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Abstract 
There has been a great deal of research interest in contour tracking over the last five years. This article combines 
themes from tracking theory--elastic models and stochastic filtering--with the notion of affine invariance to syn- 
thesize a substantially new and demonstrably effective framework for contour tracking. 

A mechanism is developed for incorporating a shape template into a contour tracker via an affine invariant 
coupling. In that way the tracker becomes selective for shape and therefore able to ignore background clutter. 
Affine invariance ensures that the effect of varying viewpoint is accommodated. Use of a standard statistical filter- 
ing framework allows uncertainties to be treated systematically, which accommodates object flexibility and un- 
modeled distortions such as the deformation of a silhouette under motion. 

The statistical framework also facilitates a further development. In place of heuristically determined spatial 
scale for feature search, both spatial scale and temporal memory are controlled automatically and in a way that 
is responsive to the tracking process. Typically, the tracker operates initially in a coarse scale/short memory mode 
while it searches for a feature. Then spatial scale diminishes to allow more precise localization while memory 
(temporal scale) lengths to take advantage of motion coherence. All system parameters are determined by natural 
assumptions and desired tracking performance, leaving none to be fixed heuristically. 

Versions of the tracker have been implemented at video rate, both on SUN 4 and in parallel, using a network 
of 11 transputers. The theoretically established properties of automatic control of spatiotemporal scale and of af- 
fine invariance are demonstrated using the implemented tracker. 

1 Introduction 

This article is concerned with the principles of track- 
ing curves in motion, at video rate. This has many 
potential applications, for instance in biomedical im- 
age analysis--for example, (Ayache et al. 1992)--in 
surveillance--for example, (Sullivan 1992)--and in 
autonomous vehicle navigation--for example, (Dick- 
manns & Graefe 1988). Earlier versions of our tracker 
have been used in the control of a robot arm, suppor- 
ting closed-loop tracking (Curwen & Blake 1992) and 
various aspects of hand-eye coordination (Cipolla & 
Yamamoto 1990; Blake et al. 1991; Blake et al. 1992; 
Cipolta & Blake 1992; Blake, 1992). A review of ex- 
isting methods in curve tracking can be found in (Blake 
& Yuille 1992). Our aim here is to set out a framework 

for contour tracking as a relatively autonomous proc- 
ess, in which tracking behavior is determined as a 
mathematical consequence of some natural assumptions 
about geometry and uncertainty. 

The framework has evolved from the principles of 
the snake of Kass et al. (1987), which is an elastic 
model for shapes in motion that can be coupled to 
image features. The elastic framework has been shown 
to be approximately equivalent to a Kalman filter that 
can be derived from statistical assumptions about curves 
and their motion (Szeliski & Terzopoulos 1991). In fact 
such an elastic system can be equivalent to the steady 
state of a Kalman filter. Here, the Kalman filter for- 
malism will be developed further. 

It is efficient to represent curves parametrically with 
a low-dimensional basis rather than using a pixel-based 
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representation, or a fine polygonal chain. Such a basis 
has been used for tracking solid models (Terzopoulos 
& Metaxas 1991) and for image curves using B-splines 
(Menet et al. 1990; Cipolla & Yamamoto 1990) and 
other parameterizations (Scott 1987). The B-spline 
representation is used in this article, though most of 
the results apply to any reasonable curve basis. 

Another theme that is related to the snakes idea has 
been the representation of geometric prior information 
which can be incorporated into the tracker by means 
of a template. Templates--parameterized shapes--have 
been used effectively in nondynamic shape-fitting proc- 
esses (Fischler & Elschlager 1973; Grenander et al. 
1991; Lipson et al. 1990; Bennett & Craw 1991; Yuille 
et al. 1992). Some include statistical learning of shape 
variations (Grenander et al. 1991; Bennett & Craw 
1991). Bookstein (1988) derives one method of elastic 
matching, with thin-plate splines, that allows affine 
transformations freely while allowing other deforma- 
tions with some "reluctance?' 

On a practical note it has been shown recently that 
curve trackers can run at video rate without special 
hardware. Although it was originally thought that con- 
volution hardware was needed for low-level image pro- 
cessing to support tracking, this has proved not to be 
the case. It has been demonstrated (Inoue & Mizoguchi 
1985; Thompson and Mundy 1987; Dickmanns & 
Graefe 1988; Harris 1992; Curwen & Blake 1992; 
Lowe 1992; Wang & Brady 1992) by several research- 
ers that tracking of rigid or deforming bodies is pos- 
sible, often at frame rate and with modest hardware. 

Several significant advances are reported here. First, 
templates are coupled into the dynamics of a real-time 
tracker with allowance for spatiotemporal uncertainty-- 
both elastic deformability and temporal noise. Second, 
the statistical basis of the tracker is used to control 
spatiotemporal scale automatically and in a way that 
fits the progress of the tracking task. This is a con- 
siderable advance on previous approaches in which the 
spatial scale for feature search was set by hand. Mathe- 
matical analysis elucidates the operation of the spatio- 
temporal scaling mechanism and establishes that the 
tracker behaves stably. Third, the coupling of template 
to tracker is made invariant to affine transformations 
of the template. This allows both for 3-D rigid motion 
of a planar shape and for uncertainty in camera calibra- 
tion. Fourth, the template mechanism is extended, rep- 
resenting the template by a subspace of the tracker's 
state-space. It is shown that this mechanism subsumes 
the affine-invariant 2-D template and generalizes it to 

full 3-D rigid motion of a nonplanar shape. Variations 
on the structure of the subspace allow for constrained 
tracking--for example panning--and surprisingly for 
exploring, simultaneously and dynamically, more than 
one object-hypothesis. 

2 State Space Representation 

The tracking model assumes that the moving feature 
is a contour (X(s, t),  Y(s, t)) which can be expressed 
parametrically in terms of time-varying control points 
(Xn(t), Yn(t)), n = 1 . . . .  , M. State vectors are de- 
fined in terms of X, Y where X = (X~ . . . . .  XM) r and 
similarly for Y. (Note that the notation will omit ex- 
plicit reference to s, t where appropriate.) The aim of 
this article is to develop a tracker which is an estimate 
(i~(s, t), Y(s, Q), expressed in terms of estimated state 
vectors JK(t), Y(t). The estimate is updated continu- 
ally by reference to a visual feature (Xf(s, t), Yf(s, t)) 
which is measured by searching in the vicinity of 
(J~(s, t), Y(s, t)) as in figure 1. 

 earc  / ...... "'7 . . . . . . . . . . . .  
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contour 

g 

-. ......... . /  ......... 
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Fig. 1. The basic tracker is an estimated contour updated continuously 
using features that fall within its search region. 

2.1 B-spline 

The mathematical framework of this presentation large- 
ly applies to any parametric representation for curves. 
Specifically we will refer to the parametric B-spline 
representation, of which quadratic and cubic are par- 
ticularly useful. A B-spline curve (X(s), Y(s)) of degree 
d is defined parametrically for 0 _< s < N, where 
M = N for closed curves and M = N + d for open 
ones (with appropriate variations where multiple knots 
are used to vary curve continuity): 
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X(s) = H(s )X  (1) 

where 

H(s + n) = sT Bn+IGn+I 

0_<  s_< 1 , 0  <__ n < N  (2) 

s r = (1, s, . . . ,  sa), B~ is a standard B-spline matrix 
(Faux & Pratt 1979; Bartels et al. 1987) and G, is a 
d x M matrix that simply selects d consecutive con- 
trol points: 

GnX = (X n . . . . .  Xn+d) T 1 <-- n <_ N 

Note that, for a closed curve, control point indexes 
are evaluated modulo M. The definition for Y(s) is 
similar. 

2.2 State Space Metric 

Uncertainty in state space will be treated in terms of 
"Mahalanobis distance" (Rao 1973) via a norm II . . .  It 
on X or Y which is compatible with true Euclidean 
distance measure in the image plane. We therefore 
define the norm so that 

llxl12 = f~i ~ =o X¢s? as 

or, equivalently, 

IIx[I 2 = x r ~ x  

where the "metr ic"  matrix jT-[ is 

(3) 

L N  
= H ( s ) r H ( s )  ds (4) 

which, from (2), is 

N 

n=I  

(5) 

a form that is convenient for practical computation of 
and where __d is the invertible, banded matrix 

f01 d = ss r ds (6) 

For instance, for quadratic B-splines, 

d = 

1 1 TM 

1 ~ 5  

1 1 1 
2 3 4  

1 1 1 
, _ 3 4 5  

The .~-matr ixes are sparse, becoming more so as the 
number N of spans increases. For closed contours the 
.Y/--matrix is a sparse circulant, for instance, for a 
quadratic spline with N = 8, 

-0.55 0.217 0.008 0 0 0 0.008 0.217" 
0.217 0.55 0.217 0.008 0 0 0 0.008 
0.008 0.217 0.55 0.217 0.008 0 0 0 

0 0.008 0.217 0.55 0.217 0.008 0 0 .7/'= 
- -  0 0 0.008 0.217 0.55 0.217 0.008 0 

0 0 0 0.008 0.217 0.55 0.217 0.008 
0.008 0 0 0 0.008 0.217 0.55 0.217 
0.217 0.008 0 0 0 0.008 0.217 0.55 

(7) 
For an open curve, ~ is banded, pentadiagonal for 
quadratic splines, as shown here for the case N = 4: 

Y / =  
I0 0.2 0.117 0.017 

.117 0.333 0.208 

0 . i l 7  0.208 0.55 
0.008 0.217 

0 0.008 
0 0 

and heptadiagonal for cubic 
Lastly, given the norm [[ 

to define a compatible inner 
that: 

0 0  i) 0.008 0 
0.217 0.008 
0.55 0.208 0.01 

0.208 0.333 0.117 [ 
0.017 0.117 0.2 J 

(8) 

splines. 
. . .  II it is natural also 

product < . . .  > such 

< X, X '  > = x r . , ~ c x  ' (9) 

3 Visual  Features  

The feature [Xf(s, t),  Yf(s, t)l is defined by searching 
along fixed lines radiating from the current estimate 
[X(s, t), re(s, t)]. The lines may be unit normal vec- 
tors to the curve or, if  a constrained tracker is required, 
along fixed parallel lines. Search occurs on a specified 
spatial scale (figure 1) defined by a search window, 
selecting a point of maximum contrast or other visual 
measure, as appropriate for the underlying object 
model. In our implementations, contrast is used. In 
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practice, of course, [Xf(s, t), Yf(s, t)] is not observed 
in its entirety but at sampled points si along the con- 
tour. Furthermore, in the interests of computational 
speed, contrast is examined at only three different points 
on each normal: on the curve and at the two extremes 
of an interval which is initially close to the full width 
of the search window. If one of the extremes has the 
highest contrast it is retained as the current [(Xf(s, t), 
Yf(s, t)]. Otherwise the interval is halved in length 
and the process is repeated. 

If  the sampling is dense and uniform in s, it is a 
reasonable abstraction to model the measurement con- 
tinuously and this will allow sufficient analysis to give 
some insight into the operation of our estimator as a 
control system. Similarly, although measurements are 
made at discrete times, they can usefully be regarded 
as continuous-time for the purpose of analysis. Then, 
assuming that sensor error is unbiased, homogeneous, 
isotropic, and Gaussian, we have the following condi- 
tional p.d.f. (probability density function) for the mea- 
surement process: 

p {[X:(s), rs(s)]l[X(s), r ( s ) ] }  

lf0N oc exp - Tr {[X(s) - Xf(s)l 2 

+ [Y(s) - Yf(s)] z} ds (10) 

where r is a measurement variance constant (strictly, 
variance spectral density--see (Gelb 1974)). As before, 
[X(s), Y(s)] is the true underlying position of the curve, 
as distinct from the estimated position IX(s), I?(s)]. 

Now the square error integral above can be reex- 
pressed, using the fact that X(s) = H(s)X, and com- 
pleting the square: 

~fOV (/(S) -- Xf(S)) 2 ds 

= I Ix  - x / l ]  2 - I Ix / l l  2 + f x : ( s )  2 ds (11) 

where Xf is the least-squares B-spline approximation 
to the feature, 

Xy = y f - 1  f0 v H(s) r  Xf(s) ds (12) 

and similarly for Yterms. Now since the only term on 
the right of (11) that depends on X is ]Ix - X/H 2, 
the other terms being effectively constant, the condi- 

tional p.d.f. (10) can be expressed directly in terms of 
Mahalanobis distances: 

p{[X:(s), rAs)ll[X(s), r ( s ) ] }  

1 
oc exp - ~rr ( [ I x f -  X[] 2 + I [Y/ -  YI[ 2) (13) 

and this depends on the feature (Xf(s), Yf(s)) only via 
its B-spline approximation (Xf, Yf). 

We can now regard a feature as a time-varying 
measurement (X/, Y/) in the joint state-space for the 
X, Y processes. From (13) and (3), each of Xf and YU 
has covariance matrix 

R = r.~f -1 (14) 

This abstraction of the sensor will be used for now to 
obtain analytic insights into performance. Later, we will 
outline modifications that are required for real discrete 
measurements and due to the "aperture problem" (Horn 
1986) which allows only the normal component of 
displacement of [X:(s), Yf(s)] to be measured. 

4 Stochastic Dynamica l  Model  

A simple dynamical model is based on the assumption 
of uniform 2-D motion with an additive Gaussian noise 
process representing randomly varying force applied 
continuously over time. In an augmented state space 
of vectors (X, X) r this is expressed as a stochastic dif- 
ferential equation (Getb 1974) 

d X 
d--i ~ X ~  -- ( Xo~ + ~ ow~ (15) 

where w(t) is a zero mean, temporally uncorrelated 
Gaussian noise process. A similar equation applies for 
Y, independently of the X process provided the noise 
process is assumed to be isotropic. Assuming an iso- 
tropic and homogeneous Gaussian distribution, and 
following similar reasoning to that used above for the 
measurement process, the covariance spectral density 
matrix for w is simply q ff5 c-1 where q is a variance 
(spectral density) constant. 

4.1 Tracking Filter 

Under this simple model, one can build a standard con- 
tinuous Kalman filter for the estimated contour (~i, ¢g) 
of the form 

X ~ + K(Xf - X) (16) 
J 
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where K(t) is the Kalman gain matrix, defined in terms 
of the covariance of the measurement process and the 
covariance P(t) = E[(X - X)(X - ~2)r] of the cur- 
rent state estimate: 

K = P H r R -1 (17) 

where H is a measurement matrix: 

H = (I 0) (18) 

representing the fact that the contour position X is 
measured, but not the velocity X. 

4.2 Shape Template 

It remains to specify initial conditions for the filter. This 
is done by initializing the estimator to some fixed-shape 
template which is defined to be a B-spline expressed 
as control point vectors (X, ~g). Assuming, similarly 
to the measurement model, a spatially homogeneous 
and isotropic Gaussian prior distribution for the state 
X, Y then, by similar reasoning, the prior distribution 
in the augmented state-space has covariance 

p(0) = ( ~ l @ c - 1 0 / 2 ~  Jz'--1 0 

which serves as an initial condition for the Riccati equa- 
tion (Gelb 1974) that specifies the evolution of P(t) 
in a Kalman filter: 

dP 
dt 

- FP + PF r + Q - K R K  r (19) 

where, for constant-velocity dynamics, the matrix F is 

i I F =  0 

and I, 0 are the M x M  identity and zero matrices, and 
where 

Q = q K - I  (21) 

is the plant-noise covariance spectral-density matrix. 
Now substituting a solution for P(t) of the form 

= (-pl~YS -1 p122f- l~ 
P(t) ~pzl .y~_ 1 p2z2/-_ 1 _ (22) 

into (19) and using (17) and the definitions (14) and 
(18) gives 

d (-pl l  P12~ 
dt k._P21 P22 

= [2p21PZlP22-Pl lP ' - - - -~2  r (23) 

P22 - -  PliP q _ p22 
r r 

with initial conditions 

P11(0) = oq, p22(0) = ~2, p12(0) = pal(0) = 0 

The Kalman gain in (17) is simply (the ~ terms 
cancelling): 

K = ( klI-~ kl ~Pll  I (24) 
r t._ P21 

4.3 Tracking Performance 

The diagonal form of the Kalman gain means that the 
second-order dynamics in state space (16) degenerate 
into a set of identical, independent second-order 
systems on each control point. This simple case arises 
because of the homogeneity of the measurement model. 
Nontrivial modal structure is created when measure- 
ments are inhomogeneous, for instance when part of 
the contour fails to lock onto a visual feature. How- 
ever, the homogeneous case is useful for analysis as 
a guide to the stability and accuracy properties of the 
tracker. In the steady state, for instance, from (24) and 
taking d/dT = 0 in (23), 

kl I k 2 1  = ~  x/2(q/r)l'~ (q/r)l~ ~ (25) 

Now, in the steady state, the second-order systems have 
damping constant/3 = kJ2 and natural frequency ~0 
= x/k2 so that, from (25), ~0 = "(213, just underdamped 
relative to the critical damping condition t3 = ~0. 

This means that tracking behavior is good--fast but 
stable--regardless of the setting of the covariance param- 
eters q, r. Furthermore, tracking is also accurate in the 
steady state. In fact tracking error is zero, in the steady 
state, for a constant-velocity target, since 

"X = Xf = Vt with V constant 

is a solution of (16). 

5 Automatic Control of Spatiotemporal Scale 

Automatic control of spatial scale for search is achieved 
by applying a validation gate (Bar-Shalom & Fortmann 
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1988) in a spatially distributed fashion. In the isotropic 
case (isotropy is broken if measurements comprise only 
the normal component of displacement--see later), the 
filters for the X and Y processes are identical. A cir- 
cular feature-search window (elliptical in the an•so- 
tropic case) of radius 20 (s, t) is constructed around 
each point on the curve where 02 is the positional 
variance of the current estimator at s: 

p(s)  2 = n(s)  P [H(s)l r (26) 

Feature search is then performed along the normal to 
the estimated contour, and within the window. The 
circle 0 (s, t) can be pictured as sweeping along the 
estimated contour to form an enclosing search region 
as in figure 2. 

search # 
region : 

X 

X 

g 
e 

g 

I 

I 

I i g 
m m ~ . w m • m l l t ~  t 

Fig. 2. The search region is formed by sweeping an ellipse of 
uncertainty along the estimated contour. 

When P is also homogeneous, as in the previous sec- 
tion, its Riccati equation can be solved analytically to 
give some insight into the operation of the scale-control 
mechanism. The radius varies as o(s) 2 ~ pn(t) and 
pH(t) varies according to the differential equation (23) 
when a feature is present. In fact it is also true that 
p(s) ~- "]Pn, so the variation of 0 over time is gov- 
erned by the Riccati equation (23). 

In the absence of a feature, when lock is lost (and 
assuming the whole contour is unlocked), no measure- 

ments are made. This can be incorporated into the Ric- 
cat• equation (23) by regarding the measurement 
covariance as infinite, and as r -* 0% (23) becomes 

dt k._P21 P22 P22 q 

which can be solved exactly to give 

1 
p l l ( t )  = P l l (0)  + Pl2(0)t + P22(0)t 2 + ~ q t3 

so that asymptotically the search scale p grows as t 3/2. 
If  at some time t, assumed large so that (23) can be 
solved approximately, the whole feature locks on again, 
the search scale will contract again approximately as 
0 oc 1/4)-until, asymptotically, it reaches the steady state 
scale of 0~ = 2V4(qr3) 1/8. This behavior is illustrated 
for a tracking contour with simulated data in figure 3 
and with real data in figure 4. 

5.1 Automatic Control of Temporal Scale 

The Riccati mechanism also takes care automatically 
of temporal scale, the effective memory of the tracker. 
The Kalman gain K has the dimensions of inverse time 
and, in a multivariate system, governs the duration of 
the negative exponential memory of each mode of the 
tracker. In the simple case we are using for analysis, 
modes are degenerate and all have time constant r = 
1//3, where/3 is the damping constant defined above. 
Taking r as the characteristic time of the Kalman filter's 
negative exponential memory and, using the definitions 
of B, kl above, 

2r 2r 
7 " = - - ~  02 P l l  

so that temporal scale varies as the inverse square of 
spatial scale. In the absence of a feature, temporal scale 
shortens so that feature acquisition and locking can oc- 
cur rapidly. Once locked, temporal scale lengthens, 
allowing motion coherence to be exploited. 

In the practical and general case that the contour 
is only partially locked onto a feature, spatial scale will 
be inhomogeneous, being larger where the contour is 
not locked. Consequently, temporal scale should also 
be inhomogeneous. The contour should react more 
rapidly over segments with greater spatial scale and this 
is illustrated in figure 5. 
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Fig. 3. The time-course of  spatial scale is illustrated here by applying the tracker to simulated data. Spatial scale decays to a steady-state value 
as tracking proceeds. When the feature is lost, at t = 0.6 s, spatial scale increases and theory predicts a t 3/2 growth. Then the feature is 
recaptured at t = 1.2 s and spatial scale decreases again (theoretically inversely with f/-), once again reaching a steady state, Tracking parameters 
for this simulation were r = 1.0 mm ~. s and q = 66 m m  2. s -3,  giving a steady state scale of O~ = 2.05 ram, in a total field of  view of width 
8 mm on the image plane. 

5.2 Setting of System Parameters 

The assumptions of homogeneity and isotropy in system 
and measurement uncertainties dramatically reduced 
the numer of unspecified covariance parameters from 
O(M 2) to just a few, because all covariance sub- 
matrixes turned out to be multiples of y f - 1 ,  the in- 
verse of the metric matrix. In fact there are just four 
covariance parameters to specify: r, q, oq, ~2. Of 
these, oq, ~2 will prove to be less important; they 
govern the initial strength of influence of the template. 
Later, however, the "persistent template" is introduced, 
which has a continuing influence, not just an initial one, 
governed by an additional parameter t: (see Section 7). 

Measurement covariance r is fixed, in principle, 
by the sensor characteristics, and might reflect a typical 
noise variance of a fraction of one (pixel) 2 in image 
measurement. In practice, this is unrealistic. The mea- 
surement process outlined earlier, searching along 

normals from the current estimated curve, is crude in 
the interests of speed and its error is of the order of 
the width of the search window, which may be much 
greater than one pixel. Ideally, then, we should set r 

p2 so that r is time-varying. This is an attractive 
idea, but it remains to solve the covariance equation 
(no longer a Riccati equation since R is a function of 
P) for this case. In the meantime the simpler case is 
considered in which r is constant. 

Rather than setting the four parameters explicitly, 
it is more natural to fix an equivalent set of four which 
correspond directly to operational characteristics of the 
tracker. Initial and steady-state values of the spatial scale 
p for search are set by q, cq as follows: 

P0 = ~ and p~ = 21/4(qr3) 1/8 (28) 

The variation of temporal scale with spatial scale 

r 
7" = 2 ~-~ (29) 
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Fig. 4. Frames are shown here at times t = 0, 0.04, 0.08, 0.32, 0.56, 0.8 seconds (raster order) in the tracking of a moving hand. The solid 
white line shows the estimated contour and the dotted line is the boundary of the search region. Initially, the lower edge of the hand is not 
locked on; the search region expands locally until the contour does lock on. Overtime the search region reaches a steady state and the continu- 
ing motion of the hand is successfully tracked. 
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Fig. 5. This  s imulat ion demonst ra tes  that por t ions  of  a snake with greater  spatial uncertainty have shorter  temporal  memory ,  as predicted 
theoretically. The  est imated contour  (white line) is initially close to a feature; the search region (bounded by grey lines, arrowed in the first 
f rame) is initialized to be larger at the top than  the bot tom.  Tempora l  scale should  therefbre be  shor ter  at the top and in the second f rame 
the contour  is indeed attracted to the feature more  rapidly near  the top. Subsequent ly  the remainder  o f  the snake locks on. (Frames  are approx- 
imately at t imes t = O, 0.04,  0.08,  2.0 seconds). 

is fixed at the choice of r and it is most natural to choose 
r for the desired steady-state temporal scale 

r 
7~ = 2 02 (30) 

which governs the degree to which coherence of mo-  
tion is exploited once the contour is fully locked. (Of 
course, if the maneuver causes lock to be lost, r rapidly 

becomes  very short as o increases; the coherence 
assumption is canceled and the contour is reactive, 
ready to follow the maneuver.) 

The remaining parameter c~2 can be shown to deter- 
mine a bound on the rate at which spatial-search scale 
grows, at time t = 0, in the absence of  any features 
to track: 

<  31) 
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So all four free parameters of the system are fixed 
in terms of the desired operational characteristics of 
the tracker. 

6 Affine Invariant Shape Memory 

So far, the template (I~, Y) has been set up to influence 
the initial conditions of the tracker by a direct prob- 
abilistic coupling. The estimated contour is initialized 
to the template shape, with a homogeneous and iso- 
tropic allowance for uncertainty via the covariance 
matrix P(0). However, for 3-D tracking it is highly 
desirable to accommodate specially those de~brmations 
that occur as a result of projective effects. This could 
be done at any of several levels. 

1. Allowing 2-D rotation. 
2. Allowing 2-D affine transformations; this is suffi- 

cient to accommodate 3-D transformations of a 
planar contour, under affine projection. 

3. Allowing 3-D affine transformations, sufficient to 
accommodate 3-D transformations of a space curve 
under affine projection. 

4. Modelling 3-D rigid transformations of a 3-D model 
and perspective projection (Harris 1992). 

5. Allowing full planar projective transformation. 
6. Allowing 3-D projective transformations. 

The last three of these are most general but require an 
extended Kalman filter to cope with nonlinearity. The 
first is least general but most tightly constrained, and 
is also nonlinear. The second and third are covered by 
the approach to be described here. An affine approx- 
imation is made to the camera projection (Horn 1986) 
with the benefit that the Kalman filter turns out to be 
linear and so to enjoy well understood convergence 
properties. Error in the approximation is absorbed by 
the general mechanism for uncertainty incorporated in 
the filter. 

6.1 Affine Invariance 

Let us first consider case 2 above: general 2-D affine 
invariance. It is in some respects appealing to try to 
develop some affinely invariant shape measure I(X, Y) 
which could then be used in an error-measure of the 
form 

Ill(X, Y) - I(X, Y)[lr (32) 

with some suitable norm [I .. • Ill. Suitable candidates 
for I might be found, for instance, in (Mundy & Zisser- 
man 1992). This would have the desired effect of mak- 
ing the template (X, Y) an affinely invariant shape 
model because it was accessed only via I ( . . . ) .  

There are disadvantages, though, in relying entirely 
on an affine invariant I ( . . . ) .  Firstly affine invariants 
are nonlinear functions and that introduces nonlinear- 
ity into the tracking filter, whereas a linear filter is 
attainable (see below). Secondly it may be difficult to 
construct an I ( . . . )  that is not only invariant but also 
complete, in the sense that the error measure (32) 
should be sensitive to all nonaffine differences between 
curve and template. Thirdly, the overwhelming disad- 
vantage relates to the modeling of sensor error. Use of 
the error measure (32) would appear to have the 
advantage of allowing the (affine) camera to be un- 
calibrated, because (X, Y) is also accessed via I ( . . . ) .  
Our tracking framework rests firmly on modeling of 
sensor noise for which the true X, Y sensing frame is 
required to compute the Mahalanobis distance (13), not 
just some frame that is affinely related to (X, Y). This 
means that (X, Y) must be available explicitly, not just 
via I ( . . . )  and the camera must be calibrated, at least 
approximately. 

Aiming for an error measure that is invariant to 
affine transformations in both curve and template is 
therefore not only needlessly ambitious but actually 
undesirable. Instead we should aim for a measure that 
is affinely invariant only to the template (X, ~r) and 
not to the curve X, Y. Such a measure is derived next. 

6.2 Invariant Template 

Continuing to consider the 2-D affine case 2 above, 
we will exploit the fact that, instead of representing the 
template (IK, ~) and the affine transformation A explicit- 
ly, the space of all possible transformations of the 
template can be represented as a subspace of" V of the 
state space. This is mathematically efficient in the 2-D 
case. Later, it will prove also to be a highly effective 
generalization to regard this vector subspace V itself 
as the model, in place of the template. 

Given a template obtained as one training view (X1, 
~(1), and since A has 6 degrees of freedom as in fig- 
ure 6, the set {A(X1, Y0} is a 6-dimensional vector 
subspace. The subspace can conveniently be expressed 
as a direct product of subspaces for the X, Y processes 
respectively: 
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C5 
Q) 

Fig. 6. The six degrees of freedom of a 2-D affine transformation are illustrated here: translation vertically and horizontally, rotation and 
scaling vertically, horizontally, and diagonally. 

__v = ~ ® _ v y  

so that the typical element of_~ is v = (Vx, vr) where 
Vx ~ ff~xand vr ~ ~)y. The bases Bx, Brfor  ~__x, L~yare 

Bx = Bjc = {1, Xl, Y1} (33) 

where 1 is the M-vector 

1 1 = - ~ ( 1 ,  1 . . . .  , 1) r 

Each basis contains the vector 1 to allow translation 
and the vectors X1, Ya to allow arbitrary linear func- 
tions of the template, including planar rotation, scal- 
ing, and foreshortening. We will assume, in general, 
that the bases are orthonormal with respect to the earlier 
defined inner product < . . .  > .  This is achieved in 
the 2-D affine case by normalizing _the position, size, 
and orientation of the template (X b Y1) via the follow- 
ing steps: 

1. Translate it so that its centroid is at the origin. This 
achieves < I ,  XI>  = <I ,  YI>  = 0. 

2. Rotate the template through an angle 0 given by 

<:~1, ~'t> 
tan20 = 2 

I1~1112- tl~zlll 2 
and this achieves < X1, ~gl > = 0. 

3. Scale the template vertically by a factor 1/llYtll and 
horizontally by 1/ll:~all to achieve II:~tl = I1¢~111 = 1. 

Now, since already l[lll = 1, {X~, Y1, 1} forms an 
orthonormal set as required. 

6.3 Prior p.d.f 

The next task is to show how the subspace model for 
shape amounts to incorporating affine invariance of the 
template into a distance measure and hence into the 
error measure prior p.d.f, for the curve. Consider the 
prior p.d.f, for positional uncertainty, whose covariance 
is the upper left submatrix Pl1(0) of P(0). (The situa- 
tion for the other nonzero submatrix, representing 
motion-uncertainty, is very similar.) 

Now (X, Y) is no longer a fixed template, but ranges 
over the subspace Z) of affine transformations of the 
template (Xb Y1). Previously, the positional covari- 
ance Pll(0) implied a fixed prior p.d.f. 

p(X, Y) 

ec exp  2cq  ( l tX - ~Zll 2 + IIY - YII 2) • 

Now that same expression is interpreted as a conditional 
p.d.f, p(X, Y I X, Y). From this conditional p.d.f., 
the prior p.d.f, p(X, Y) is computed by obtaining a 
maximum-likelihood estimate (m.l.e.) (Rao 1973) for 
(X, Y) as a function of (X, Y). This is done by max- 
imizing p ( . . .  1 . . . )  above with respect to (X, Y), as it 
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ranges over the subspace L). The m.l.e, for the template 
is therefore the (X, Y) fi L) which minimizes the 
Mahalanobis distance 

IIx - 2 + IIv - YII = 

The solution is 

= E ~ X ,  where E J:= Q ~ ]  v v r ] - ~ / -  
v f B  X 

(34) 

and similarly for Y--simply the projection of the cur- 
rent state (X, Y) onto the subspace ~ .  

The prior p.d.f, for the contour can now be written 
as 

p(X, Y) 

[ 1  ] 
exp 2c 1 (llEx x l l  2 + IIEy Y[I 2) (35) 

where Ex = I - Ejc and similarly for E r. This means 
that the prior p.d.f, depends only on the component 
of the current state (X, Y) that lies outside the subspace 
Z). 

Given the way in which __V is constructed, the term 
in round brackets in (35) is simply the minimum dis- 
tance from (X, Y) to the subspace L). Since the defini- 
tion of L) is invariant to an affine transformation of the 
training view (~i l, i[1), the minimum-distance 
measure is, itself, invariant to afflne transformation of 
the training view, as required. 

t = 0 it will be absorbed via the Kalman gain into the 
estimate (IK(0), Y(0)). Within the affine subspace, the 
initial estimate is simply a copy of the feature: 

= X s 

whereas outside the subspace it is a linear mixture of 
template and featureJ The initial conditions for the 
estimate are now determined both inside and outside 
the subspace and this is reflected in the fact that Pll 
becomes nonsingular. 

7 Persistent template 

So far, the template or training views have had an influ- 
ence on the tracker that continually decreased over time 
so that, in the steady state, no shape memory remains. 
However, in practice, it is crucial that a shape-specific 
tracker should continue, throughout its lifetime, to re- 
tain some shape memory. It is essential to stability that 
it should do so, otherwise there is undue disturbance 
when features are temporarily obscured and the tracker 
is bumped out of its steady state. The more complex 
the shape to be tracked, the worse is the instability when 
lock is lost, and this is illustrated in figure 7. With 

6. 4 Invariant Filter 

The implication of the prior p.d.f, p ( . . . )  above is that 
the positional covariance P11( t ) of X is given initially 
by 

1 (Ex) T.yt-Ex (36) (Pll(0))-I = ot~- 

so that Pll(0) takes the same value cqL,~ -1 as before 
outside the subspace __V but is effectively infinite inside 
the subspace. This reflects the fact that the template 
determines initially only the nonaffine component of 
the estimated curve. In a continuous Kalman filter this 
would create a singularity problem, in that the initial 
Kalman gain is unbounded. In the discrete filter, de- 
scribed later, the problem does not arise because the 
Kalman gain is bounded even though (36) is rank defi- 
cient. Provided a feature (Xf, Yf) is observable at time 

F/g. Z The persistent template is essential to the stability of the contour 
tracker, especially with more complex shapes. The figure shows a 
contour without a persistent template. Over the portion of the contour 
that has lost lock, it has become too tangled to be able to recover 
lock subsequently. 
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Fig.  8. A hand, accelerating from left to right, sweeps across a cluttered background (total elapsed time: 1.1 s). The template imposes shape 
specificity without total rigidity. Note that in the fourth frame the lower left corner of  the contour is momentarily distracted by the chair 
but the disturbance is successfully filtered out over time. 

persistence however, the tracker remains stable with or 
without features and retains its ability to track across 
a cluttered background as figure 8 shows. 

The persistent template has the effect of building 
additional smoothness into the estimate X, beyond the 

implicit smoothness of the B-spline. Probabilistically, 
it can be regarded as a prior constraint, for the sto- 
chastic component of the dynamical model, specified 
by its mean (X, Y) and by the covariance implicit in 
the Kalman gain K defined below. 
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Z t Mechanism 

The mechanism for persistence of the template is as 
follows. In addition to the feature (Xf, Yf), a virtual 
input of 0 is applied to the filter, but coupled only out- 
side the subspace __?2. In the 2-D planar case, for in- 
stance, this tends to extinguish those components of 
shape that are not related by affine transformation to 
the template. Now the Kalman filter becomes 

d 

The extra, final term is the virtual input and its associ- 
ated Kalman gain is K = P H T/~ -1 where the covari- 
ance (spectral density) R associated with the persistent 
template is given by 

k _  t = 1 (Ex) r .7{E x (38) 
r 

and r is a covariance (spectral density). Typically we 
choose t 7 < r so that the real input to the tracker 
dominates the virtual one. 

7.2 Results 

The effectiveness of the affine tracker with persistent 
template is demonstrated by the tracking of a moving 
hand. The four affine degrees of freedom are indepen- 
dently exercised in figure 9 and successfully tracked. 
The transformation of the hand outline is not precisely 
affine because the hand is not perfectly planar, has ex- 
tremal boundaries and may flex a little during motion. 
However the stochastic allowance for shape uncertainty 
in the filter ensures that such deviations can be accom- 
modated. When a nonaffine distortion of significant 
magnitude occurs, however, the tracker correctly ig- 
nores it, preferring to maintain its memorized shape 
(figure 10). 

8 Subspaces as Shape Models 

As claimed earlier, the subspace L) can itself be re- 
garded as a rather general form of prior model for 
shape. Varying the structure of the subspaces ~)x, L)r 
allows different modelling assumptions to be applied 
to the tracker. 

Camera Rotation. A simple case of a restricted 
subspace occurs if motion is restricted to pan and tilt 
of the camera. In that case, image motion is approx- 
imately a rigid 2-D translation and the appropriate 
subspaces are given by the bases 

8 x  = = { 1 }  

so that __V has dimension 1 + 1 = 2 as appropri- 
ate for the two degrees of freedom of image-plane 
translation. 

Space Curve. A larger subspaee than the six-dimen- 
sional one used in the planar, affine case is needed for 
space-curve motion. Affine transformations of a 3-D 
space-curve under rigid transformations can be modeled 
by a subspace ___~, defined as follows. Given views (Xi, 
Yi), i = 1, 2 . . . .  , Bx and By can be constructed from 
three views, corresponding to the observation of Ullman 
and Basil (1991) that, under affine projection, any view 
of an object is a linear combination of three prototype 
views, so that 

Bx = {1, X1, X2, X3} By = {1, Y1, Ye, Y3} 

An alternative version, requiring only 11/2 views, con- 
structs the bases as 

Bx = Br = {1, ~11, Vl, X2}. 

The use of 1½ views here is effectively a form of af- 
fine stereo (Koenderink & Van Doom, 1991). It can 
be regarded as a single view (X1, Y_I) together with 
horizontal stereoscopic disparities X2 - X1 which 
together imply the underlying 3-D structure. Thus the 
bases Bx, Br each, independently, span the space of 
affme .~3 ~ 57d transformations or, jointly, the affine 
transformations Yd 3 ~ ffd z, as required. 

Multiple Space Curves. A further, more ambitious, 
development of the mechanism would be to include 
views of more than one shape into the tracker, and then 
its shape memory would span both shapes, linearly, and 
with affine invariance. In that case the tracker could 
track either of two objects without the initial knowledge 
of which one might appear. Alternatively the views 
might be from different states of a deformable object 
in which case, to the extent that the deformation could 
be approximated by a 3-D affine transformation, the 
tracker would follow the deforming object. 

It is assumed throughout that ~ is orthonormal 
which was true in 2-D if the template was normalized. 
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Fig. 9. Handtracking. Exercising. 4 affine degrees of freedom, in raster order: home--slant horizontal--home--slant vertical--home--rotate-- 
home--distance scaling. 
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Fig. 10. Hand tracking. A nonaffine distortion, extending the thumb, is correctly ignored by the tracker. 

In 3-D, when several training views are used, _V needs 
to be orthormalized, for instance by the Gram-Schmidt 
procedure. Trackers for each of the subspace models 
are generated using exactly the same structures as for 
the planar affine case, simply by redefining E x, Er, 
in (34) in terms of the new subspace V.  The 2-D result 
about the prior p.d.f, for (X, Y) being invariant to af- 
fine transformations of the training view also extends 
to the 3-D rigid-body case, now with respect to 3-D 
affine transformations. 

9 Discrete Filter 

The continuous Kahnan filter model used so far is good 
for analysis, deriving the scale behavior over time and 
the steady-state performance. However, in practice, 
measurements are discrete, synchronized with video 
frames. It is crucial to the maintenance of real-time per- 
formance, that no video frame should be missed. This 
means that it may not be possible to sample all curve 
points within a single frame period At. Instead it is bet- 
ter to process as many points, chosen randomly with 
a uniform spatial distribution over the curve, as the 
frame period allows. Then, as soon as a new video 
frame is available, P(t) and K(t) are updated to allow 
for the elapsed time At, and the filter continues with 
the new frame using randomly sampled measurements 
to update the estimated curve. 

9.1 Measurements 

In this practical framework, it is convenient to regard 
a unit measurement not as a set of time-varying B-spline 

coefficients (Xf, Yf) but as a single (X, Y) point 
observation at the curve parameter s, taken at a discrete 
time t. This observation has an associated discrete 
Kalman gain matrix K(s, t) defined by 

1 K(s, t) = P(t)Hr(s)  -ff-f (39) 

where H(s) is the point-wise measurement matrix de- 
fined in (2) and 

1 ~ 1  0 ~  (40) 

is the inverse covariance for the measured point, as- 
sumed isotropic. Then K(s, t) is used twice, once in 
the X process and once in the Y process. 

For the purpose of setting parameters to obtain 
desired tracking performance, the standard deviation 
a of individual measurements must be related to the 
measurement variance spectral density r in the con- 
tinuous filter. Assuming that L measurements are made 
in each span--that is N L measurements in total per 
video frame--and that they are evenly distributed over 
the curve parameter s, then it can be shown that 

02 _ Lr (41) 
At 

Once r is fixed to achieve desired filter properties, as 
earlier in section 5, a for the discrete filter is therefore 
also fixed. 

It is highly desirable to take into account the aperture 
problem (Harris & Stermett 1990). In practice, if the 
point-measurement model is used, the estimated curve 
does not rotate freely, because the parameterization of 
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the estimated curve is projected along normals onto the 
feature curve, and this discourages motion orthogonaI 
to the normals. The problem is cured when displace- 
ment only along the normal n(s) is used. In that case 
the Kalman gain K(s, t) is applied once to a coupled 
X and Y process, the coupling arising because the 
measurement model is no longer isotropic. In place of 
the isotropic matrix in (40) the inverse covariance for 
the normal measurement is 

1 n(s)n(s) r 
i f 2  

and this can be used to define the Kalman gain for the 
measurement. However, for the remainder of this sec- 
tion on the discrete filter we will, for simplicity of nota- 
tion, treat the point-measurement model. The above 
modifications required to take account of the aperture 
problem and then quite straightforward to apply. 

9.2 Filter 

The discrete-time measurement model assumes that 
observations are made at times tk = to + kAt, where 
At is the interval between video frames. Our notation 
will use suffix k to refer to a discrete-time quantity at 
time tk. The continuous filter described earlier can be 
transformed into a discrete one, following the treatment 
given by Gelb (1974). 

First, over the interval tk-1 < t < tk during which 
no observations are made, the filter (16) becomes simply 

d = -) d--~ Q~ (X 0 (42) 
J 

which can be integrated directly. Approximating to 
O(At), this gives the discrete prediction Xk immedi- 
ately prior to the time t = tk: 

~ 2 k ~ ,  = I I ( A t ) I I  ~Xk-1 ~ (43) 
~k 0 I Xk _ 1 

The Riccati equation (19) is also simplified, in the 
absence of measurements, to 

dP 
- F P  - P F  T + Q 

dt 

which, being linear, can also be integrated directly to 
give 

/3k= II0 ( i t ) I  1 /3k_ 1 I(AIt)i ~1 + A t Q  (44) 

and again this has been approximated to O(At). 

Secondly, discrete measurements for time tk are ap- 
plied sequentially. A given observation of a point feature 
(Xf(s), Yf(s)) is applied via the Katman gain 

Kk(s) = K(s, tk) 

(45) 

where tilk is the covariance of the state as it was imme- 
diately before application of the current measure- 
ment-that is, taking into account all measurements for 
t = t k up to, but not including, the current measure- 
ment. The current measurement is applied to the state 
by 

(46) 

The state covariance is updated by a discrete Riccati 
equation, 

/3 k -~ [I - Kk(s) (H(s) 0)]/3 k (47) 

where H(s) is the point-wise measurement matrix 
defined earlier in (2). 

9.3 Persistent Template 

In an exact discretization the persistent template (37) 
should be treated as a continuous measurement, inte- 
grated over the time interval tk-1 --< t < tk, as part of 
the prediction phase. When At is small this can be ap- 
proximated by one discrete virtual observation per 
timestep. Allowing for invariance over the subspace ___~, 
as earlier, the virtual observation of the template is ap- 
plied via the discrete Kalman gain 

ilk = Pk HT[ H Pk n r  + (At/~)i]-1 (48) 

where R is the variance spectral density (38) from the 
continuous filter and 

n = (I O) 

as in the continuous filter. The template update is 

Xk - Kk Xk (49) 

with covariance updated by 

/3k - ,  [I - Kk H] /3 k (50) 
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9.4 Computational Complexity 

The implementation of this filter requires O(M z) 
floating-point operations for the prediction step. Each 
observation takes O(M 3) arithmetic operations, due to 
the 2Mx2M matrix multiplication in (47). Finally the 
virtual observation for the persistent template requires 
O(M 3) operations. The expense of each observation 
may be reduced by using the Information Filter or 
Inverse Kalman Filter (Maybeck 1979). This makes 
prediction the expensive step, giving O(M 3) for 
prediction and O(M 2) for each observation, which 
may be preferable in the typical case that there are many 
(more than M) observations per time-step. Further- 
more, the information filter allows an efficient parallel 
implementation because the observation updates can be 
applied in an arbitrary order. This contrasts with the 
Kalman filter described earlier in the section in which 
the covariance update for one measurement must be 
calculated before the next measurement can be applied. 

9.5 Spatial Search 

The prediction step (43) is used to find the expected 
feature position in each frame of the image sequence, 
and the corresponding covariance is used to constrain 
the search for the features within that image. Search 
along the predicted contour normal is bounded within 
the uncertainty ellipse, derived from the state covari- 
ance, which will contain the feature with a 98% likeli- 
hood (2 standard deviations). Anisotropy arising from 
the aperture problem and the measurement of normal 
displacements only is taken into account in the con- 
struction of the uncertainty ellipse. Full details are given 
by Curwen (1993). 

Features are not necessarily found at all sample 
points. They may for example be obscured along a por- 
tion of the contour, or of insufficient contrast to be 
registered. In such a case no observation is applied so 
that no new information is introduced into the state and 
covariance for that sample point. 

10 Conclusions 

The value of the statistical basis for contour tracking 
has been established by elucidating and demonstrating 
the mechanism for automatic control of spatiotemporal 
scale. Despite the substantial size of the state space 

needed to deal with the geometric complexity of the 
contour, some natural assumptions lead to a system that 
has few free parameters; and those are fixed, via 
control-theoretic analysis, to obtain desired dynamic 
behavior. The incorporation of the template mechanism 
with its affine invariance has proved to be crucial in 
procuring shape-selective tracking that is immune to 
background clutter. 

It remains for future work to experiment further with 
extensions of the subspace mechanism used here to 
represent affine degrees of freedom. This includes 
tracking of space curves, tracking with two or more 
models simultaneously, and integration of the learning 
of shapes and their associated spatiotemporal uncer- 
tainty into the tracking process. 
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Notes 

1. The Kalman filter is in fact acting, in this initialization step, as 
a Wiener filter (Gelb 1974). 

2. It is also possible to write an exact solution to the integral using 
exponentials. 
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