form 

tlxll 2 Qxv 
- f k × Pmo~ - Z(x-'--) (53) 

The motion parallax equation (6) is replaced by 

IIQx~ll 2 
Z(x)  = Ilxll21k ' P~o~, Qxr l / f -  (x, Qxr) (54) 

if  we define the "twisted flow" by x* = x × x and 
note that x × (k × Pmo~) = - f  Pint0 and x × Qxv 
= x × v, equation (13) becomes 

x ,  = _tlxll2p~,~ x × Z(x) (55) 

The epipolar equation (15) reads 

(x*, r) + (x, Kx) = 0 (56) 

Hence, the analytical procedure described in section 
5 holds if m*, m, and re(s) drY(m) are replaced by x* 
x, and fs dx dy, respectively. 

The optimization (42) is replaced by 

I ° =  L Ix-tlxll---~2 k × Pm°~ 
f 

Qx~ 12 + ~ dx dy ~ min (57) 

If this is minimized with respect to the depth Z(x) by 
using equation (54), this becomes as follows (appen- 
dix H): 

I1 = f s  [(/~*' t~) + (x, Kx)] 2 dx dy ~ min (58) 
f2(r, Q~ Qxr) 

If this is replaced by 

/s[(X*, v) + (x, Kx)] z dr dy 
II' fs f2(r, Qx v Qxv) dr dy dr dy ~ mii~9)-- 

The solution is still unbiased by the same reason we 
showed before. If we "linearize" this by regarding the 
essential parameters {i,, K} as independent variables, 
the problem reduces to 

12 -- (v, Av) ~ rain (60) 
f2(v, BI,) 
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where A is defined by equation (24) after replacing m* 
m, and re(s) drY(m) by x* x, and fs dx dy, respective- 
ly, and 

= f s Q ~  Q~dxdy 

1 

:L 

- - x  

f 

1 -Y  
f 

--X __y X 2 + y2 

f f f 

dx dy (61) 

The same result can be obtained by error analysis in 
exactly the same way as in section 6 if we use the noise 
model 

f2 ~2(i _ kk T) 
E[A~: A:~ r] = 2 

but we omit the details. 

9 Concluding Remarks 

This article has studied 3-D interpretation of optical 
flow induced by a general camera motion relative to 
a surface of general shape. First, we described, by us- 
ing the "image sphere representation" an analytical 
procedure that yields an exact solution when the data 
are exact: we solved the epipolar equation written in 
terms of the essential parameters and the twisted op- 
tical flow. Introducing a simple model of noise, we have 
shown that the solution is shown to be statistically 
biased. Generalizing the approach of Tagawa et al. [25, 
26, 27], we presented an algorithm called renormat- 
ization, which automatically adjusts to unknown im- 
age noise. A random-number simulation was given to 
observe its effectiveness. A brief discussion was given 
to the mathematical structure of renormalization, the 
critical surface, which is concisely described in terms 
of the essential parameters introduced in this article, 
and the use of the image plane representation. 

Although our renormalization procedure solves the 
computational problem of 3-D interpretation, it does 
not have a very practical value unless optical flow is 
fairly accurately detected from real images. So, the im- 
portance of accurate optical-flow detection could not 
be emphasized too much. 
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Appendix A: Test for Pure Rotation 

Theoretically, i, = 0 only when the flow field re(m) 
has the form 

/n = m x ~ (62) 

and the depth r(m) is indeterminate: no 3-D informa- 
tion is available other than o~. In the presence of noise, 
we can fit a vector ~ such that 

fn lira - m x  112 drY(m) ~ rain (63) 
(s) 

Then, we test if the computed ~o satisfies 

IIm - m x  011 < m ~ fl(S) (64) 

for an appropriately set error tolerance e. The solution 
of  (63) is given as follows (we omit the derivation; see 
[11]): 

[fl(S) I - M] oJ = b (65) 

M = f m m  T drY(m) 
dfl (s) 

¢ l  

b = ~  fn x mdf~(m)  
d 9  (s) 

(66) 

Appendix B: Epipolar Equation for Finite Motion 

I f  the camera is rotated around the center of the lens 
by R (rotation matrix) and translated by h, a point in 
the scene having N--vector m and depth r moves to a 
point with N-vector m '  and depth r '  relative to the 
camera (figure B.la). From figure B.lb, we have 

h = r m  - r '  R m '  (67) 

Note that vector m '  in the second frame is rotated by 
R. The depths r and r '  satisfying equation (67) exist 
if and only if the three vectors m, h,  and R m '  are 
coplanar, that is 

Ira, h, Rm'l = 0 (68) 

This equation, often called the epipolar equation, was 
first derived by Longuet-Higgins [16] and THai and 
Huang [28]. Let r l ,  r2, and r 3 be the three columns 
of R, that is, R = (rl, rE, r3). I f  we introduce the 
notation h × R = (h × rl ,  h × r2, h × r3 )and  
define matrix G = h × R,  the above epipolar equa- 
tion is written as 

(m, Gin ' )  = 0 (69) 

The matrix G is called the essential matrix [28]. 
I f  the camera motion is very small, we can write 

h = v a t  + O(At  2) 

R = I + 00 × I A t  + O(At  2) (70) 

Hence, 

G = t, X I A t  + v X (o~ X I )  At 2 + O(At2) 
(71) 

If  this and m '  = m + m a t  + O(At 2) are substituted, 
then the epipolar equation (69) becomes 

([m, v X (~ X m)] + (m, p X fin)) At 2 
+ O(At  3) = 0 (72) 
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Fig. B. 1. Camera motion {R, h} relative to a point P in the scene. (a) Description with respect to the camera coordinate system. (b) Description 
with respect to the scene coordinate system. 

Dividing this by At 2 and taking the limit as At  ~ 0 
and noting that 

(m, v x (w x m)) = (m, (v, m)oo - (v, w)m) 

= - ( m ,  Kin) (73) 

( m , v  × m) = - (m × re, v) = - ( m , ,  v) (74) 

we obtain 

(m* v) + (m, Kin) = 0 (75) 

which is the epipolar equation for optical flow. 

Appendix C: Proof of Equation (21) 

In elements, the left-hand side of (20) is 

3 3 1 
J : Z - Z  ~iJ pk - 2 (~iklJJ + Pi~J k) 00 

i,j=l k=l 
(76) 

The condition OJ/Owi = 0 is written as 

3 1 Z (3vivj + ~ij)wj = 2 Z Kjjvi - Z Kqvj 
j= l  j= l  j= l  

(77) 

or  

(I + 3vvT)o~ = 2(tr K)v - 2Kv (78) 

Using the identity (I + 3vvT) -1 = I -- 3vvT/4, we 
obtain 

w = 2 I - -~ vv T [(tr K)v - Kv] 

= 1 [tr K + 3(v Kv)]  v - 2Kv (79) 
2 

Appendix  D: Inverse  of  Tensor  SU = (N~it, t) 

Tensor ~ = (N/jkl) is symmetric with respect to its in- 
dexes. It defines a linear mapping from a symmetric 
matrix A = (A/J) to a symmetric matrix B = (B/j) in 
the form 

3 
BO = ~ Nijkl All 

k,l= 1 

or symbolically B = SUA. Since a symmetric matrix 
has six independent elements, it can be identified with a 
six-dimensional vector. Identify symmetric matrixes A 
= (A~) and B = (Bq) with the sixMimensional vectors 

I A11] I Bla 1 "~AI2 x/2B12 
A22 B22 

V~A13 ' x/2B13 
"~/~A23 x/2B23 

A33 B33 

(80) 

respectively. I f  we identify the tensor 9Cwith the six- 
dimensional matrix 

N, H1 V~Nln2 Nn22 x/]Nms V~Nm3 Nl133~ 
v~N1211 2N1212 v~N1222 2N1213 2Nl:2s ;72N12331 

N2m x/2N2212 N2222 x/2N~213 ~/2N2223 N2233, 
V~N13, 2N1312 ~/2N1322 2N1313 2N1323 x/2N1333| 
~C-2N2311 2N231z V~N2322 2N2313 2N2323 V~N2333[ 

N3311 "f2N3312 N3322 V~N3313 ~f2N3323 N3333.3 
(81) 

the relationship B = ~ A  can be viewed as either a 
transformation of matrix A into B by tensor S~ r or a 
transformation of vector A into vector B by matrix 9(. 
Adopting the second viewpoint, we can compute the 
inverse 9(" -1 of the above six-dimensional matrix. 
Then, we have A = SU -1 B, which reads A i. = 
F, Si,j,k,l=l N~k~ Bkl if  9(- -1 is regarded as a tensor & r z l  = 
(N~ 1) by the same rule. This means that the tensor 

1 N ~ t  thus defined is the inverse of  No.kt. 
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Appendix E: Generalized Eigenvalue Problem 

The matrix B is positive definite unless ~(S) is of 
measure 0. In fact, for any nonzero vector u, we have 

(u, Bu) = (u, f Pm dfl(m)u) 
(s) 

= f (u, PmU) dfl(m) 
(s) 

= f I)Pmnll = d~(m)  > 0  (82) 
aft (s) 

Let hi >- X2 -- X3 (>  0) be the eigenvalues of B, and 
{Ul, u2, u3} be the orthonormal system of the corre- 
sponding eigenvectors. Then, matrix B is expressed in 
the following form (spectral decomposition [11]): 

B = h l n p l  -4- ~k2n2u ~ -4- •3u3u; (83) 

Its square root is defined by 

v~B = V~lUlUl + V-X2n2u~ + VX3u3n; (84) 

It is easy to confirm that (~B) 2 = I. The generalized 
eigenvalue problem 

Ar = cBr  (85) 

is rewritten as 

A(x/B) - l  x/-Br = cV-B ~ r  (86) 

Multiplying (VB) -1 from left on both sides and put- 
ting u = v~r, we obtain 

('~7B)-1 A(v~) - t  u = cu  (87) 

Thus, the generalized eigenvalue problem (85) reduces 
to the orindary eigenvalue problem Au = cn  for the 
symmetric matrix A = (V-B) -1 A(#-B) -1, and r = 
(x/B) -1 u. Note that 

1 ulu~ + 1 u2u~ + 1 n3u; (88) 
(~¢UB)-I : ~/-~1 ~22 ~-~----3 

Appendix F: Derivation of Equation (43) 

For two vectors a and b (;~ 0), we have the following 
identity: 

lia x bll 2 
tta + tbtl 2 -> (89) 

llbil 2 

Equality holds for 

(a, b) 
t = (90) 

llblP 

Hence, 

Pm~ 
lira + ~ x m + ~ II 2 

ll(m + ,,, x m) X Pm/.-'fl 2 
- (91) 

IIPmvll 2 

and equality holds for the motion parallax equation (6). 
Since ha = fin* x m, we see that 

(ha+ o~ x m )  x Pmr = (m* x m + o ~  x m )  XPmr 

= ((ha* + ~)  X m) x Pmr 

= (ha* + ~, Pmv)m 

= ((ha* Pmr) + (o~, Pmr))m. (92) 

Since ha* is orthogonal to m, we have (ha* Pmr) = 
(ha* r). We also have (o~, Pmr) = (m, Km) from 
equation (10). Thus, 

I t (m + ,.,, x m) X PmrlI 2 = [(ha*, r )  + (m, Km)]  2 
(93) 

Since IIPm~ll 2 = (~, Pm~), we obtain (43) by inte- 
grating (91) over fl(S). [] 

Appendix G: Critical Surface of Optical Flow 

In order to analyze ambiguities the rotation velocity o~ 
need not be considered, since rotational motion around 
the viewpoint O does not add any 3-D information (see 
appendix A), just as finite camera rotation does not at: 
fect the 3-D interpretation of finite motion. In other 
words, it is geometrically evident that if a surface yields 
spurious motion parameters {~, 17} together with the 
true motion parameters {0, r }, the same surface must 
yield spurious motion parameters {~ + o~, if} if the 
true motion parameters are {~o, v}. Hence we can 
assume ~0 = 0 without losing generality, although a 
spurious interpretation {&, if} such that & # 0 may 
be obtained. From proposition 2 and our assumption 
that o~ = 0, the twisted flow is given by 

m Xip 
m* = r(m) (94) 

A spurious solution {K, i;} satisfies the epipolar equa- 
tion (15) if and only if 
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m >( p ) 
r(m) ' ff + ( m , ~ r n )  = 0 (95) 

Putting r = r(m)m, we obtain the following results: 

Theorem G.I: The weak critical surface has the form 

(r, I~2r) = (v × ;, r) (96) 

where K is a symmetric matrix and ~ is a unit vector 
such that {K, ;} # {K, v}. 

From this and the definition of the (strong) critical 
surface, we obtain 

Theorem G.2: The (strong) critical surface has the 
Jbrm 

(r, Kr) = (~ × ;, r) (97) 

where the pair {K, ~} is decomposable and {K, ;} 
# {K,  v } .  

Corollary G.l: The (weak or strong) critical surface 
is generally a quadric surface passing through the view- 
point O. 

As the term "generally" implies, equation (97) does 
not necessarily describe a surface for special values of 
{K, ;} .  For example: 

- -  If K = O, the surface equation becomes (v × ;, 
r) = 0, which describes a line passing through the 
viewpoint O. 

- -  If ; = _+ ~, the surface equation becoms (r, Kr) = 
0, which describes a set of lines passing through the 
viewpoint O. 

Hence, we assume in the following that the (strong) 
critical surface is defined by a decomposable pair {K, 
;} such that K # O and ; # 0. The following is a 
restatement of the fact pointed out by Horn [6]: 

Theorem G.3: The (strong) critical surface is 
generally a ruled quadric, and hence is a h~yperboloid 
of one sheet or its degeneracy. 

It can be shown that the spurious interpretation of 
the critical surface is also a quadric surface of the same 
type. 

Proposition G.1 The spurious interpretation of the 
(strong) critical surface (r, Kr)  = (v x ;, r) is 

(r, K ' r )  = 0' x ;, r) (98) 

1 K'  = (&, p) I - ~ (~vr + v~T) (99) 

It is well known that an optical flow resulting from 
a motion relative to a planar surface in the scene yields 
two 3-D interpretations. This means that any single 
planar surface can be the (strong) critical surface. How- 
ever, we have just proved that the critical surface is a 
quadric surface passing through the viewpoint O. This 
apparent inconsistency is resolved if and only if the 
critical surface degenerates to two planes So and $1 in 
such a way that one of them, say So, passes through 
O so that the viewer can view only $1. The condition 
that this degeneracy occurs is exactly parallel to the case 
of finite motion [18, 20] and is given as follows: 

Theorem G.4: The (strong) critical surface for 
translation velocity u and spurious essential parameters 
{K, ;} degenerates to two planes, one passing through 
the viewpoint O, if and only if the rotation velocity 
defined by {K, ~} is orthogonal to v and ;. 

Since the two planes (~, r) = 0 and (;, r) + c = 
0 have their surface normals ~ and ;,  respectively, we 
find that: 

Corollary G.2: The two planes into which the critical 
surface degenerates are orthogonal to each other. 

Finally, we can easily confirm that the critical sur- 
face equation (97) is obtained by taking the infinitesimal 
limit of the critical surface equation for finite motion. 
Indeed, if the notations of appendix B are used, it can 
be shown (e.g., see [11]) that the critical surface equa- 
tion for finite motion has the form 

(r, Gr) = (r, Gh) (100) 

where G is a spurious essential matrix. For a small 
translation h = v a t  + O(At2), the above critical sur- 
face equation is written as 

(r, (;r) = (r, Gp) [&t + O(At2)] (101) 

If the spurious motion parameters are infinitesimal, 
equation (71) also holds for spurious motion param- 
eters, and we obtain 

(r, (;, r)~ - 07, ~)r) At 2 + O(At 3) 

= ( r , ; x  v) At 2 + ( r , ; ×  (~  × p))At 3 + O(At 4) 
(102) 

Dividing both sides by At 2 and taking the limit as 
At ~ 0, we obtain, 
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(r, [~ffT _ (~, ~) I] r) = --(v X if, r) (103) 

The left-hand side is a symmetric quadratic form in r 
and can be written as -(r ,  Kr) if we define 

1 = (~, ~) I - ~ ( ~ r  + ff~r) (104) 

Hence, equation (103) is written as 

(r, Kr) = (v × ~, r) (105) 

which is the critical surface equation for optical flow. 

Appendix H: Derivation of Equation (58) 

From equation (89), we have 

llx 'tixlt2k × Pm w + Qxv - - - ] - -  ~ 112 

llx × axe' - llxll2fk × Pr. '~) × Qx~/fll  ~ _> 
JlOx~ll 2 

(106) 

where equality holds for equation (54). It is easily 
shown that 

1 1 
X Qxv = ~ (x × x, v)k = ~ (:~*, v)k (107) 

and 

(k x Prow) X Qx v = --(Prow, Qxv)k 

= -(o~, PmQxv)k 

= - (o , ,  Pmv)k 

= - ( m ,  Km)k 

_ (x, Kx) k (108) 
Ilxll 2 

Using these and integrating (106), we obtain (58). 
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