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Abstract. We prove L2-decay rates of suitable weak solutions to the Navier- 
Stokes equations in exterior domains. The results for the order of decay are the 
same as for the solutions to the Cauchy problem of the Navier-Stokes equations. 
Finally in the case of 12 = R 3 the decay rate order is sharp in the class of solutions 
considered by us. 

1. Introduction 

Recently, the problem of the asymptotic behaviour of the kinetic energy of an 
incompressible viscous fluid, governed by the Navier-Stokes equations, when the 
region of motion is unbounded in all directions, has been studied by several authors, 
cf. [3,4,7,13,14,16,19,20,23,24]. Formally, this question is reduced to the 
asymptotic behaviour of the L2-norm of solutions to the Navier-Stokes equations. 
The results of [3,4,7,13, 14,16,19,20,23,24] can be essentially devided in two 
groups. In [3, 4, 13, 14, 16] the asymptotic behaviour of the L2-norm of solutions 
is obtained when the region 13 of motion of the fluid is an exterior domain, while 
the other works concern the asymptotic behaviour of the LZ-norm of solutions to 
a Cauchy problem for the Navier-Stokes equations. As regards the case of an 
exterior domain, in [ 13] the asymptotic behaviour of the LZ-norm of weak solutions 
to the Navier-Stokes equations is proved when the weak solutions verify the 
energy inequality in the "strong" form: 

t 

lv(t)12+2S[Vv(z)12dz<=[v(s)[ 2 Vt>-.s and a.e. for s>=0, (I) 
s 

(l'l is the L2-norrn of solution v). However, relation (I) is not an a priori estimate 
for weak solutions to the Navier-Stokes equations on exterior domains. This fact 
makes formal the results obtained in [13] except that in the particular cases of a 
Cauchy problem and of initial-boundary value problem in exterior domains, where 
the initial data of the solutions are "small" in a suitable sense (global solution of 
the type furnished in [5, 9]). Subsequently, in [4] the relation (I) is determined for 
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a suitable class of weak solutions. However the initial data Vo of the weak solutions 
must verify some hypotheses of summability v0~X, where X is a suitable Banach 
space. The condition vo~X implies in particular that vo~LS/4(~). In [-4], if we 
assume voeXnLq(~), for some qe(1, 5/4), then there exists a weak solution v to 
the Navier-Stokes equations, which verifies relation (I) and 

]v(t)l = O(t-o), where fl = (2 - q)/4q. (II) 

If we compare the above results, concerning exterior domains, with the one concern- 
ing the three-dimensional Cauchy problem of the Navier-Stokes equations, 
obtained in [-7, 14, 20], we can notice two differences: the former concerns the 
choice of the initial data, the latter the asymptotic behaviour of the L2-norm of 
solutions. In fact, for the Cauchy problem in [-7, 20, 241, it is possible to choose 
voeLZ(R3) nLr(~)  for some t e l l ,  2), therefore there is not the bound r < 5/4. More- 
over, for VoeL2(R3)nlJ(R 3) it is possible to furnish a weak solution v to the 
Navier-Stokes equations such that 

Iv(t)l = O(t-P), where fl = 3(2- r ) /4 r .  (III) 

This order of decay is better than the order established in (II), when for Vo re( l ,  5/4]. 
Finally if voeL2(R3), then a weak solution corresponding to v0 is such that 

lira Iv(t) l = 0. (IV) 
t--~CO 

The aim of this work is to bridge the difference between the case of the three- 
dimensional exterior domain and the Cauchy problem. We prove that for an 
initial-boundary value problem in exterior domains for the Navier-Stokes equa- 
tions, we can obtain weak solutions v corresponding to an initial data 
VoGL2(.Q)~Lq(~Q), for some qe(1, 2), such that 

Iv(t)l = O(t-P), where fl = 3 ( 2 -  q)/4q. (V) 

If voeL2(~2), then there exists a weak solution such that 

lim Iv(t)[ = 0. 
t ' * c o  

Moreover, we prove that for the three-dimensional Cauchy problem the behaviour 
(III) and the limit (IV) are sharp, in the sense that if we choose voeLZ(R 3) n L~(R3), 
for some qe(1, 2], the exponent fl cannot be improved to fl + #, for any # > 0. 
This result is obtained by the help of a result due to G. H. Knightly in [t0].  We 
like here to note explicitly that in [-10], although for a particular class of solutions 
to the Navier-Stokes equations, the asymptotic behaviour of the L 2-norm of solu- 
tions of a three-dimensional Cauchy problem is obtained for the first time. The 
order of decay obtained for Iv(t)[ in [10] is the same as the one found in (III). 

We conclude this introduction with the following remark. The estimate (III) 
obtained in [-7, 20, 24] is uniform with respect to time (that is V t > 0), there is a 
constant C depending only on the L 2 and L p norms of the initial data. Instead, 
our estimate (V) holds uniformly only for t > T o (for a suitable T o > 0) and we 
determine a constant C depending on the L 2 and L p norms of the initial data and 
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also on several norms of derivatives of the solution computed for t > To. In fact 
our solutions becomes regular for t > To. 

Some results of this work were communicated by the author in [13], others 
are here improved. 

The plan of the work is as follows. In Sect. 2, after introducing some mathe- 
matical preliminaries and notations, we give the statement of the theorems. In 
Sect. 4 we give the proof of the theorems, after proving some preliminary lemmas 
in Sect. 3. 

2. Preliminaries and Statement of the Theorems 

In this work, f2 is a domain of the three-dimensional Euclidean space R 3, exterior 
to v (v => 0) compact subregions, whose boundaries are supposed C3-smooth. For 
p6[1, c~], with LP(f2) we denote the Lebesgue space of functions on f2. The norm 
of a function of LP(f2) is indicated by t'Ip, in the case p = 2 we put t'12 = t'1" WIn;P(f2) 
denotes the usual Sobolev space of (m, p)-order of functions on f2 and I'Im;p is its 
associated norm. ~o(f2) denotes the set of functions q~ on f2 with vector values in 
R 3, with components @IEC~(f2) (i = 1, 2, 3) and such that V-@ = 0. The following 
completion spaces are considered: JP(,Q) =-- completion of cg0(O) in LP(,Q); Jl'P(g'2) =_ 
completion of Cgo(O ) in Wl'V(£1). Finally, by LP((0, s); X) we denote the set of 

s 

functions • from (0, s) into X, where X is a Banach space, such that S [ ~(z)12 dr < oo 
o 

(['[x is X-norm); analogously, by C((0, s);X) we indicate the set of functions q~ 
from (0, s) into X which are continuous from I into X, with norm 1~1~ -=- max[ ~]x. 

[O,s] 

By the symbol (@, ~v) we mean 

(a,, =_ a,(x), v'(x) ax, 

for any ~ ,  ~ such that the integral is finite. By ~ ,  = J~/,, • we mean a spatial 
"mollification" of a function ~ .  In this work the symbol C denotes a generic 
constant whose numerical value is inessential to our aims, and it may have several 
different values in a single computation. 

By a weak solution of the initial boundary value problem of the Navier-Stokes 
equations, 

vt(x, t) + v(x, t)-Vv(x, t) = - Vn(x, t) + Av(x, t) in S2x(0, T), 

V.v(x, t) = 0 in ~x(0, T), 

v(x,0)=Vo, v(x,t)10a=0 and v(x , t )~0 for I x ] ~ ,  (2.1) 

we mean a function v(x, t) defined as follows. 

Definition I. A field v:~2x(0, T ) ~ R  3 (VT > 0) is such that 

i) vEL2((0, T); J12(~2))c~L~((0, T); J2(f2)) V T > 0, 

t 

Iv(t) l 2 + 2S [Vv(z) l z dz ~< Iv 0 [2 Vt > 0; 
0 
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ii) ~ { (v(v), ~ ( v ) ) -  (Vv(z), V ~ ( z ) ) -  (v(z)'Vv(v), ~(v))}dv 
0 

= (v(t), ~(t)) - (Vo, ~(0)) ¥t  > 0 

and V~zC([0 ,  T); jl.2(12)) with ~tzL2((0, T); J2(12)); 

(iii) lim Iv(t) - vol = 0. 
t--~0 + 

Remark t. As is well known, Hopf, [6], has furnished an existence theorem of weak 
solutions to system (2.1) for a general I.B.V.P. by the well known Faedo-Galerkin 
method. However, in this work, to prove the asymptotic behaviour of the L2-norm 
of solutions, we construct weak solutions by a suitable approximation. This process 
of approximation was introduced by Leray in [11], and retaken in [1,4,22]. If 
we settle the initial and boundary conditions a priori in (2.1), our weak solution 
v cannot be assumed to coincide with another weak solution w to system (2.1), 
since a uniqueness theorem for these solutions is not known. 

Theorem 1. Let be v0eJ2(12). Then there exists a weak solution v to system (2.1) such 
that 

a) vEC([T o, T);jl"2(I2))nL°°((To, + c~);J1"2(12)) V T ~  T 0, 
v~L2((To, T); W2'2(~)njl"2(12)), and vt~L2((To, T);j2(.Q)) V T >  T o, where 
T o __<(Clvol4exp(Clvol2 + 1)), moreover v verifies system (2.•) a.e. for t > To; 

b) vELr((0, T); Y(g2)) V T __> 0, Vs >__ 2 with 1/r + 3/2s > 1; 
c) I f  V o S J 2 ( ~ ) n J P ( ~ ) f o r  some pc(l,2),  then veL~((0, T); JP(12)) ¥r_>_0 /f 

pc(l ,  3/2], otherwise wL'((0,  T); JP(12)) ¥ r > 0 for 1/r + 3/21) > 1. 

Theorem 2. Let be VoeJ2(f2)nJP(g2) for some ps(1, 2). Then there exists a weak 
solution to system (2.1) corresponding to v o, such that 

tv(t) l - -  O(t- s~2 - p)/4p). (2 .2)  

Theorem 3. Let be v0~J2(12). Then there exists a weak solution v to system (2.1) 
corresponding to v0, such that 

l im  Iv(t) l = O. (2.3)  
t--* oO 

Theorem 4. Let be 12 - R s. Then Vp~(1, 2] there exists an initial data VoEJ2(R3)n 
JP(R s) such that a unique solution v to system (2.1) corresponds to Vo with 

lv(t)l >= Kt -ts(2-p)/4p+"~ V/~ > 0  and t sufficiently laroe. 

Therefore the order of decay determined in (2.2) and the limit property (2.3) are sharp. 

Remark 2. Point a) of Theorem i ensures that a weak solution becomes sufficiently 
smooth for t > T o. We deduce the result of point a) by "a priori estimates." The 
result of point a) is analogous to the result stated in the "Th6orSm de structure" 
[5, 11]. Actually, the "Th6orSme de structure" holds if we prove relation (I) for 
weak solutions and we can prove relation (I) only for particular initial data Vo 
when £2 is an exterior domain ([4, 22]), while we now assume only Vo~J2(.Q). 

Point b) of Theorem 1 is a new estimate for weak solutions; however, this 
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estimate is not sufficient to inform us on the regularity of a weak solution. Point 
c) is the sufficient condition to deduce the results of Theorem 2 and Theorem 3. 

Remark 3. Theorem 2 and Theorem 3 furnish the asymptotic behaviour of the 
L2-norm of a weak solution v. Relation (22) is the same as the one we can deduce 
for weak solution to the Cauchy problem of (2.1) (cf. [7, 20, 24]). 

Theorem 4 makes sharp the order of decay obtained in (2.2) and the limit 
property (2.3) in the following sense. In the class of solution considered by us or 
in [7,20,24], we cannot to improve the exponent 3(2 -p ) /4p  to exponent 
# + 3(2 - p)/4p V# > 0. The result of Theorem 4 is connected only to the chosen 
of the initial data. That  is, it is not connected either to the fact that we consider 
weak solutions, or to the fact that we consider solutions to the Navier-Stokes 
equations. In fact Theorem 4 also holds for solutions to the heat equation. For  
this equation and (2.3) see also [20]. 

Theorem 4 is also an answer to the following question. Vvo~LP(g2)c~L2(O), for 
some p o l l ,  2], is it possible to prove for a corresponding solution v(x, t), that 
v(x, f) belongs to L q with q < p in a certain instant f > 0? This problem was posed 
also in [8] Remark 1.1. Theorem 4 gives a negative answer to the above question. 
In fact if we assume that in an instant f v(x, t-)EL~(R 3) for some q < p, we have by 
Theorem 2 Iv(t)l = 0 (t -3~2-~/*q) with 3(2 - q)/4q > 3(2 -p) /4p ,  which is absurd by 
virtue of Theorem 4. By these considerations we can deduce that the dissipation 
of the fluid works in the time but not in the space. 

3. Preliminary Results 

As is well known LP(O) =- JP(O) • GP([2) for p > 1, where 

Gp(O)= {Vp:Vp~Lv(.O) and p~LPoc(12)}. 

By Pp we denote the projection operator from LP(f2) into JP(O). For  p = 2 we set 
P2 = P. We have V~JV(I2 ) ,  ~ ( ~ ) =  0, where 7~ is the trace operator of ~ ' g  to 
~12 and 

((P, Vp) = 0 VVp~Gq(12), if q is such that 1/p + 1/q = 1. 

For the elementary properties of the space introduced above, we refer the reader 
to [18, 21]. 

Let ~ll'~ W 2, 2(12)nj~'2(12), then 

IO2tal < C(IPA~I + IV~l), (3.1) 

IV~la <= c(IeA~ll/E]Vq~l 1/2 + IV~l)- (3.2) 

For inequalities (3.1)-(3.2) cf. [5] Lemma 1. 
Let ~ C ~ ( R a ) ,  1 < q, r < oo, j and m two integers such that 0 < j  < m. Then 

IDJ~lp<ClDm~f~l~l~ -a for ae[j/m, 1], (3.3) 

where 
1/p = j/3 + a(1/r - 2/3) + (1 - a)l/q, 

provided that m - j -  3/r < 0, otherwise a = j/m, cf. [2] Theorem 9.3. 
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The following lemma proves that Cgo(O ) is dense in JP(O)c~J~(O). The result 
of the lemma is trivial when f2 is bounded. In the case in which O is an exterior 
domain the proof of the lemma is a consequence of standard arguments we use 
to prove that C~(~2) is dense in LP(O) c~ Lq(~2). Professor G. P. Galdi communicated 
to the author that he found an analogous result. 

Lemma 1. Cgo(O ) is dense in JP(.Q)c~J~(.Q) for any p, q > 1. 

Proof.  Let  @~JP(~2)~Jq(~r2). We consider the function @ defined a.e. in R 3 by 

~ ( x ) = { o ( X  ) if x~O 
if x ~ R  3 -  0 ,  

to define the functions @,(x)= ~ J 1 / n ( x - y ) ~ y ) d y .  Now, we consider r and s 
R 3 

such that 1/r + l ip = 1Is + 1/q = 1. We have for VrcsL'(R 3) and VqsL'(R3) ,  

@(x)-V~(x) dx = (q~, V~) = lim (q~;,, V~z) = 11, 
R3 n 

~ @(x).Vq(x)dx = (q~, Vq) = lim, (q~, Vq) = 12, 

where {@'},~u_c~o(O) and @;~q~  in JP(O), "~'"~ ~ " ~ . ~ . ~ N  - ~ 0 ( O )  and q~. ~ @ in 
Jq(g2). Integrating by parts we have I x = I z = 0. Therefore @(x) is divergence free 
in the distributional sense, and since @eLP(K2)c~Lq(D), it follows that @(x)e 
JP(R3)c~Jq(R3). Consequently q~n(x) also is divergence free VneN.  In fact, since 
@(x)sJ~(R 3) ~ J ~ ( e  a) there exists a sequence {@k}k~N C__ Cgo(e3 ) such that @~ ~ 
in JV(R a) or in J~(R3), therefore 

V" @,(x) = limR~ ~ V J ~/.(X -- y)" @k(y)dy = O. 

Now, we consider a sequence {Kn}~u of compacts expanding in O, with Kh c_ Kh + 
and U K~ = £2. to define 

h~N 

(i~n,h(X)={~n(X) if x ~ K  h 
i f  x ' ~ R  3 --  K h" 

(l~n,h~Jl'(R 3) c5 J~(R3), since V" @.,h = 0 V x e R  3 and (lr~n,h~LP(R 3) c3 L'/(R3). Therefore 
there exists ~@.,h,i}~U ~ C~o(R3) such that @.,h,i ~ @.,h in J P ( R  3) o r  in Jq(R3) .  We 
set, V./eN such that 1/j < dist (Kh, Of 2), 

q~n,h.j(X) = ~ J~/j(x -- y)@n.h(y)dy. 
R 3 

Then @.,h,jSCgo(O), since @,,h,jeC;°(O) and 

V" @.,hj(x) = R3f VJ1/J(X - Y)" @.,h(y)dy = lira, ~R3 VJt/J(X -- y)" @"'h'i(y)dy = O. 

Now, it is very simple to verify that @.,h,3 ~ @ in LP(~2)c~ Lq(g2). Therefore, the temma 
is completely proved. 

We consider the linear Navier-Stokes system: 
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Aw(x,  t) + Vp(x, t) = wt(x, t) in f2x(0, T), 

V'w(x, t) = 0 in ~x(0, T), 

w(x,O)=wo~Cgo(O), w(x,t)l~a=O and w(x , t )~0  for ]x j~co .  (3.4) 

The following theorem holds for system (3.4). 

Theorem 3.1. Let wo~Cgo(.Q). Then there exists a unique solution w(x, t) Vt > 0 to 
the system (3.4) with 

w(x, t)~Lq((O, T); W2'q(s'2)c~ jl,q(O)), and wt(x, t)~Lq((O, T); J"(O)) Vq > I, 
(3.5) 

moreover for q > p > t we have 

lw(t)tq < Clwoipexp(Ct)t  -3(l/p-1/q)/2 Vt > 0. (3.6) 

Proof. For any fixed q, existence and uniqueness of solution w is proved in [-21] 
Theorem 4.1. Property (3.5) is proved in [-4] Lemma 1.2. Property (3.6) is proved 
in [,21] Lemma 5.1. 

Lemma 2. Let be ~(t)~Cl( to ,  + oo) (t o >_ O) with ~(t)  > O. Let us assume that 

~ ' ( t ) < 9 ( ~ )  V t > t o ,  

moreover (](4)) < o~(I)2 for ~ < t ,  when ~, fl > 0 are given real numbers. Let us assume 
to 

that S (b(t)dt < M. Then for t >  (M/fl)exp(~M) we have 
to 

• (t) < (exp(~M)-  1)/~t Vt > to. 

Proof. cf [5] Lemma 6. 
The following system is important for our aims: 

vt(x, t) - Av(x, t) = - J1/,(v)'Vv(x, t) + Vp(x, t) in ~x(0, T), 

V.v(x, t) = 0 in Ox(0, T), 

v(x, 0 ) = u  o, v(x,t)toa=0 and v(x , t )~0  for [x l~oo.  (3.7) 

Lemma 3. Let Uo~C-go(.Q). Then there exists Vt >= 0 a unique solution v to system 
(3.7)for any f ixed n, with 

vtL2((0, T); W2"E(I2)c~jl"2(.Q)) and vt~LZ((0, T);JZ(f2) VT>0,  (3.8) 

moreover 
f 

]v(t)t z + 2S]Vv(z)[2dz = Iv(s)] z Vt > s > 0. (3.9) 
s 

Proof. The existence of local (in time) solution v, verifying (3.8)-(3.9), can be proved 
by the well known Galerkin method, in the way suggested in [-5] for exterior 
domains. As proved in [5], to obtain a global (in time) solution it is sufficient to 
prove that Iv(t)] + IVy(t)[ is uniformly bounded in time. The boundedness of Iv(t)[ 
is a consequence of (3.9). To obtain the boundedness of tVv(t)], we multiply (3.7)1 
by PAy in L2(12); integrating by parts, we obtain: 
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,4 
(l/2)~tlVv(t)12 + JPAv(t)I z = (J1/,(v)'Vv, PAY) t in (0, T). 

On the other hand IJ1/.(v(x,t))l <C(n)[v(t)12 Vx~R 3 and Vt>0 .  Therefore 
employing the Schwartz inequality and the Cauchy inequality we obtain 

d w v ( t )  l + IPAv(t) f 2 < C2(n) lUol 2 Wv(t) t z in (0, T), 

which implies IVy(t)[ 2 < [Vuol 2 + C2(n)[Uol 4 Vt > 0. 
The uniqueness of solutions is a consequence of energy equality written for 

the difference of two solutions and of the regularity of the solutions. 
Let Vo~J2(.Q)nJP(I2) for some p~(1, 2]. We denote by {~,},~N___Cgo(12) a 

sequence such that ~ . ~ v  o in JZ(.Q)~JV(ff2) and I q~,]~2lVolVn~N. Vn~N 
Lemma 3 ensure, set v.(x, 0) = ~,(x), the existence of the solution v, to system (3.7),. 
System (3.7). is the system obtained from (3.7) varying n for J1/,. However, Lemma 3 
does not give the validity of (3.8) uniformly with respect to n. The following lemma 
gives a partial result in this sense. The proof of the lemma is the standard proof of the 
"Throrrme de structure" in the case of the exterior domain, (cf. [5]), however for the 
sake of completeness we propose it. 

Lemma 4. For any n~N, let v, be the solution to the system (3.7), assumin 9 as initial 
data v.(x, 0 )=  ~.(x). Then 

t 

[Vn(t)12 + 2S [Vvn(z)12d,c = 1~.12__< 21V012 Vt > 0 
0 

and uniformly with respect to n; (3.10) 

moreover, there exists an instant To, with T O < Clvol4exp(Clvol2 + 1), such that 

v, EC((To, ~);  Jl"2(I2))c~L~°((To, ~); J1"2(12)), 

D2v,, v,,~LZ((To, ~);  J2(12)) uniformly with respect to n. (3.11) 

Proof. Let v, be the solution corresponding to ~ , .  Inequality (3.10) is an immediate 
consequence of (3.9) and of the choice of ~,.  To obtain (3.11), we multiply (3.7), 
first by PAy. in L2(t'2), then by v,, in/_,2(0). Last, integrating by parts, we obtain 

(1/2) d tVv.(t)l 2 + JPdv,(t)j 2 = (J1/.(v.)-Vv,, PAy,), (3.12) 

(1/2) d IVv,(t)] 2 + Iv,t(t)l 2 = (Ja/.(v.)'Vv,, v,,), (3.13) 

Applying the H61der inequality with exponents 1/6 + 1/3 + 1/2 = 1 to the fight- 
hand side of (3.12) and (3.13), we obtain 

I(J1/n(vn)'Vv,, PAvn)I < IJI/n(Vn)[6[VvnIsIPAVnl, 

I(J~/,(v,)'Vv,, v,,)[ < IJ1/n(Vn){6[VV,]aIVnt I. 

1 We recall that from (3.8) it is possible to deduce that v~C((0, T); ]L2(£2)); this fact is tacitly assumed. 
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Since IJ1/,(v,)16 ~ IVnl6, from (3.2) and (3.3), we have 

IJx/,(v.)161Vv,131PAv, I < C l V V n l  6 --~ CIVv.I 4 + 1/31Pdv, I 2, (3.14) 

IJ1/,(vn)I61Vv,[31v,tl <_ C1Vv, I 6 + CIVv, I 4 + 1/61PAv, I 2 + 1/21v,tl 2, (3.15) 

where increasing we have employed the Cauchy inequality with a suitable factor. 
Summing (3.12) and (3.13), and increasing by (3.14)-(3.15), we deduce the following 
differential inequality: 

d IVv,(t)l 2 + [edv,(t)l 2 + Iv,,(t)l 2 < ClVv~(t)] 6 q- ClVv,(t)l 4. (3.16) 

+ao 

Since ~ [Vv.(~)lZdz<2JvolE=MVn~N, set , = C +  1/M and f l=  1/MC, from 
u 

Lemma2 we have IVv.(t)l<K (K suitable constant) V t>  To. From this last 
inequality, after integrating with respect to time (3.16), we deduce (3.11). 

Lemma 5. Let Vo~J2(g2)c~JV(g2), for some p~(1,2], and {@~},~N~Cgo(O) with 
• , ~ v o in j2 (1-2)c~ JP(12). We denote by v, the solution to system (3.7), corresponding 
to ~ ,  VneN. Then 

if vo~J~(O) for some p~(1, 3/2] v, eL~°((0, T); JP(12)) VT > 0 

uniformly with respect to n; (3.17) 

if vo~JP(g2) for some pc(3/2, 2) v, eL'((0, T); JP(~Q)) with 1/r + 3/2p > 1, 

VT > 0 uniformly with respect to n; (3.18) 

ifVo~JZ(g'2) Vn~/--~((0 , T); U(sc2)) with 1/r + 3/2s > 1 s > 2 and 

VT > 0 uniformly wtth respect to n. (3.19) 

Proof. For p~(1, 3/2], it is possible to obtain (3.17) modifying in a suitable way 
the proof of Lemma 3.2 of [4]. Therefore we omit the proof. Now, let p > 3/2 and 
consider the solution w(x, t) to system (3.4) corresponding to w(x, 0)= Wo~Cgo(O). 
Set O(x, z) = w(x, h - z). By the properties of regularity of w, we can multiply (3.7), 
by O in L2(12) and integrating by parts over Ox(0, h), we obtain 

h 

(v(h), Wo) = (~ , ,  w(h)) + ~ (Ja/,(v,)'Vv,, O)dz. (3.20) 
0 

Applying the H61der inequality with exponents 1/6 + 1/2 + 1/3 = 1, from (3.3) and 
(3.6), it follows for 1/q + 1/p = 1 

h 

I(v,(h), Wo/Iwolq)l < C[volp + C~ [Vv,(~)12(h - ~)-~3-~)/2qdv, 
0 

V h > 0  and W o ~ o ( O  ), 

which implies 
h 

Iv,(h)lp<ftVolp+f~lVv,(z)12[h-zl-(a-q)/Zqdz Vh>=O. (3.21) 
0 

Since IVv,(v)12~Ll(0, oo), we deduce (3.18) from (3.21). To prove (3.19) we reason 
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in the same way up to relation (3.20). We increase the right-hand side of (3.20) by 
the Schwartz inequality and with (3.6) applied to the first term, while the integral 
term is treated in the same way shown above. From (3.6) we have for 1/q + lip = 1, 

h 
Iv,(h)lp < Clvo]h - 3~2-~)/4q + C S IVv,(012lh- zl-¢a-q)/2qdz Vh >= O. (3.22) 

o 

Now, it is easy to deduce (3.19) from (3.22). 

4. Proof of Theorems 

Lemma 4 and Lemma 5 ensure the existence of a sequence of solutions {v,},~N to 
system (3.7),, with integral estimates for v, uniform with respect to n. Therefore, 
ifvo~J2(~2) n JP(O), for some p~(1, 2], it is routine to deduce the existence of a weak 
solution v to system (3.1) with properties a)-c) of Theorem 1. Theorem 1 can be 
considered acquired. 

Remark 4. For our weak solution v it is possible to deduce results of partial 
regularity in the sense of [1]. However, since we are in a different context, we omit 
for the sake of brevity these results and we refer the reader to the works of [1, 15, 22]. 

If we take into account the regularity results of a solution to the Navier-Stokes 
equations obtained in [5] (cf. Theorem 3 and Theorem 5), we can consider the weak 
solution v sufficiently smooth Vt > To, in such a way that we can consider the 
L2-norms of derivatives of v, D~D~v h = 1,2 and V K ~ N  and Vt > To. This last 
regularity of  solution v we take into account in the next Iemmas. 

We must preface the proof of Theorem 2 by some lemmas. 

Lemma 6. Let v be a weak solution to system (2.1) determined by Theorem 1. 
Assume that [v(t) l = O(t-~) for some a > 0 and t > T o. Then 

IVv(t)l = O(t -~-1/2) Vt > T1 > To, (4.1) 

tPAv(t)I =O(t  - ' - 1 )  Vt>= T 1 > T o. (4.2) 

Proof. Since v is sufficiently smooth for t > To, we can consider system (2.1) in 
ordinary sense. Multiplying (2.1)1 by v in L2(~2), we obtain, after integrating by parts, 

(1/2) ~ Iv(t) l 2 + IVv(t) t 2 = 0 Vt > To, (4.3) 

which implies the following 

IVy(t)] 2 < [v(t)l Iv,(t)l < Ct-~lv,(t)l Vt > To, (4.4) 

where we have taken into account that Iv(t)l = O(t -~) Vt >__ To. Deriving (2.1)1 with 
respect to time and multiplying by PArt we obtain 

(1/2) d IVv,(t)l 2 + leAv~(t)l 2 -- (v-Vv, PAv3 + (v,.Vv, PAy,). (4.5) 
a~  

Applying the H61der inequality we have 
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[(v'Vvt, eAvt)[ < sup I vl I Vvtl [PAvtl, 
o 

L(vc vv,  P~av,)l _<_ Iv~t6lVvl31PAv, t. 

Since suplvl < C([Dev[ +IVv[), from (3.2) and (3.3) we can deduce 
19 

I(v.Vv~, PAv,)l + I(vc Vv, PAy31 _-< c(IP•vt + IVvl)tVv,[ learnt. (4.6) 

Increasing the right-hand side of (4.5) by (4.6) and applying the Cauchy inequality, 

d IVvtl __< CIVvtI2(IPAv[ 2 + ]Vvl 2) 

holds. Integrating the last inequality from T1 > To, we obtain 

v, eL°°((T1, co); L2(O)). (4.7) 

Now, we multiply (2.1)1 by vt in Lz(12), after integrating by parts, we deduce 

21vtl 2 = - d IVv(t)[2 + 2(vt'Vv, v). (4.8) 

From (4.8), by application of the Schwartz inequality and the H61der inequality with 
exponents 1/3 + i/2 + 1/6 = 1, it follows that 

tv~l 2 <-lVv(t)l tVv, l + lv,131Vv, I Iv16, 

which we can increase by (3.3) and (4.7) with 

Iv, l 2 < CIVvl IVv~l, 

that implies by virtue of (4.4) 

[¥tl 3 ~ Ct-~lVvtt 2 Vt > T I. (4.9) 

Deriving (2.1)1 with respect to time and multiplying by v t in L2(~2), after integrating 
by parts, we obtain 

d z ~ lv ,  I +IVv, I 2_-< I(vcVv, v~)l Vt > T 1. 

Applying the H61der inequality with exponents 1/3 + 1/2 + 1/6 = 1, (3.3) and the 
Cauchy inequality, we have 

d 
d~ [vtt2 + ]Vvtt2 ~ C[vtl2lVvl* Vt > T 1. 

By virtue of (4.4), (4.11) and IVv(t)l < C we deduce the differential inequality 

d 2 d-~lvt] +C-ltalvtl3<=Ct-Ct[vt] 3 V t >  T 1. 

Without loss of generality, we can assume that T 1 is such that Ct-~  < C -  lt~/2, so we 
obtain 



396 P. Maremonti 

which implies 

d 
~lv~l +Ct~lv~12~0, 

Iv~l = o ( t  -1-~) vt__> T1. (4.10) 

Inequalities (4, 4) and (4.10) imply (4.1). To obtain (4.2), we observe that multiplying 
(2.1)1 by PAy in L2(~2), we have 

IPAv(t)l 2 < I(v'Vv, PAv)I + I(v~, Pzlv)l. 

Applying the Schwartz inequality for (vt, PAy) and reasoning in the same way of 
(3.14) for ](v.Vv, PAy)l, we obtain 

Igzlvl < C(IVvl 3 + IVvl 2 + Iv~l), 

which implies (4.2) by (4.1) and (4.10). 

Lemma 7, Let v be a weak solution determined by Theorem I. Then 

N~lv, o~C(lv.Vvlv+[D2vJv, o~,~ p~(1,6/5) V t R T 1 ,  (4.11) 

where o) is enclosed in 12 with dOc~So~ = ~ and meas (co} < or. 

Proof. From (2.1)I we deduce for rc the following Neumann problem: 

An=V.(v.Vv) in O Vt>T~,  

d~ = (rot rot v)'-h" - (v. V v).~'. 

Inequality (4.11) is a consequence of Lemma 2.1 of [21] and Prop. 1.5 of [18]. In 
[21] there is the solution to the problem dql  = 0  with dql/d-f f=(rotrotv) '~ 
with IVql Ip < CID2vlL,(~) for pc(l,  6/5). In [18-1 there is the solution to the problem 
Aq2 = V'f  and dq2/d-ff = f'K with IVq21p < Clflp. 

Remark5. We can consider the boundary condition dn/d-ff = (rot rot v). 
~ -  (v.Vv).~, in the Neumann problem of re, by virtue of the regularity ofv proved in 
[5]. In fact by the Remark on p. 665 of [5], we have v ~ C 2 if 812e C a. As regards these 
properties of regularity see also [25]. 

We can increase (4.11) in the following way: 

IV~Ip, o~C(IVvl(4P-3)/Plvl(3-2~)/~+tPAvl+lVvl) Vp~(1, 6/5). (4.12) 

We obtain (4.12) applying the H61der inequality to the right-hand side of (4.11) 
with exponents I)/2 + (2 - p)/2 = 1: 

Iv'Vvlp_-< Ivl2~/t2-~)lVvl 

and 

I D2vl~,,~o o, _-< {meas (o9))(2 - p)/2 p [D 2V I, 

taking into account of (3.3) for the n o r m  [¥[2p/(2-p) and the mean (co) < ~ .  
The following lemma improves an analogous lemma proved in [13]. However, 
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both the lemmas have as a starting point the estimate in L v of solutions to the 
Navier-Stokes equations given in the works by Galdi-Rionero (cf. [9]). 

Lemma 8. Let v0~J2(f2)c~JV(£2) be, for some p~(1,2) and v be a correspondin# 
weak solution to system (2.1) of  Theorem I. Assume that Iv(01 = O(t-~)(~ >= 0). Then 
there exists an instant T 2 such that [v(T2)L v < oo and for ~ ~ ( 2 -  p)/2p, 

Iv(t)lp < C(Iv(T2)lv) + [2C(2 - p - 2ap)-1 [Vo I(t a - T~)] l/p, 

where f l = ( 1 - a p - p / 2 )  and V t > T  2, (4.13) 

and for a = (2 - p)/2p 

lv(t)lp =< C(Iv(T2)lp) + C(Ivol)logl/P(t/Z2) Vt ~ Z2. (4.14) 

Proof. Since vaL~°((0, T); LVff2)), if pc(l ,  3/2-1 and veL~((0, T), LV(12)) for p~(3/2, 2) 
with 1/s + 3/2p > 1 VT > 0, we can choose an instant T2 > T1 such that Iv(T2)lp < 
oo. We multiply (2.1)1 by ~(r)v/(v2(x, t) + a) 1-v/2 in L2(/2), where ~(r)eC~°(O, oo) 
is a cut-off function such that ~ ( r )=  1 if r < R and ~ ( r )=  0 if r > 2R for 
R > diam (R 3 - 1-2), with IVq~(r) l ~ C/R and I zl q~(r) l < C/R 2, finally a = 1/R 4. We 
integrate by parts over O: 

d 2 
(I/p)-v-~ (v (x, t) + a)2O(r) dx + ~ Vv(x, t):Vv(x, t)(v2(x, t) + a)~- ' q~(r)dx 

gt n a 

+ (p - 2)~ (Vv(x, t)-v(x, t))2(v2(x, t) + a)~-2a~(r)dx 
12 

= 1/p (v2(x, t) + a)~(A~(r))dx + I (v2( x, t) + a) v(x, t)" V(~(r))dx 

3 

+ I Vrc(x, t)w(x, t)(v2(x, t) + a)~-a~(r)dx = ~, I~ Vt > T2. 
• Q i = 1  

Since 

Vv(x, t);Vv(x, t)(v2(x, t) + a) ~-1 + (p - 2)(Vv(x, t)'v(x, t))2(v2(x, t) + a) ~-2 > 0 

V(x, t)~g2x(T2, oo), 

we neglect the integrals with these terms. Now, applying the H61der inequality 
with suitable exponents, we have 

I1 < (C/R 2) ~ Iv(x, t)lPdx + (C/R 2 +20 
R<=Ix[<=2R 

dx ~ (C/R2)R 3(2-v)/2 l v ( t ) l  p + CR/R 2v 
R<IxI<=2R 

<<.C(R)(Iv(t)IP+ 1) with C(R)--,O for 

I2 <= (C/R) ~ I v ( x , t ) W l d x  + (C/R2p +1) 
R<IxI<2R 

dx < (C/R)lv(t)l~ ~ + (C/R2V)R 2 
R<JxI<2R 

<C(R)(Iv(t)l~?~ + 1) with C(R)--,O for 

13 ~ C lVE(t)[6/(7 _ v)[v(t)l ~- 1. 

R ~oe;  

R ~oo;  
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Set E~,,(t)= S(v2(x, t)+ ~)~(r)dx,  taking into account of (4.12) and of (3.3) for 
g~ 

Iv(t) 16, we obtain 

d 
-~xE~,~(t) < ClVv(t)I" + ClVv(t)I p+I + CIPAv(t)J IVv(t)t , - 1  

+ C(R)(Iv(t)l~,E~ + 1) + C(R)(Iv(t)l p+ 1). 

Integrating with respect to time and making R ~ 0% we deduce 

3 
E(t) <__ E(T1) + • S~ Vt > T2. 

i=1  

Since p +  1 > 2 and p - 1  >0 ,  from (4.1)-(4.2) we obtain J1 + J 2 - - - C  V t ~  T2, 
while J3 ~ [ 2 C / ( 2 - p - 2 ~ P ) ] (  t p -  T~2), where r =  1 - ~ p - p / 2  if ~ # ( 2 - p ) / 2 p  
and Js --< Clog(t/T2) if ~ = (2 - p)/2p. 

We are now in a position to prove Theorem 2. We obtain the result by Lemma 8. 
Set ~ = 0 in Lemma 8, from estimate (4.13) we deduce by interpolation the following 
estimate: 

Iv(t)12 < Iv(t)l~-°lv(t)l°6 < [Ca + C2(t p - T~)~/v] ~-°lv(t)l° (4.16) 

with 0 = 3(2 - p)/(6 - p) Vt >= 7"2. Taking into account the energy equality verified 
Vt _>_ T2, (4.16) and (3.3) for Iv(t)16, we obtain the differential inequality 

d 
~lv(t)l  z __< - CIv(t)12/°[C~ + Cz(?-~/2U~]-2¢~-°)/° Vt > Tz, (4.17) 

where we have taken into account that 1 - p/2 > 0 p~(1, 2). On the other hand for 
p~(1, 2) (2 - p)(1 - O)/pO = 2/3, therefore from (4.17) we deduce 

Iv(t)l = O(t (2-p)/4~) Vt __> T 2. 

If we consider now (4.13) for ~ = ( 2 -  p)/4p, (4.17) becomes 

f--~lv(t)l 2 < -- CIv(t)12/°[C1 + C2t(2-p)/4P] -2(1-0)/0 Vt ~ "1'2, 

where we have taken into account that ( 2 -  p)/4 > 0 p~(t.2). On the other hand 
it holds Vp~(1, 2) ( 2 - p ) ( 1 -  O)/2pO= 1/3. Therefore, we deduce by analogous 
arguments that 

Iv(t)l = O(t (2-p)/zp) Vt >= T 2. ( 4 . 1 7 )  

Since in (4.17) e = ( 2 -  p)/2p we can consider (4.14), which implies 

[v(t)l=O(t -~) V t > T  2 and e>(2 -p ) /2p .  

Now for e > ( 2 -  p)/2p, (4.13) is uniformly bounded, therefore (4.17) becomes 

d 
-~lv(t)[2<-Ctv(t)[  2/° V t ~ T 2  and 0 = 3 ( 2 - p ) / ( 6 - 0 ) ,  

integrating this last differential inequality, we obtain (2.2). 
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The proof of Theorem 3 is quite analogous to the proof of Theorem 1.1 of 
[13], therefore it is omitted. 

For  the proof of Theorem 4 is important  to premise the following theorem due 
to Knightly: 

Theorem. Let g(x) = Arot (0, F(x), H(x)) with 

F(x)=xl(1 + txL2) -(1+~)/2 //' se[0,2),  

~ - ( 1 / 2 ) l o g ( l + l x l  2) /f s = 0  
H(x) = [(l/s)(1 + Ix12) -*/2 /f se(0,2), 

A is a suitable constant. Then there exists a unique solution g(x, t) to system (2.1) 
corresponding to g(x) and defined V t >= O, such that for pc(l ,  2] D~D~g(x, t)ej2(R 3) n 
JP(R 3) Vk, h e N / f  se((3 - p)/p, 2). Moreover 

sup Ig(x, t)l > ]g(O, t)t > Ct-(l+~)/2Jbr t sufficiently large. (4.18) 
N 2 

Proof. See [10] §.5 pp. 239-240. 
We assume now that VvoeJZ(R3)nJp(R3), for some fixed pe(1, 2], there exists 

a weak solution v corresponding to vo, such that  

[v(t)l=O(t -u-3(z-p)/4p) for some p > 0 .  

By virtue of Lemma 6 we have IPAv(t) l = IAv(t) l = O(t-  1 - , -  3(2-p)/4p) and I Vv(t) l = 
O(t-"- 1/2-3(2-p)/4v). Now, we consider (3.3) for j  = 0, p = 0% m = 2, r = 2 and q = 6. 
Therefore 

sup Iv(x, t) l < CID2v(t) ll/elv(t) l~/2. 
N3 

Since ID2v( t ) l  < IAv( t ) l  and Iv(t)l 6 < C l V v ( t ) l ,  we can deduce 

sup Iv(x,  t) l _-< 0 (t - " -  3/4 - 3(2 - p)/4p). (4.19) 
R 3 

If we observe that  it is always possible to determine a s = e + ( 3 -  p)/p such that  
e/2 < # and g(x)ej2(R3)njP(R3), then from (4.18) and (4.19) we have 

Ct-I/2("+3/P)< Ct -("+3/2p) for t sufficiently large, 

which is absurd. This fact completes the proof of Theorem 4. 
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