
Commun. Math. Phys. 95, 217-226 (1984) 
Communications in 
Mathematical 

Physics 
O Springer-Verlag 1984 

The Boltzmann Equation: 
Global Existence for a Rare Gas 
in an Infinite Vacuum* 

Reinhard Illner 1 and Marvin Shinbrot 2 

1 University of Kaiserslautern, D-6570 Kaiserslautem, Federal Republic of Germany 
2 Department of Mathematics, University of Victoria, B.C., V8W 2Y2, Canada 

Abstract. Solutions of the Boltzmann equation are proved to exist, globally in 
time, under conditions that include the case of a finite volume of gas in an 
infinite vacuum when the mean free path of the gas is large enough. It is also 
proved, as might be expected in this case, that the density of the gas at each 
point in space goes to zero as time goes to infinity. 

I. Introduction 

Here, we prove that the Boltzmann equation has a unique solution, global in time, 
in all space. The conditions are a) that the initial data go to zero fast enough at 
infinity, and b) that the mean free path is large enough. As a special case, it is 
illuminating to think of a finite volume of gas released into an infinite vacuum. In 
this paradigmatic case, our results give that the corresponding solution of the 
Bottzmarm equation exists globally if the gas is rare enough. 

The paradigm shows that infinity should be absorbing, and so it is. Under 
conditions a) and b), we prove in Sect. 5 that all molecules are eventually swept out 
of any finite domain. Thus equilibrium is always trivial. The fact that infinity is 
absorbing shows that our results are related to earlier work of Babovsky [1], who 
proved global existence in a bounded domain when the mean free path is large, 
assuming that the boundary of the domain is absorbing, that is, that molecules 
simply disappear when they reach the boundary. Our result is, perhaps, physically 
more interesting since particles do not literally vanish in a finite time. 

To arrive at our results, we use the method of Kaniel and Shinbrot [4], which 
requires a global upper bound for the solution. To find this, the basic idea is that, 
under conditions a) and b), the dominant process in the gas should be free flow, the 
molecular interactions playing a secondary role. This suggests looking for an 
estimate 

f( t ,  x, ~) <=f(x-- ¢t, ~), (1.i) 

where f is the solution of the Bottzmann equation and ~ which depends on t only 
through the combination x - i t ,  describes a free flow. Estimates like (1.1) were 
introduced by Tartar [5] for certain discrete velocity models of the Boltzmann 
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equation in one space dimension. Illner [3] later applied these estimates to the one- 
dimensional Broadwell model. Recently, Hamdache [2] applied inequalities like 
(1.1) to a class of discrete velocity models in three space dimensions. 

We carry out the argument for hard-sphere molecules. Although it is probably 
possible to extend the results to other kinds of molecules with a finite cut-off, we 
make no attempt to do so. 

The conditions a) and b) seem to be essential for our approach. This is natural, 
since we require the flow to be dominated by free streaming. On the other hand, an 
interesting question is whether at least the condition on the mean free path can be 
omitted. Since the Boltzmann equation is derived under the hypothesis that the gas 
be rare, the condition may really be essential, but we conjecture that it is not. 

2. Preliminaries 

In what follows, t is the time and (x, #) the position and velocity of a molecule. 
Given any function defined on [0, T ) x  R 3 x  ]1l 3, we always write f~(t ,x ,  ~) 
=f( t ,  x + #t, ~). This notation can be used to write the Boltzmann equation in the 
so-called "mild" form 

d 
f (t, x, 4) = C~(f, f )  (t, x, ~), (2.1) 

when there are no spatial boundaries. We took for a solution of (2.1) satisfying 

f(O, x, ~) = ~b(x, ~), (2.2) 

where ~b is given. When the molecules are hard spheres, the operator C in (2.1) takes 
the form 

C(f, f )  (t, x, ¢) = d R 3S J~+ c9. (¢ - t/) [ f ( t ,  x, ~')f(t, x, if) - f ( t ,  x, ~)/(t ,  x, rt)]do)dt l 

= Q(f, f )  (t, x, ~) - P(f ,  f )  (t, x, ~), (2.3) 

say. Notice that P(f,  f ) = f R ( f ) ,  where 

R( f )  (t, x, ~) = d [. S co" ( ~ -  rl)f(t, x, tl)dcodtl 
gl 3 s~ 

= n d  ~ t~--tllf(t ,x,  tl)drl. 
R 3  

sJ  is a constant, proportional to the total area of the spheres; i/~¢ is a measure of 
the mean free path. Also 

s% = {co ~ R 3 "lcol = 1, co. ( ~ -  ~t) > 0 } ,  (2.4) 

and 

4' = ¢ -  [o~. (~ -  n)]og, ~'= n + [c9. (~ -  ~)]o9. (2.5) 

The transformation j : ( ~ ,  co, t / )~(¢ ' -co,  t/') is known as the collision transforma- 
tion. It is an involution, so that j 2  is the identity. Other well-known properties of 
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9¢ are conservation of momentum and energy. Since we need these properties, we 
record them here: 

C '+ t (=C+~,  1~'12 + 1~'12 = 1~12 + I~1=. (2.6) 

All our considerations take place in spaces S~, fl>0, consisting of the 
completion of the continuous functions of compact support with respect to the 
norm 

II/llp = ~ max ]ePlxl2f(x, ¢)1d¢. (2.7) 
~g.3 x 

I f f  and g lie in Sa, we write f > g, if f (x, 4) -> g(x,  4) a.e. Then, we denote by S~ the 
set of all f e  Sa satisfying f > 0 .  With this notation, we can say what is meant by 
condition a) of the introduction. It is that the initial data lie in S~- for some fl > 0. 

We need two other norms besides (2.7), referring to functions defined only in 
~3. They are 

Ilfllo = ~ tf(01d¢ and llflll= $ I¢llf(01d¢. (2.8) 
~3  Ra  

Clearly, the spaces defined by these norms are Ll-spaces with respect to the 
measures d~ and [~[d¢. We denote these spaces by L~ and L], respectively. 

We solve (2.1-2) using the method derived by Kaniel and Shinbrot in [4]. Since 
the context here is different, and also for the sake of completeness, we review the 
method now. Let 0 < TN oo. Suppose we have two functions Uo and 10 such that u~ 
and l~ map [0, T) into S~, and such that lo( t )<uo( t ) ,  O< t < T .  Then, we define 
recursively two sequences {lk} and {u,} as solutions of the equations 

d r  
l~ + 1 + l~ + a R"(u , )  = Q"(Ik, lk) , 

d 
-~ Uk + 1 + U~ + 1R" (Ik) = Q"(Uk, Uk), (2.9) 

l k + ~(0) = ~ = U k + ~(0), 

for k = 0, 1 . . . . .  Suppose that 

u~oR~(uo), Q~(uo, Uo) e L~o¢(O, T; S ; ) .  (2.10) 

Then, (2.9) has a unique solution when k=0.  Notice that (2.9a, b) are linear, 
ordinary differential equations. Accordingly, I k and u k exist when l k _ 1 and u k_ 1 do. 
Also, using the monotonicity properties of such equations as well as the 
monotonicity of R and Q in their arguments, it is easy to show that if lk- ~ (t) ~ tk(t ) 
< U k ( t ) < U k _ l ( t  ) for 0 ~ t < T ,  then l k ( t ) < l k + l ( t ) ~ U k + l ( t ) < U k ( t  ) in the same 
interval. Thus, it follows that all equations (2.9) have unique solutions 

~ 0 lk, Uk e C (0, T; S~)  with {lk(t)} increasing and {Uk(t)} decreasing if 

O ~ l o ( t ) < l l ( t ) < u l ( t ) < u o ( t )  for O < t < T .  (2.11) 

Expression (2.11) is called the beginning condit ion in [4]. 
Suppose the beginning condition is satisfied with some u~:[0, T ) ~ S ~  

satisfying (2.10). Then there are functions l and u such that lk(t)Tl(t) and Uk(t)$u(t) 
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for all t, 0 < t < T, since both sequences are surely bounded below by lo(t ) and 
above by Uo(t). Also, 

l ( t )<u(t) ,  O < t < T .  (2.12) 

Now, integrate (2.9), send k to infinity, and use the dominated convergence 
theorem. The result is 

t t 

l"(t) + I PR~(u) (z)dz = ~b + I Q~(I, l) (z)dz, 
0 0 

t t 

u~(t) + I u~R~(t) (z)dz = ~b + l Q*(u, u) (z)dz. 
o o 

Thus, l ~ and u" are in C1(0, T; S~). Differentiating, we obtain 

If we can show 

d 1~ + pR~(u) = Q~(1, l), 
dt 

d-u" +u"R°(l) = 97(u, u) 
dt 

1(0) = ~b = u(O) . 

(2.13) 

u = l ,  (2.14) 

then f =  u = I is a mild solution of the Boltzmann equation on [0, T). We call (2.13) 
the separated Boltzmann system. 

Now, take lo = 0  and any u~: [0, T)-~S~ satisfying (2.10). Equations (2.9) with 
k = 0 give easily 0 = lo(t) < ll(t) < u l (t). Thus, without further hypotheses, the 
beginning condition reduces to 

u~(t) < Uo(t). (2.15) 

We summarize: To solve the Boltzmann equation in an interval [t3, T), 
0 <  T < o e ,  we have only to find a u 0 satisfying (2.10) such that (2.15) holds on 
[0, T), and then to verify (2.14). Precisely, we have 

Lemma 1. Let 0 ~ S ~ and l o = O. Suppose there is a function U ~o • [-0, T) ~ S ~ such that 
(2.10) holds. If, in addition, the beginning condition (2.15) is satisfied on [0, T), then 
the separated Boltzmann system (2.13) has a solution (1 ,u)eCl (O,T;S~)  
x C1(0, T; S ; ) .  

3. The Beginning Condition 

In this section, we show that the beginning condition (2.15) can be satisfied globally 
(T= ~ )  when condition b), that the mean free path is large, is satisfied. First, we 
have to say what we mean by a large mean free path. Let q~ e S~-. Then, the function 

lp(~) = sup e p Ixl2~b(x ' 4) (3.1) 
x 
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is in Lb. In the following we assume that  

8 ~ ¢  I!~ 11 o < ~ .  (3.2) 

Since (3.2) gives an upper  bound  on ~ ' ,  it may  be interpreted as saying that  the 
mean  free pa th  is large. 

Now,  when lo = 0, (2.9b, c) give 

t 

u~(t) = ~ + ~ Q~(uo, Uo)d~, 
o 

or, what  is the same thing, 
t 

ul(t, x + 4t, ~) = ~(x, 0 + d I f ~ co. ( 4 -  ~)Uo(Z, x + 4~, 49 
o R~ s+~ (3.3) 

" Uo(Z, x + 4"c, rDdrtdcodz. 

We now suppose, striving for an estimate (1.1), that  Uo has the form Uo(t, x, 4) 
= v ( x -  ~t, 4). In this case, it follows from (3.3) that  the beginning condi t ion (2.16) is 
satisfied if 

t 

~b(x, 4) + 5~¢ I ~ I co" (4 -- tl)v(x + z(4 -- 4'), 4')v(x + z(4--  ~/'), rf)dcodtldz < v(x,  4) .  
o r~3 s~+ 

(3.4) 

We note  that  

Ix + z(4 - 4')12 + tx + z ( 4 -  nO12 

= 21xl 2 + 2zx. ( 2 4  - 4 ' -  r/9 + ~2(21xl 2 - 24(4' + ~9 + 14'12 + I~'l 2) 

= lxl 2 + Ix + z ( 4 - q ) l  2 , (3.5) 

by (2.6). Thus,  if we set 

Uo(t, x,  4) = v(x  -- 4t, 4) = e -  ~1~- ~12w(4), (3.6) 

(3.4) is satisfied if 

t 

~P( 4) + d I S !2 co. ( 4 - rl)e- ~lx + ~(e-")12w( 4")w(q')drldcodz < w(  4) ; 
0 ;R3 S+ 

(3.7) 

here ~p is defined in (3.1). 
We are looking for a non-negat ive solution of (3.7). When  w > 0, on the other  

hand,  (3.7) is t rue for all t > 0 when it is true for t = oo. Also, 

e -'1~ + ~ -  ~)12dz: e -  PI~I~ sin~o ~ e - #(~1¢- ~1 + Ixl ~o~O)~dz ' 
o o 
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where 0 is the angle between x and ~-r / .  Thus, we have 

e-  alx+,(¢-,)12dz < ~ e-a(~l¢-,I + Ixl cos0)2dz 
o o 

<= ~ e-#~z(¢-n)2dz 

14-.I " 

Since ONto. (~-~)<1~-~1,  (3.7) holds if 

Thus, the beginning condition is satisfied by the function (3.6) when w satisfies 
the integral equation (3.8). We show that this is the case when (3.2) is satisfied. 

Define an integral operator W: LI (R3)~LI (R  3) by 

W(w) (4) = v?(~) + a ~ ~_ w(¢gw(rlgdcodr 1 , (3.9) 
~3 S~ 

where e = ~ '  ]/~-. W is well-defined because of the involution property of y and 
I t / "  

Fubini's theorem. 
Let w ~ 0  and integrate (3.9). The result is 

HW(w)lto = II~'llo+e ~ ~ Y w(¢3w(rf)dcodrld~ 
Ra ~3 S~ 

= II~pllo+~ ~ ~ ~ w(~)w(rl)dcodqd~ 
R3 Iga 

= II ¢ II o + 2~ell w II o 2. (3.10) 

Also, if wl, wz, >0,  a similar calculation shows that 

ftW(wl)-W(w2)llo <=2~(flw~lo+ [lwzllo) tfw~-wzl[o. (3 . t l )  

Equation (3.10) shows that W maps the set of non-negative functions in the ball of 
radius R 0 into itself if 

II~pll o + 2r~eRo z ~ Ro, (3.12) 

while (3.11) shows that W is a contraction on this set if 

4r~R o < 1. (3.13) 

Inequalities (3.12) and (3.13) can both be satisfied by choosing Ro so as to satisfy 

1-1 / /1  - 8~tl~pllo < 4rceRo < 1, 

and this is possible when 8r~ell~ I I o < I. By the definition of e, this is the case when 
(3.2) holds. Thus, (3.8) has a non-negative solution and the beginning condition can 
be satisfied globally when we have (3.2). 
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Since W is a contraction, the solution of (3.8) is of course given by 
w =  lim Wk0p). If [[ Wk(~v)l[o<21[~[[o (which is true when k=0) ,  it follows from 

k---~ oo 

(3.10) that IIW~÷X(~o)[Io~ 11~[Io+Src~ll~vll~<211~[Io, by (3.2). Thus, 

IIw~(~)IIo=< IlWllo<2ll~llo for all k. (3.14) 

Suppose next that ~ ~ L~caLli. If w ~ L~, we have, from (3.9), 

IlW(w)]tl = ]l~pllt +e ~ ~ ~ l~lw(~3w(rf)dogdrld¢ 
R3 ~3 S~ 

--ItwII1 + ~ S $ ~_ (1¢1 + Irll)w(¢')w(~lgdog&ld¢ 
R3 ~3 • s~ 

However, I¢'l+lqq<V~[/l¢'[ 2+!.'12 = V ~ I r / I z < v ~ ( [ ¢ I + I r / I ) .  Using this 
inequality in (3.15), we find 

II W(w)II1 _-< II ~ llx + 2rc~l/2 II w I1 o II w llx. (3.16) 

Thus, W maps 1 I LonL1 into itself. Applying (3.16) to Wk0p), we get 

t1 wk + ~0P) 111 =< [[lP 1tt + 2rC~/2[I Wk(~)l[ 011 wk0p)111 

_= II~pll 1 + 4zc~l/21l~pll o II wk0p) [I 1 

1 k 
{{~l{ J. + ~ 11W (~))H 1,  

where (3.14) and (3.2) have been used. An induction now gives llWk(~)ll~ 
/ : - _  

_-< I1~0 II i ~ _ 2  1 • Thus, if ~p s L~nL~, the solution of (3.8) lies in the same space. We 
V -  " 

need the fact just proved to show that Lemma 1 may be applied, for we have to 
show that Q(uo, Uo) and R(uo) satisfy the conditions of the lemma. We proved in the 
course of deriving (3.8) that Q"(uo, uo) ~ L~(0, o~; S~-), and in a similar way one sees 
that U~oW(Uo) ~ L~(O, co ; S~). 

Thus, we have 

Lemma 2. Let ~ ~ S~ and define ~p by (3.1). I f  (3.2) holds and if ~p ~ L~c~L~, then the 
separated Boltzmann system (2.13) has a 9lobal solution (l,u) with (l",u~): I-0, o~) 
- , s ;  x s; .  

4. The Boltzmann Equation 

To solve the Boltzmann equation itself, it remains to show that l = u, (l, u) being the 
solution of the separated Boltzmann system (2.13). We do this by estimating u -  I in 
a suitable norm, namely, that defined by 

I f I~ = ~ sup eatxl2tf~(t, x, ~)ld~. 
~.3 t,x 
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We denote by C a the set of all f such that f~ e C°(0, ov ; So) and nnfn o < 0% and by 
C~ the non-negative functions in C a. Because 0 < l(t) ~ u(t)  < Uo(t), and because of 
(3.6), 1 and u lie in C a. 

Subtract (2.13a)from (2.13b) and integrate the result• Because of(2.13c), we find 
t 

(u ~ -- l ~) ( t) = ~ [Q~(u, u - l) + Q~(u - 1, l) + u~ R~(u - l) + (u ~ - I~)R~(/)] (z)dz. 
0 

Thus, 

nu - hm~ < sup e pI~I~ ~ [Q~(u, u - l) + Q ~(u - 1, l) + u ~R~(u - I) 
0 

+ ( ¢ -  r)R°(0] (~, x ,  ~)a~d~ . (4.1) 

We begin by estimating the first term on the right of (4.1)• It is 

d . 3  ~ sup. e~t*l~ ~o .3 ~ ~ co- (~ - tl)u(z , x + z~, ~') (u -- l) (z, x + z~, r f )&odtldzd ~ 

¢/3 

= d  ~ supe plxl2 ~ ~ .( og . (¢-q)[e° l~12u(z , z+ 'c~ ' ,~ ' ) ]  
jR3 x 0 IR 3 S+ 2 

• [e01rl2(u- l) (z, y + zt/', ~')]e-~<N2 ÷ frl2)d~d~Idzd~, 

where we have written z = x + z ( ~ - ~ ' ) ,  y = x + z ( ¢ - r f ) .  But, according to (3.5), 
Izl = + tyl 2 -- Ixl 2 + Ix + z ( ~ -  ~)1 ~. Thus, the first term on the right of (4.1) is surely 
bounded by 

• sup [-e01rl2(u" -- 1 ~) (z, y, ~f)]e-°lx+~te-n)12dcodtldzd~ 
Y 

oo 

= . ~  I sup ~ f !2 ~o. (~-  ~) sup [e01:I2.0(~, ~, ¢)] 
IRa x 0 R 3 S +  z 

• sup [e°lyl2(u ~ - 1 ~) (z, y, rlO]e-°l*+~(e-')12dcodtldzd¢ 
Y 

< z¢ ~ ~ !2 sup [e#l=12u~(a, z, ~)] sup [eOlrl2(u~ -- l ~) (O, Y, t/)]o9 
Ill. 3 ~.  S+  a , z  O,Y 

• (~ - ~/) sup ~ e - 0Ix + ~¢- ,)12dzdo)dqd~. (4.2) 
x 0 

Estimating the time integral as in Sect. 3, we find that (4.2) is bounded by 
2 n ~ m m u n m  onmu - lAp. 

It is a straightforward matter to verify that the other three terms on the right of 
(4.1) have the same bound. Hence, 

m u -  In o <= 8~c~¢ V~ ium°iu - Ira°" 

However, uullo<=lluomo= [[W[[o__<2[[~pUo by (3.14), and so 

u u -  Inn o < 16r~s¢ 1/-~ llto It o nmu- Inuo. (4.3) 
g p  
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If we now strengthen (3.2) to read / - - -  

q: = 16ndV~ [l~Pllo < 1, (4.4) 

(4.3) gives Ilu-- Ina < q n u -  Inp with q < 1, which is impossible unless u = 1. 
We summarize our results in 

Theorem 1. Let qb ~ S~ , and define tp by (3.1). I f  (4.4) holds, and if lp e L~ c~L~, then 
the initial-value problem (2.1-2) for the Boltzmann equation has a 91obal solution 
f ~ C~. This solution is unique. 

Proof Everything but uniqueness follows from the earlier discussion in Sects. 3, 4. 
On the other hand, uniqueness follows exactly the proof that u = l given above. 

5. Some Remarks 

Remark 5.1. In the introduction, we interpreted (4.4) as a condition that the mean 
free path be large. It is dear, however, that the dimensionless condition (4.4) may 
also be interpreted as a condition that the initial data be small. 

Remark 5.2. The way we have derived the bound Uo also shows that the monotone 
sequence {fk} defined by fo =0,  and 

d tk), 

is also bounded by Uo. Thus, the mild Boltzmann equation without the loss term, 

df ~ 
dt = Q (f' f ) '  f (O) =~b, 

also has global solution under the conditions of Theorem 1. 

Remark5.3. The fact that f f ( t , . ) ¢S~  for all t permits the prediction of the 
asymptotic behavior of the solution as t ~ .  In fact, f(t ,x,~)<Uo(t,x,~) 
= e /~lx- etl2w(~), where w s L~. Clearly, the form of Uo implies that 

lira f ( t ,  x, 4) = 0 a.e. in R 3 x R 3 . 
t-~O0 

If w E L~oc~L ~, we can even say more. Consider the spatial density 

e(t, x) : = ~ f ( t ,  x, ~)d¢. 
R3 

Clearly, 

~°(t'x)<= S -i~t ~3[" e-tJY W(k----t ) 2 x - y  

and if w is bounded it follows that 

]Q(x, t ) l=O(~)  as t ~ .  

Remark 5.4. One might think that the global existence proof given in Sects. 3 and 4 
immediately translates into a local existence proof if ~b ~ S~-, even if condition (4.4) 
is violated. Unfortunately, this is not the case. The reason is that the integral 
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t 

e ~lx+ste-~)r2ds can not be made small (uniformly in ~ and q) by just choosing t 

o 1 .]//~-,but 
sufficiently small. Of course, this integral is globally bounded by [~_ t/[ V fl 

this is not sufficient for local existence. On the other hand, local existence is true if 
one considers more special initial data. For  details, see [4]. 

Remark 5.5. The space S~ arose in a natural way in the verification of the beginning 
condition, given in Sect. 3. For  the proof that u = l, then, we had to introduce the 
norm given by (4.2). However, once this norm and the corresponding space are 
given, we can also use a contraction mapping argument to prove the global 
existence theorem. 

Let ~b E S~, let ~p be given by (3.1), and suppose that (4.4) holds. In C~, let Bq be 

theball{f:8rcd~/~[, f , ,<=q},where½<q<l.  

Theorem 2. Suppose that ~) ~ S~ and that (4.4) holds. Then, the initial value problem 
(2.1-2) has a unique global solution in Bq when q ~ (½, 1). 

Proof. Consider the operator M : Cp--*Cp defined by 

t 

(Mf)~(t, x, 4): = ~b(x, 4) + I C~(f, f )  (% x, ~)dz. 
0 / - -  

16Ird ]/~-II~p[Io, M maps Bq into itself and is a contraction. All the details For  q =  

for this fact are already contained in the formulas (4.1)ff., and we leave the 
elaboration to the reader. 

Remark 5.6. Note that the conditions in Theorem 2 are slightly less restrictive than 
those in Theorem 1. On the other hand, the solution given by Theorem 1 is 
automatically nonnegative, whereas we do not know this for the solution given by 
Theorem 2. We conjecture that standard methods can be applied to prove the 
nonnegativity also in the more general case, but make no attempt to verify this. 
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