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Abstract. We consider the initial value problem for the Zakharov equations 

1 
(Z) -ffntt - A (n+ lEt z) = 0 n(x, 0) -- no(x) 

nt(x, O) = nl(x) 

iE t + A E - -  nE = 0 E(x, O) = Eo(x ) 

(x e Nk, k = 2, 3, t > 0) which model the propagation of Langmuir waves in plasmas. 
For suitable initial data solutions are shown to exist for a time interval independent 
of 2, a parameter proportional to the ion acoustic speed. For such data, solutions of 
(Z) converge as 2-~ oe to a solution of the cubic nonlinear Schr6dinger equation 

(CSE) iE, + A E  + [ElZE = O. 

We consider both weak and strong solutions. For the case of strong solutions the 
results are analogous to previous results on the incompressible limit of 
compressible fluids. 

I. Introduction 

The Zakharov equations [Z, GTWT], 

l n ~  - a ( n  + IEl 2) -- 0, (1.t) 
A 

iEt + A E  - nE = 0, (1.2) 

E : ~  x ~+ - ,  k . . ~  C ,  n. ~x x Nt + ~ N, describe the propagation of Langmuir waves in 
plasmas. The complex vector E denotes the slowly varying envelope of the highly 
oscillatory electric field, and n is the fluctuation in the ion-density about its 
equilibrium value. The parameter 2 is proportional to the ion acoustic speed. Other 
physical parameters have been removed by scaling. 

Formally letting 2 tend to infinity in (1.1) yields the equation A(n + [El 2) = 0, 
which implies n = - lEt 2 if n and tEl z are square-integrable. Substitution of this 
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expression for n into (1.2) yields the cubic nonlinear Schr6dinger equation, 

iEt + d E  + IEIZE = 0 (1.3) 

which has been used to model phenomena when 2 is large [Z, G J]. The limit 2 ~ 
corresponds to the assumption that the plasma responds instantaneously to 
variations in the electric field. 

Our goal in this paper is to present a justification of this reduction. We show that, 
for certain initial data, a) solutions of the IVP for (1.1-1.2) exist on a time interval 
[0, T], where T is independent of 2, and b) solutions of the IVP for (1.1 - 1.2) converge 
to solutions of the IVP for (1.3), as 2-+ Go. This is carried out for two types of 
solutions. First, for suitable initial data in the Sobolev space H '~ with m sufficiently 
large, the classical solutions of (1.1-1.2) exist for a time T independent of 2 and 
converge pointwise together with some number of derivatives to a classical solution of 
(1.3) (Sect. 3); this case follows from the Klainerman-Majda theory of singular limits 
[KM, M]. Second, when k, the number of spatial dimensions, is less than or equal to 
3, for suitable (sufficiently small) initial data n(0, x, 2) in L 2, n,(O, x, 2) in H-1 and 
E(0,x,2) in H 1, weak solutions to (1.1-1.2) exist globally in time and converge 
weakly to the H 1 solution of (1.3) (Sect. 4). 

Computer simulations of solutions to the Zakharov equations [SZ] suggest that 
solutions may develop singularities in finite time. This is believed to correspond to 
the collapse of Langmuir waves and onset of turbulence. In fact, solutions to the 
"approximating" cubic nonlinear Schr6dinger equation develop singularities in 
finite time for a large class of initial data [GRT]. The hypotheses in our theorems 
ensure that solutions do not develop such singularities for the time intervals 
considered. 

Notation: L v = LP(~ k) = {fill f I p < oo } 
H~= HS(~ k) = {/1(1 +l¢12)~/2f(~)eL 2} 

< f , g >  = I f 9  
H~o¢ = {J](afeH ~ for all ~beC~} 

AC([0, T];X) = space of absolutely continuous functions on [0, T] 
with values in X. 

f =  complex conjugate of f .  
[a] = largest integer smaller than or equal to c~. 
rU = the transpose of the matrix U. 

Throughout this paper integrals are assumed to be taken over ~k, and all constants 
c, cl, c2,.., are independent of 2 unless otherwise explicitly indicated. 

II. Zakharov Equations as a Dispersive Perturbation of a Symmetric Hyperbolic 
System 

To write (1.1-1.2) as a perturbation of a first order system we define: 

1 
V - - ~A - 1Vn,, (2.1a) 

Q =- n + IEI z. (2.1b) 



Langmuir Turbulence 

Then, (1.1-1.2) become 

571 

G + ~ . V - v -  (1ElZ), = 0, (2.2) 

V t + 2VQ = 0, (2.3) 

iE, + AE + IEl=E - Q E  = 0. (2.4) 

In Sect. four, Eqs. (2.2-2.4) will be used to study weak solutions. To study 
classical solutions, it is convenient to write (1.1-1.2) as a dispersive perturbation of a 
quasilinear symmetric hyperbolic system. The remainder of this section will be 
concerned with deriving this alternative system. 

We first multiply (2.4) by Eand take the imaginary part of the resulting equation to 
get 

(1 El2), = (EA E - E A  E-). (2.5) 

Next, we take the gradient of (2.4) and get 

i V E , + A V E + I E I Z V E + ( E V E + E V E ) E - Q V E - E V Q = O .  (2.6) 

Now let v/2E =- F + iG and x / ~ V E  = H + iL. Then, use of (2.5) in (2.2) leads to the 
following system equivalent to (2.2-2.4, 2.6): 

Q, + 2V. v + F V . L  - GV 'H = 0, (2.7) 
v,  + , W Q  = o, (2.8) 

F, + ½(F 2 + G2)G - QG = - AG, (2.9) 

Gt - ½(F 2 + GZ)F + QF = AF,  (2.10) 

H , - G V G + ½ ( F 2 + G Z ) L + ( F H - G L ) G - Q L =  - A L ,  (2.tl) 

Lt + FVQ -½(F  2 + GZ)H - (FH - GL)F + QH = A n .  (2.12) 

Introducing the (3k + 3)-component vector function U = r(Q, v, F, G, H, L), 
Eqs. (2.7-2.12) can be written in the form: 

k 
Ut + ~ (AJ(U) + 2CJ)Uxj + B(U)U = K A U .  (2.13) 

j = l  

Here AJ and C j are symmetric (3k + 3) x (3k + 3) matrices, and K is an antisymmetric 
(3k + 3) x (3k + 3) matrix. B(') and A J(') are C ~°, and K and C j are constant matrices. 

Note that the factors ofx/~ in the definition ofF,  G, H and L were introduced so that 
the matrices AJ(U) are symmetric. The antisymmetric operator K A in (2.13) reflects 
the dispersive nature of the equations. The special structure of(2.13) will be exploited 
in the following section on classical solutions. 

III. Classical Solutions 

We shall consider the IVP for (1.1-1.2) with initial data given by 

n(x, O, 2) = no(x, 2), 

nt(x, O, 2) = Vx'f0 (x, 2), 

E(x, 0, 2) = Eo(x, 2). (3.1) 
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Theorem 1. (Existence of solutions of (Z) for each 2 and ~t priori estimates.) Let k 
denote the spatial dimension and m > [k/2] + 3. 
Suppose 

It no(2)I1~ + ~ lifo(2)I1~-~ + It Eo(2)I1~-+1 < C1. (3.2) 

Then the IVP (1.I-1.2, 3.1) has a unique classical on a time interval I-0, T'I. Here, T 
depends on the bound C1 in (3.2) and in particular, not on 2. In addition, the solution 
(E, n) sa t i res  the estimate 

I[E(t,,~)llum+l + IlE,(t,2)llH~-~ + [In(t,2)[l~ 

1 1 
+ ~ l] nt(t, 2)liB.- 1 + ~11 ntt( t, 2)11.--2 _-< 62 (3.3) 

for all t ~ [0, T]. 
Classical solutions of (1.1-1.2, 3.1), for fixed 2, were constructed in [SS] by 

different methods than the ones we employ. 
Due to the rapid oscillations in solutions that arise as 2 ~ co, we have, without an 

hypothesis ensuring that we are "near" the nonlinear Schr6dinger equation initially, 
the following convergence 

Theorem 2. Assume the hypotheses of  Theorem 1. In addition, suppose Eo(2)~Eo 
weakly in H 1. Then, the solutions (n(2), (E(2)) of (1.1-1.2, 3.1) converge weakly to the 
unique AC([0, T ] ;H  1) weak solution of (13) with initial data ff~o. 

This result can be proved by the method of proof used for Theorem 5, (see 
Sect. 4). To ensure strong convergence of(n(2), E(2)) to a classical solution of(1.3) we 
require additional hypotheses, as is seen in 

Theorem 3. (Strong convergence to solutions of  ( l.3) as 2 ~ ~ ) Suppose in addition to 
the hypotheses of  Theorem 1 that 

,~ [[ V(no(2) + [ Eo(2)[ 2) [In ~-~ + [[ V'f(2)[]n--~ ~ C 3, (3.4) 

and that 
Eo(2)~/~o as 2 ~  ~ strongly in H m+l (3.5) 

Let T denote the time of existence of the solution constructed in Theorem I. Then, as 

n(2) + IE(2)I2~0 in C°([0, T) x ~k), (3.6a) 

V~n(2) + tE(2)l 2 ] ~ 0  in C°([0, T]; Bin- z), and (3.6b) 

E(2) ~/~,  (3.6c) 

the unique solution of (1.3) with initial data ff~o in 

C~([0, T] x R k) c~ C~([0, T); C2). 

III .A Existence of Solutions to (1.1-1.2, 3.1) Jbr Fixed 2 and 6 priori Estimates 

To prove Theorem 1, we first write (1.1-1.2) in the form (2.13) as in Sect. two. The 
existence proof proceeds along the lines of the existence proof for the IVP for 
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quasitinear symmetric hyperbolic systems (see [KM, M]) with modifications which 
we shall now outline. 

Local existence in time can be established for (2.13) with initial data implied by 
(3.1) via the following iteration scheme. Define U°(x, t) = Uo(x ), where U 0 denotes 
the data for (2.13) constructed from (3.1) and 

~Up+I K 
+ (AJ(U") +  CJ) + B(U )U 

j = l  

= K A U  p+~, UP+~(x,0)=Uo(x ) p=0,1 ,2 , - - . .  (3.7) 

The existence of solutions to (3.7) for each p follows from a natural extension of the 
existence theory for linear symmetric hyperbolic systems. 

To prove that the iteration scheme is well defined and to prove convergence of 
the iterates { U p} to a unique classical solution, we need ~ priori estimates on the 
space derivatives of the following type 

tl UP(t, 2)][H~ < C4 (3.8) 

for all t~[0, T]. This would imply by (3.7) that f] Uf(t,2) IIHm-: < C5(2). This ensures 
that for fixed ,~, we have convergence of {U p} in C°([0, T]; H~o~ -2) by the Ascoli- 
Arzela theorem, and therefore in C°([0, T ] ; H ~  -~) by interpolation. It now follows 
from (3.7) that {OUP/3t} also converges as p ~  ~ ,  and the limit U satisfies (3.8). 

That T and C# can be chosen independent of 2 is seen as follows. First, (3.8) holds 
at time t = 0 ,  by (3.2) applied to the initial data in (3.7). Since Vo = 
- (1 /2 )A-  1VV.fo(~.), we have used here the fact that the operator A -  lO2/OxiSxj is 
bounded on H m. That (3.8) holds on (0, T) for some T independent of 2 follows from 
energy estimates obtained by taking the /2  inner product of U p + 1 with (3.7). As noted 
in [KM, M], the 2 dependence contributes nothing to the estimate since 
2T Up+ 1 ~j rfp+ 1 is a perfect derivative because C j is symmetric and constant. ~ X j  

Also, the term ~TUKA U = -~r (VU)KVU = 0 contributes nothing to the esti- 
mate, by the antisymmetry of K. Derivative estimates of U p are obtained by 
differentiating (3.7), taking the inner product of the resulting equation with the 
corresponding derivative of U p , and using the above observations. 

Note also that we do not require estimates for UtP( ., )~) independent of 2 since the 
term rfP+ 1 is not multiplied by a matrix A°(U) as in [KM, M]. ~ t  

The result is a solution U on a time interval [0, T], with T independent of 2 
satisfying 

f[ U(t, 2)t[nm < C4 (3.9) 

for t~[0, T]. Although (3.9) implies UEL°°([0, T];H"), it can be shown [M] that in 
fact U~C°([0, T];H")c~CI([O, T] ;H ' -2 ) .  

This result is pulled back to the system (1.1-1.2) as follows: First, Eqs. (2.3-2.4) 

follows directly from (2.8-2.10), where we defined E = (1/a/2)(F + iG). Next, an L z 
energy estimate for W -  = (VF - H, VG - L) implies Ik W(t)]12~ < e cr H W(0)ll2~ = 0, 

and therefore that VE = (1/,j2)(H + iL). This implies that the sum of the last two 
terms in (2.7) is equal to the right-hand side of(2.5). Since (2.5) follows from (2.4), (2.2) 
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holds. Setting n - Q - I E I  z, we have that 

n, + 2V" V = 0. (3.10) 

Q and W are then smooth enough for (2.3) and (3.10) to imply (1.1). Clearly, (2.4) 
implies (1.2). Estimate (3.3) follows similarly. 

III.B. The Cubic Schrddinger Limit (2 ~ oo) for Classical Solutions 

To prove Theorem 3, we shall first prove (3.6a, b) using (2.8). We require a bound on 
Ut(t, 2) independent of 2. To obtain this bound we differentiate the system (2.13) with 
respect to t and derive energy estimates for tI Ut(t, 2)I1~,-~ analogous to those of 
Sect. 3.A (again using that the C j are symmetric and constant, and that K is 
antisymmetric). We obtain a differential inequality for It Ut(t,2) tIH~,-: that has no 
explicit 2-dependence. Also the initial data satisfies the estimate 

II u~(o,,~) ll,,m-= _-< c (3.11) 

by hypothesis (3.4). It follows that 

II Ut(t, ;~))I~.-2 < C5 

for t~[O, T]. Note that unlike solutions to the systems considered in [KM, M-I, Ut is 
only in H" -2  and not H m- 1 due to the presence of the higher order KA U term in 
(2.13). Use of (3.11) in Eq. (2.8) implies that 

II vQ(t,,~)IIH'-: --< C6 (3.12) 

for t e [0, T], and hence that 

ilOllcO{E0.n×e) < CIIDm-IQII~ '2("-1) IIQIIL~ -~/2t"-x) < c1;~ -k/2<~-~) (3.13) 

for te[0, T] by the Gagliardo-Nirenberg inequalities (see for example [F]), (3.12), 
and (3.2). 

Now, since (F, G, H, L) is bounded in C°([0, T-J;Hm)c~ C~([0, T];Hm-Z), by the 
Arzela-Ascoli theorem (applied in the time variable), the Rellich compactness 
theorem (applied in the space variables) and interpolation, we have that for every 
sequence of 2's tending to infinity (F(),), G(2),HO,),L(2)) has a subsequence that 
converges in C° ([0, T];H~o-~ ~), for e > 0, to (if, ~, / ] ,  L). By (3.13) and Eqs. (2.9-2.12), 
the convergence takes place as well in C1([0, . ~-2-~). T],H~o~ Thus, the subsequence 
converges to a solution of the system obtained from (2.9-2.12) by setting Q = 0. By 
(3.5) this limiting solution has initial data (ReEo,Im~o,VRe~o,VImEo). Also, 
perhaps after passing to a second subsequence, the above limit converges weakly in 
H m (as a bounded sequence in a Hilbert space). Therefore, by the identity of weak 
and strong limits, (F, ~,/7, L)eL ~ ([0, T-J ;H") c~ AC([0, T] ;H '~- 2). 

Now, uniqueness of L ~° ([0, T] ",H m) n A C([O, T];H m- 2) solutions to the IVP for 
(2.7-2.12) follows from a straightforward energy estimate for the difference of two 
solutions. It follows that the convergence to (F, (], H, L) takes place without passing 
to subsequences. Theorem 3 now follows upon interpreting this result for the system 
(1.1-1.2) 
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IV. Weak Solutions 

The main tool in establishing the existence of global weak solutions are the 
conserved integrals of (1.1-1.2). We define 

N = 1IE1122, and (4.1) 

H = II VE b[22 - ½ [IE [[44 -t- ½ II Q 11~2 + 1[i g II~=. (4.2) 

N and H can be shown, using (2.2-2.4) the definitions (2.1), to be constant on 
sufficiently smooth solutions of (1.1-1.2) (see for example [GTWT]).  

Let O(x) denote the spatial profile of the ground state solution of(1.3), i.e. u = ~, is 
the unique positive H ~ solution of A u - u  + u3= 0 (see [W]). We denote by k 
the number of spatial dimensions, 1 < k _< 3. We first have for each fixed 2 ~ 0, 
the following weak existence 

Theorem 4. Considertheinitiatvalueproblemfor(1.1-1.2)withdatagivenby(3.I)for 
which the functionals N and H are finite, i.e. Eo~H 1, noeL 2 and nt[t=o6H- 1. Suppose 

llEo(2)ltL2<C'< II~llL2~(2n)l/z(1.8662) l/z, / f k = 2 ,  and (4.3) 

4 
t1V Eo (2) tIL~ < c" < I HI and N I HI < ~ if k = 3. (4.4) 

Then, Jot any fixed 2 the system (1.1-1.2, 3.1) has a global weak solution for which 
n~L~(N+;L2), and E~L~°(N+,H1). If, in addition, 

then 

1 
II noO*)IlL z -It ~ lifo(s') IlL a AC tl Eo()~)IlH 1 ~-~ e l ,  (4.5) 

Then, as 2--* oo 

n()~) + IE()~)lz ~ 0  weak-* in L~(N+;L 2) 

and for any ~ > 0 and 1 < p < oo, 

E(2) ---, J~ in Lfoc(R +; H~o;-~), 

where E is the unique AC(N+ ;H 1) solution of (I.3) with initial data ff~o. 

1 1 

+ IIE(t,2)lln~ + ItEt(t,2)ll~-i < c2. (4.6) 

Weak solutions to (1.1-1.2,3.1) were constructed for fixed 2 in [SS]. The 
criterion (4.3) was shown in [W] to ensure global existence of H 1 solutions to (1.3). 

As for classical solutions, due to rapid oscillations as 2 ~  0% we have the 
following weak convergence 

Theorem 5. Assume in addition to the hypothesis of Theorem 4 that 

II V'f00-) I1~-1 <_- C3, and (4.7) 

Eo(2) ~ ff~o strongly in H 1 as 2 ~ oo. (4.8) 
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IV A. Existence of Weak Solutions for Fixed 2 and d priori Estimates 

We now prove Theorem 4. As in [SS], for the case of fixed 2, we use the Galerkin 
method. Let { wJ)~= 1 denote a smooth orthonormal basis for L2(~k), and denote by 
P,. the L 2 projection operator onto span {wJ}~=l . We shall seek approximate 
solutions in the form: 

Q,.= ~, q,q(t)w', v " =  ~ v"j(t)w ~, and Era= ~, e"~(t)w ~, 
j = l  j = l  j = i  

V,. and E,. solve the system 

Q~' + P,.(2V. V,. - (]E"]2)0 -- 0, 

V~' + P,.(2VQ,.) = O, 

iE? + P , . ( A E  + 1E,.t2E " - P.,.E,.) = O, 

where Qm, 

with initial data 

(4.9),. 

(4.10)" 

(4.11),. 

O"(O) = P"(no(2) + [Eo(2)12), 

V"(0) = P"(  - ~A -1V V.fo(2)) ' 

E"(O) = P"(Eo(2)). (4.12)m 

These are simply P"  applied to the system (2.2-2.4, 3.1). The system (4.9-4.12),. can 
be solved for { dq,.Hdt, dv,q/dt, demj/dt } ~"= 1 to yield a system of (2 k + 1)m nonlinear 
ordinary differential equations in time, which have a solution on some maximal time 
interval [0, T,,]. 

To pass to the limit m ~ oo we shall need/t priori estimates on the sequence of 
solutions to the finite dimensional problems (4.9-4.12),., independent of m. These 
are obtained by observing that the system (4.9-4.12),. inherits the conserved 
integrals N and H of the exact system (2.2-2.4). To see this, we take the (real) L z inner 
product of (4.11)m with ~ and then take the imaginary part of the resulting identity. 
Using that P,. is self-adjoint and equal to the identity on span { wi}~'= 1 we conclude 
that the functional N is constant on E,.. Next, adding twice the real part of the inner 
product of - E~' with (4.11),. to the sum of the inner products of V,. with (4.10),. and 
Q,. with (4.9),. implies that H is constant. 

As shown in [SS], the constancy of N and H imply 

]1Q,.(t, 2)IlL2 + [I V,.(t, 2)IlL2 + II E,.(t, 2)I1~, _-< c(2) (4.13) 

without additional conditions if k = 1, and provided (4.4) holds, when k = 3. When 

k = 2 [SS] shows that (4.13) holds ifN < l/w/2; the sharper criterion (4.3) follows from 
the calculation of the optimal constant in a Gagliardo-Nirenberg interpolation 
inequality [W]. The criterion (4.3) is a sharp condition ensuring that the functional 
formed from sum of the first two terms in H is positive definite. 

When (4.13) holds T,. = 0% for all m. For, if T,. < 0% the local existence theory for 
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ODE's would imply 

lim sup { ]q"j(t)l,lvm~(t)l,Iemj(t)[ } = oo. 
tTT., l <=]<=m 

This would contradict (4.13). 
We shall now establish the sense in which the solution of (4.9-4.12),. approaches 

a solution of (2.1-2.4, 3.1) as m ~ oo. Fix a positive integer M, and multiply (4.9- 
4.11),, respectively by test functions ¢(1)W(1),~I(2)W(2) and ~(3)W(3), where ( 9 ( i ) ( t )  

vanishes for all sufficiently large t, and w°espan  {w~}f= 1. Upon integrating the 
resulting equation over ~+ x R k we obtain a weak form of(4.9-4.11)" which we call 
(4.9-4.11)~ where we can omit the projections P"  for m > M. 

Passing to the limit rn-, oo requires some observations on compactness of 
(Q", v m, E"), which we now make, First, studying an equation for the time-Fourier 
transform of Z~o,rlE,,(t), using that A Era+ IE"I2E m -  Q"E" is uniformly bounded 
in L ~° (~ +, H -  ~), it can be shown that { E"} is bounded in H~o¢(~ +;L 2) for s < ¼. (See 
the argument used to prove (3.32) in chapter 3 of [T]. We cannot solve (4.1 t),, for E~" 
to obtain regularity of urn in time, since P,. is not bounded independently of m on 
H -  ~.) It follows from compactness Theorem 2.2 of chapter 3 in [T] that there exists 
a subsequence, still denoted (Q",V,.,E,.), and functions Q,V~L®(~+;L 2) and 
E~L~°(~+;H1), such that (Q,., V,.,E,.,VE,.)--*(Q, V,E, VE) weak-* in L~(~+;L2), 
and that E , . ~ E  in L~o~(~+;H~o~ -~) for any e > 0 .  Since E,. is bounded in 
L~°(~+;HI-'), E ~ converges as well in LPo~(~+;H~oS ~) for any 2 < p < o o ,  by 
interpolation. 

To pass to the limit in the above-defined weak form (4.9-4.11)~ we remark that 
for each M, { w~}~ 1 have uniform decay at infinity. Due to this uniform decay of the 
test functions we can pass to the limit m ~ oo, using the weak-* convergence for the 
terms linear in Q,., V,. and E", and the L~'o~(~+;H 1 -~) convergence of E" plus the 
weak-* convergence of Q,. for the nonlinear terms. The limit along this subsequence 
(Q, v, E) satisfies 

JdtSdx [ - q~ll)w(1)Q - 2q~(1)Vw(1)" V - ~b~l)w")l El 2 ] = jdxff)(l)(O)w(l)no(2), 

( 4 . 1 4 )  

Sdt ax[ - - = -  axq  2 (0)w - -  vv.fo(2), 

(4.15) 

~dt~dx[ - i~)}3)w(3)E(2) - q~(3)Vw(3)VE(2) + q~(3)W(3)(] E(2)[2E(2)- Q(2)E(2))] 

= ydx¢(3)w~3~Eo(J.). (4.16) 

Since the span of the set of functions ~(t)w(x) with the above properties is dense in 
C~(~ +, H1), and since the functionals in (4.14-4.16) are continuous in the topology 

1 + 1 of Co 1 (~ 4; H1), (4.14-4.16) hold if q~)w ") are replaced by any functions in Co (~ ; H ), 
i.e. (Q, V, E) is a weak solution of the IVP (1.1-1.2, 3.1). Furthermore if (4.5) holds, 
then N and H are bounded independently of 2, and hence the constant C(2) in (4.13) can 
be taken to be independent of 2. 
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Since the H ~ norm is lower-semicontinuous under weak convergence, we have 
from (4.13) with c independent of 2, 

]l Q(t)IlL= + II V(t)[]L~ + l[ E(t)[[n~ ----< C. (4.17) 

The fi priori estimate (4.6) now follows from (4.17) and the differential equations for n 
and E. This completes the proof of Theorem 4. 

IVB. Passage to the Limit 2 ~ oc for Weak Solutions 

To prove Theorem 5 we shall now make some preliminary observations on 
compactness of sequences (Q(2), V(2), E(2)) as 2-~ ~ .  By (4.17) and (2.4), Et(2 ) is 
bounded unitbrmly in 2 in L~(N +, H-1),  and therefore E(2) is uniformly bound in 
H~oc(N +, H-1). As in Sect. IVA, applying the compactness Theorem 2.2 of Chap. 3 
in [T], for every sequence 2j tending to infinity there is a subsequence (still 
denoted 2~), and ((~, ~ e L ~ ( ~ + ;  L2), E~L®(~ +, H*), and /~oEH 1 such 
that (Q(2), V(2), E(2), VE(2))--,((~, ~',~,V/~) weak-* in U°(N+,L2),E(X)--,E in 
Lfoc(N+,H 1-~) for all p < o% and Eo(2)--*/~ o in H~oS ". 

We can now take this limit 2 ~  oe along a subsequence in (4.16) with qS(a)w (3) 
replaced by an arbitrary function in Cg(N + x Nk). Using the weak-* convergence to 
control the linear terms and the L~'o¢(N+; H a -~) convergence of E(2) and the weak-* 
convergence of Q(2) to control the nonlinear terms we obtain 

~dt~dx[ - iO,E + AOE + 01EI2E - 00.El  = fdx  0(0)E'o. (4.18) 

(We cannot take the limit of the Q or V equations in general, because of the factors of 
,~.) 

Now, if(~ - 0, then by (4.18)/~ is a weak solution of(1.3) with initial data/~0. As 
we shall see below, L°~([0, T], H 1) solutions of (1.3) are unique. Therefore, by (4.8) 
and the above convergence along subsequences, E()~)~ E, the solution of (1.3) with 
initial data/~o, without passing to subsequences. We now conclude the proof of 
Theorem 5 by showing (1) 0. = 0 and (2) L°~(0, T; H ' )  solutions of (1.3) are unique. 

First let A o_= (I - A ) o/2, and define 

R(x, t, X) = f dz I da A -~Q(x, a, 2). (4.19) 
0 0 

(We work with this time-integrated form so that we have sufficient regularity in time 
to derive a differential inequality.) Then we have 

Rtt - 22AR = A -~Qo - 2tA -~V" V o - F(2), (4.20) 

Rl,=o = 0, R,l,=o = 0. (4.21) 

Now, by (4.7) and (2.1a) 

where c is independent of 2. 

H F(2) Ji L ~ (o, T,,~- 1) < c, 

Lemma. Let u be the solution of 

(4.22) 

u,~- 22au=g,  u(x,O)=u,(x,O)=O, 
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where H gIIL~(Eo, r;L~ <_ c. Then, 

sup IIVu(t,2)ltL2=O as 2--, oe. 
ONt<- -T  

Proof. Multiplication of the equation for u by u, implies 

d 
-~[ ]l udt)1]•2 + 2 2 iI Vu(t)lit2] _-< [ ]t u,(t)1122 + 2211Vu(t) 1122] + [I 9(t)lit2. 

The result now follows from Gronwall's inequality. 
Applying the lemma to R(x, t, 2) with s = 2, to satisfy the hypothesis, we have 

t ~ C ( T )  
][ ! d~ Y0 daY Q(a, 2)II H -2 = < 2 (4.23) 

for t~[0, T]. Therefore, for any OeC~(N + x Nk), with time support in some fixed 
[0, T], 

SdtSdx(V'O)Q(2)= SdtSdxlV'O, id~idaQ(a,2) ] 

t 

< T It ~ ]]cZ(~+;nb 1] Sdz ~daVQ(a, 2)IILm([0, T];H-2)~_~ C(T) 

Hence, .[dx~dt(V.t//)Q(2)~O for all such ~0. Now the set {V'¢I¢~C~([R + x ~k) is 
dense in D(~+,L2), so Q(2)~0  weak-* in L°°(~+;L2). 

It remains to prove that solutions to the initial value problem for (1.3) of the same 
regularity as E, are unique. If E~L~(O,T;H t) solves (1.3), then E,=iAE 
+ilEI2EeL°~(R+;H-a). Therefore EeAC(~+,H-1), and by interpolation 
/ ~  C(~ +, H 1 -~). 
Now define F(t) by 

t 

F(t) = e - i a t  E o - -  i ~ e ia( t -¢) l  ~( f f )]2 ~ ( a ) d a .  (4.24) 
0 

F(t) is differentiable with respect to t with values in H -  k/2 - 2 -~ since ]/~] 2/V e D.  Also, 
Ft = - iAF -- i]/~12 j~ and F(0) =/~o. Therefore,/~ - F satisfies the linear Schr6din- 
ger equation with zero initial data and we conclude F -- ~. So ~ satisfies (4.24) with 
the left-hand side equal to/~(t), The local existence theory in [GV] implies that 
C°([0, T];L 4) solutions of (4.24) are unique. Since for e, sufficiently small H ~-~ is 
embedded in L 4, we have uniqueness. 
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Note added in proof. Using techniques similar to those employed in [CP] we have shown that the 
regularity of solutions of the nonlinear Schr6dinger equation controls that of solutions to the Zakharov 
equations in the following sense: 

Theorem. Let T >  0 be arbitrary and ff, o be such that the IVP for the nonlinear Schr6dinger equation (I.3) 
has a solution, ff~, in C1([0, T) x [~k) C~ C1([0, T); C2). Let m > [k/2] + 3. Then, there is a critical value of  
2, 2c, and a constant C > 0 such that under the hypotheses 

(i) Eo(2)~/~ o as 2--* oc strongly in H "+ 1 
(ii) ,~. II V(no(2) + l Eo(2)t 2) il H ~-~ + tl V-f(2)II u ~-~ < C, and 
(iii) 2 > 2¢, 

the IVP for the Zakharov equations has a unique classical solution on the time interval [0, T]. 
- - I l l - -  

This is the analogue of a result ofP. Constantin showing that in three space dimensions, so long as the 
solution of the Euler equations for an ideal fluid are smooth, the solution of the slightly viscous 
incompressible Navier Stokes equations are smooth. 

(See [CP] P. Constanfin, "Note on loss of regularity for solutions of the 3-D incompressible Euler and 
related equations", Commun. Math. Phys. 1986; and [SSH] S. Schochet, "Hyperbolic-Hyperbolic 
Singular Limits", preprint We wish to thank P. Constantin for discussions on this point.) 


