STRONG AND WEAK CONSTRU'CTIVIZATION AND
COMPUTABLE FAMILIES

A. T, Nurtazin UDC 517.15

In this paper we introduce the concept of a computable family of constructive models and we then
study the constructivization of strongly constructivizable model £¢. Sufficient and necessary conditions are
adduced for the nonautostability of {/ with respect to strong constructivizations and for the existence of
weak constructivizations. The possible numbers of strong and weak constructivizations are determined.

§0., DEFINITIONS AND NOTATION

Let 07=<A.6> be a countable model of language & and let G A= 4. We call mapping v of the
set A of natural numbers onto -4 an enumeration of model & while the pair (¢t,v) is called an enumerated
model. If (Cf, v) is an enumerated model then £, is the model obtained from (f by adding to its sig-
nature all the natural numbers which, with this, are then interpreted by means of enumeration v. Enu-
merated model (&, V) is constructive if the set J(cf;) of all atomic, and negations of atomic, assertions
which are true in model &, is a computable set, and is strongly constructive if 74 (¢f,) is computable,
this being the theory of model ¢ iz In these cases, v is called, respectively, a constructivization and a
strong constructivization. A constructivization which is not strong we shall call weak. Constructivizations
v, and J, of model & are auto-equivalent if there exists an automorphism & of model & and a g.r.f (gen-
eral recursive function) £ such that the following diagram is commutative:

JRS

Joo

4 —— o

Let K be some class of constructivizations of model &. Model ¢ is autostable with respect to X if any
two consfructivizations of K are auto-equivalent. Apparently, from the point of view of the theory of con-
structive models, auto-equivalent enumerations should not be considered as distinct, just as, in ordinary
model theory, one does not distinguish isomorphic models.

If we are given an arbitrary class % of constructive models of signature @, we may be interested in
the question of the possibility of specifying this class by means of a single effective process. In this case
% is called computable.

Definition 1. Class # is (strongly) computéble if there exists a g.r.f . f' (z,y) such that, for each
fixed z,, the function { (%5, y) computes (74 (cr,) D[, ), where {Fv) is auto-equivalent to some model
of family &£ and, for each model of %, there exists a corresponding x,. ’ N

This definition can be specialized in various ways. For example, if # is specified effectively and
indexed by the natural numbers, it can then be required that one find effectively from Z, the corresponding
model, and conversely. The usual diagonal argument shows that the class of all constructive models of
given infinite signature is not computable. Certain properties of strongly computable classes are obtained
in the first theorem.
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Everywhere in the sequel, (ffu/) is strongly constructive (s.c.), lu(n)=a 7=7k (1), and £, is a
single-place p.r.f. (partial recursive function) with ordinal number S, while 71‘ s is the portion of it com-
puted up to step Z P Py Pyseer s ... is the GBdel sequence of all assertions of language GUN ; s,

a, & P §, T, and $§ are natural numbers J and 4 are variables; Ty &y and "7"(1,) (nm,g;),and 51&1

are finite sequences of natural numbers, elements of model £/, and variables of identical length; Z: /—p
is the identity mapping.

§1, STRONG CONSTRUCTIVIZATION

The theorem of this section gives a necessary and sufficient condition for the existence of nonauto-
equivalent strong constructivizations of given model .

THEOREM 1. Let (&, ,u) be a strongly constructive model of complete theory 7. Then, the following
conditions are equivalent:

(1) & is not autostable with respect to strong constructivizations;

(2) there does not exist a finite sequence 2, of elements of model & such that & is a simple model
of 7 (a,) and the family of sets of atoms of the Boolean algebras F (7 (a )) is computable;

(3) there exists a strongly computable family of models (DZ, My ) pts), ... whose terms are pair-
wise elementarily constructively nonembeddable in one another;

(4) there does not exist a strongly computable family of models of signa‘iure & containing all the
strong constructivizations of model Z£.

Proof. Evidently, (3) —— (1), (4) — (1), and (1) — (2) &> 7 (2) — 1 (1).

We now prove 11 (2) —=71 (1). For Z, let & be a simple model of 7 (@,) and let the family of sets
of atoms of algebra 7, (T(@,)) be computable. For the proof, it suffices, from two simple models of
T(ﬁa) , %,,and ?Z w1th basic set A, such that (7, ¢) and (7, ,i) are s.c. models, to be able to construct
a general recursive elementary mapping 75' : 7, 991:9?7 Temporarﬂy,we denote by En_r.]L. the atom of algebra
F, (r (Ea)) satisfied by sequence 77 of length # in model 7, (found effectively, by hypothesis). We de-
fine f={ <M, M,>, .00, <My, >, } By Vaught's Theorem [7], f is an isomorphism if, for any
z, [_<ma,...,ﬂzt>] =~ E<”0""ﬂt] 2 By induction we set /7, =min (/V’\jmo, cees Myy_ ) and

Ry = min{n:[my,..., mps), = 1<ty ny ,n3],Y);

Rogey=mint (N N{ny,..., 54 })
and

mzt+’ -— an{m: [(ﬂlﬂ,...,ﬂlzé,f”>],= [<,z0""’ﬂ2t+l>‘]2'

We find r7,; and ’”zﬁ effectively since (ﬂ,,&) and (@,;) are strongly constructive. Obviously, £ maps

!

N onto N. /
We now prove (2) — (3). The steps by 7 we define by an effective process, On step t+1 we
+ . .
construct the finite enumerations ,u:t’ ;'H, and the finite sets 7' ¢ / . 7;t+’ of assertions in the language

GUN . Moreover, for §< 7, in some /Us ordinal numbers are 1abe1ed by the triples <5,,¢ ,,%,....<fn
qt,'l > of the set, ordered by type w, of triples of natural numbers, where ) 749 The process w111 possess
propert1es 1°-8°

1°, The triple <,o,g 2> on step Z can label ‘some /ut and some /ut ordinal numbers.
2% 1 7'=7 () . then pJ is defined on the numbers of = and & "k~ & Trt .

3°. I, on step 7, we have triple <p,g x> then, among the /.z s and /u2 ordinal numbers labeled by
it we can find sequences /7 and 7% such that, for some formula ¢(Z) of language &, there holds
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¢ ' . o
T@(m)e TP , PA)e 7'; and'f::/?z——-/z.

Thus, £, willnot,henceforth, definethe elementary embedding of (Cl, /uf,') in (d,,ug ).

We now fix step 7, enumeration z , and set of assertions 7' = 7' ( m,). Let /( a .
The type of sequence fn‘, in Pt relative to /7 m, is what we call formula ¢"( _-7,1- E&, [ 7' ( ,:r .'r )]]

of language &ua,. If, on step Z, triple <p, g, 'L> is not established while {: is defmed on the numbers

of M, and 7,, where r‘ﬁﬂ' consists of all the /z p ordinal numbers labeled by smaller friples, and assertion

tp(ﬁr'a,ﬁz, ,/M,) is such that
T@)— 3%z [&Tp x,,a;)& ©(2,%,7,)],
we then define the action of 50 on the triple <P g T> in /"F .
1, ¢ establishes in /(P the triple <pg,2> if P=p(m - m,)
7(a,)— IEF, & 7,;@,5,,:?2)& 0(@,,%)]

and

T@)— Iz [&T (2,,%,%)& 19, )]

2, In /U; ,.q’ has no effect on triple <£p5,9,7>, if
. -2
ray—3z,[& 7, @, 1'2)] jzzf&r (@ z,5)496,,%,Z,) .

3. In /u p» ¢ does have an effect on </a,g 7> if 2 does not hold. It is understandable that if (= ,m,,m,)

has an effect on <p,g,25, then _—Zz;z[& T (7, .z Y ¢ (/7 7, :cz)] establishes <p,9,7>, and if ¢ es-
tablishes < p,¢,7> : then too 7 @ establishes < ,o,g,?)

The Inductive Definition. Step Z+7/. For S<% we defme first the enumeration /l‘ ,then /zﬁ"

u u {<ms,a )} where m= min{m:m is not a /” ordinal number}, while Ag=min {/z:aﬂ does not
g
have a /1 s ordinal number}
Let Py = ptm) and <z,‘>: == p . We proceed differently in the following situations:
}

]
1. In Hp» @(m) establishes the triple <p,g,2> on the set of the first £ triples and does not affect

smaller triples;
¢ — %
7("5 m—nand L F ¢ (,u; (m), while pai in /Ig has no effect on any triple less than <p.g,z> .

In this case we set

#4 ? — £ ¢ —
7;, - 7"', U "1 p(mM} and 77+’== Tg v {pm}:

7 . 7/
enumeration /“; on 7, coincides with /u: and on n_zIAﬁiz is such that &% = & 7/',”’ ( ,u; (7)) . Moreover,

all elements of & which, under that renumbering, lose their own /J/f' ordinal numbers are furnished with
, .
new ,u: ordinal numbers. For s# p, we have ,u; = Iu;_

+
All the ,u; " and ,ug #¥ ordinal numbers are labeled by the triple <p,4,7>.

2. k= tp(/u; (7)) and @(7) in /u/f has no effect on any of the first ¢ triples.
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We set

ity 2 —
TP ——-7'/, U {go(m)}.

! i1
3. In any other case, ,u_f = ,u: ' 75 = 7'5, and no new triples are established. The definition is com-

pleted.

tard
Obviously, for any s and 7 we have Tst c 7 s - Weset/ =‘f) 7':. Properties 1°-3° are verified
immediately.

It follows from the inductive definition that in our construction, each element of model ¢} obtains
some /zf—ordinal number and each natural number becomes a /1: ordinal number. More than that,
4°, For any /7, ay,and § there exist step #’, element s and number rm, such that, 7> # ’s

»
e
a/% = H(m,),

¢
As ()
. .
Hy (m) = @, = K(m,).

Indéed, if /”st( m)) # ,U:H( m,) and, on step 7, the /Ifhordinal number of m had not been labeled then,

on step Z+7, it is labeled; if, however, on step I m, had already been labeled then, on step t+7, it is
labeled by a triple less than all the triples labeling it on step Z. Such a situation can arise only a finite

number of times. And, if the /u: - and /.I:H -ordinal numbers of element a, are different, the analogous
- situation supervenes., ’

"5°% TFor each ¢ there exists a step # ¢ Peginning with which new triples from the set {< .90 % > ey
<p,9,.%,>} are not established. '

6° If, on step ?, assertion ¥ establishes in /If, the triple <p,¢,7 >, then on some step ¢ (=%),
there actually arises a triple less than, or equal to, <p, g,%> .

Proof is by induction on the magnitude of the triple <5¢,2> . Indeed, on a sufficiently large step if
we take as @ either assertion ¥ or its negation then case 1 of the induction hypothesis occurs. Otherwise,
on this step we can find an assertion which establishes a strictly smaller triple, and then induction is ap-
plicable,

‘Remark 1. If, on step ?f&- , triple <z..7, z. > is not established while function 701?3 is defined on the
/u;i -ordinal numbers of /'727;, labeled by lesser triples, then on it no assertion can have any effect. Starting
with step iz, sequence /770 ,consists of ,U:',:_ ordinal numbers of one and the same sequence of elements a’a.
1f, for zf/(ZIZ%), function 74': is defined on - /u;; ordinal numbers of a sequence of length k and /7, and
mnm, = @, then the type of /7, with respectto 7, in /U/t” is the atom £, (7(@,)).

7°. If function 7"% is general recursive then, on step 7 T triple <p;,q,, 2, > stands.

The proof is by contradiction.

B t.
We assume that, on step té’ triple ¢ P, 9; 7,> does not label anything, and we let function qﬁZ" be
;] L4 4 i {;
defined on the /LL;; -ordinal numbers of /7, , labeled by smaller triples. Two cases are possible:

a) There exists a sequence of elements of model & &, generating a nonprincipal type over 570 .

By property 4°, from some step ¢’ ( ;z‘(;) a, hasa constant sequence of /u;_ ordinal numbers /7,.and
[2
function 7&’: is defined on the numbers of /7,. By the previous remark, sequence /7, with respect to /7,

4 (4
in u /:; has the definite type ¢¥(Z,,Z,) which must be an atom. We arrive at a contradiction.

b) The family of sets of atoms of algebra 7 (7 (@)) is not computable.
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Let ¢ (7, T,) be an arbitrary, but compatible with 7(@, ), formula of language G v g, which is not
satisfied by sequences containing elements of @,and 7 of length A. By using induction, startmg with step
t , we will know whether (p (Z,,%,) is an atom of algebra Fr (7(@,)). Tn model (¥ there is a sequence of
elements a, such that : '

o= p@,a,)

' _ ¢ _ _ - :
We can find step t’( >ﬁ-) for which g, has a Y P -ordinal number of #,. while 7, and m, enter into

(]
-the domain of def1n1t1on of function 7’-'* By the preceding remark, the type of 7, with respect to 7, in
I
ftp is an atom compatible with go( Thus, continuing the process from step t . we can expect there

to be a step Z on which the type of some sequence of /u.; -ordinal numbers, entering into the domain of
definition of function f , with respect to m in /u; is compatible with formula ¢(Z,,7; ), and we can
compare them. If they comc1de then 50( x ) is an atom of /1;,(7' (aa)) -Thus, the family of sets of atoms
of algebra /'-' (7@, )} is computable. We arrive at another contradiction.

Since, on each step, no more than one trlple can be established then, by 7%, any sequence of /u -or-
dinal numbers for some ¢ is labeled by some triple <p;19;.% >

8%, Let Mo, 1M~ & and = @(@). Then, ¢g(m)e7. We can find step ¢! (%;) such that
/JP (m) = gand @(m)= ¢<£>’ « By definition 5° for step i‘ » @ (/) cannot exert any influence in /u

l
-triple <p;, g, 7>. That is to say that case 2 of the inductive definition holds, and ¢(/m) e 7' T .

It follows from property 4° that all the /[P are enumerations of model &. They are strongly con-

structive, by virtue of 8°. It follows from 7° that all the models (¢, Ho)s ool ,,up),... are pairwise elemen-
tarily constructively nonembeddable in one another.

(2) — (4). Proof is by contradiction.

Let there be a strongly computable family containing all the strong constructivizations of model &.
The inductive process of the proof of (2) —~ (3) can be so defined that for /0740 the strong constructiviza-
tions of our family are computed. Then, for pP=0, we compute the strong constructivization of model & ,
which is not equivalent to any of the constructivizations of this family. Theorem 1 is proven.

COROLIARY 1. Strongly constructivizable model & is autostable with respect to strong constructivi-
zations if and only if, for some sequence & of elements of &, the system & is a simple model 74(&,a&)
and the family of sets of atoms of algebra #, (74 (¢V,&)) is computable.

Example 1. Tf £ is saturated over finite sets, /% (£I)is not a K, -category, and & is strongly con-
structivizable, then (¥ has infinitely many strong constructivizations.

Example 1' [6]. A denumerable unsaturated model decidable by /( 1 K -categorical theory has in-
finitely many strong constructivizations,

Example 1" (A. I, Mal'tsev [4]). A complete torsion-free Abelian group of finite rank is autostable,
while an infinite one is not autostable.

Example 2 (E, A, Palyutin, M. G, Peretyat'kin), If 7 is decidable and K, categorical,then the family
of sets of atoms of algebra #,(7) is not computable if and only if function # (/7) lF (7)! is not general
recursive, Examples of such theories were independently constructed by E. A, Palyutin and M. G, Peret-
yat'kin, By Theorem 1, denumerable models of these theories admit infinitely many strong constructivi-
zations.

§2. WEAK CONSTRUCTIVIZATION

It is known [1] that a constructive model of a complete model— complete demdable theory is strongly
constructive.

LEMMA 1, If, for some finite sequence &, of elements of &, theory 74 (&, @, ) is decidable and, for
an arbitrary sequence a,, any formula v(a,, ) wh1ch holds on z, follows from some .7-formula ;ﬂ(g
which holds on Z,, then each constructivization v of model ¢¢ will be strong.

181



Proof. It suffices for us to know whether, for arbitrary formula 47@;.1':'1 ) and sequence of numbers
A4 I=tp(€7;; ¥(/,)) 1is true or not. By virtue of the constructiveness of enumeration y we can effect_ively
enumerate all J-formulas of theory T(b; ) which hold on sequence V(iﬁ, ). By using the decidability of
7(@,)+ we can also effectively enumerate all their consequences among which, by hypothesis, there neces-
sarily occurs either ¢(g,Z,) or 1¢9(Z,Z,). This gives a decision procedure for Th(A,),

THEOREM 2, For strongly constructive model (¢, Iu) the following conditions are equivalent:
(1) & has a weak constructivization; '
{2) 00 does not satisfy the conditions of Lemma 1;

(3) there exists a denumerable computable family of weakly constructive models (&t,s o D ,(a,v ).
terms of which are pairwise elementarily constructively nonembeddable in one another.

Proof. (3) —- (1). Obvious. (1) — (2). Weassumethecontraryanduse Lemmal, (1) — (3). By
inductionon 7 we define an effective process duringwhich, on eachstep 7 , there are defined finite enumerations
of model £t uf, . v: ,.sandthe correspondingdiagramsﬂz 17:, , L.e.,if @(/7) iseither an atomic,
or the negation of an atomic, assertion of language & u N, then @) 6_7 === the numbers of 7 are

V ordinal numbers and & k= <p( Y (m)) By type @ we order the set of all pairs <pz> and triples <p9,2>
(,o;ég ) of the natural numbers and put them into a one-to-one correspondence with the marks &l < ... < Zl<...
The process to be defined will possess properties 1°-6°, '

E2 s
1°. For any § and 7, it is true that 2 S0/ A
2°, On step 7, the mark corresponding to the pair <p,z>, can label some }’t ordinal number. In

this case, we can find an assertion of language GUN P (77, such that all the numbers of /77 are labeled
by this mark, 70 (x) = 0, but :

= 150(;;f(ﬁ)).

Thus, function #, will not be the characteristic function of. 7%(&;, ), if v, on m coincides with

t
VP .
3% On step 7, the mark corresponding to triple <,a,y z> may (and only simultaneously) label some

)I/a and Vg ordinal numbers. In this case, among the vp and V ordinal numbers labeled by it, one can

find sequences 7 and 7 and formula () of language © such that

¢
701. P f_"-i

&= 1¢(V:(sz);
A= g (3} m).

- That is, functlon 7" will not defme an elementary embedding of model (&,V,) in a, vg). if ¥, and Vg on
m and 7T commde with vt and v%

2’
Inductive deflmtlon. Step 0. _For any S, it is true that V: -— ¢ and ._/?:= ¢ .

: 4 th ot
Step £+/ . For any $#<%¢> = £ we have Yst+/=},5t and 7, = 4.

tt/

+ . ’ :
Before defining enumeration »)t ! and placing the marks, we adopt enumeration \}f’ . Then, \io =

P . ‘ !
Vﬁ/ v {<m;,,t7,,a>} , where sm=min]| m: m is not a g’ ordinal number} and 7, =maz { 2 : a, does not have ﬂ*_
# N
ordinal number}, while Z)," corresponds to yE7. if the mark <£>’| is not placed on step ¢, all the vt

P

ordinal numbers labeled by smaller marks enter into /7, and fo m,—>aq,; ._7 = D(7, m,),

¢<t> =
) 3
pim,m), BE= @ ( {: (7, Am,) and with 7(Z,) the following formula is compatlble:
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19@.%)&BD@E,T)]

we then verify the following condition:

corresponds to the pair <p,2>

A. Mark |<é>!

z
and
z 1
L f, &E>)) =0
or
z
2. 7, (< 645+ 0.
: . t_
B. Mark |<#> | corresponds to the triple <0923, Fp: mpm TP,
and ’
A=
1. &= ;a(v52 (7} 7,)
or

2. Q= 197 (AT, ,

If A, 1 or B, 1 holds, then enumeration ;jpt on /7, coincides with th and on /7, is such that

/ /
A= 290y (mr a8 L&D () Ml

Moreover, all the elements of &/ which, as the result of such an enumeration, lose their own v; ordinal

a2l
numbers, are equipped with new V; ordinal numbers.

All the vp’“’ ordinal numbers in case A, and all the VP g

labeled by the marks l _<_2:‘_>; ‘. and all larger marks are taken down. In all other cases, ‘jot’= v/g, and all
marks remain in their previous locations. This completes the definition.

t+y Al . .
and v ordinal numbers in case B, are

Properties 1°-3° follow immediately from the inductive definition. Properties 4* and 5° are com-
pletely analogous to the properties from the proof of Theorem 1.

7/
4°, For any natural numbers T3 s and o, we can find a sufficiently remote step 4 , and numbers
7, and /m,, such that, for any 7>Z, '

(4
¢ ) — g =y
Vo (m,) = vf', (m,) = oﬂﬂﬁ /,(/770)
and
¢ ¢
v, (m) = Y (m)=a, = Yy ().

7

5° For any &, we can find step ?fb- on which all the marks [g ,..., [£=7], [{] are stabilized.

6°. Let mark ¢ correspond to a) pair <p,z>, b) triple <p,¢,t>, and let 74'2 be general recursive.
Then, on step z‘b. mark will stand. We assume that, on step ib. , mark [Z) nowhere appears, and let

7, be the u pt‘ ordinal number labeled on step 7; by marks less than [Z] . It is understandable that, when

¢, _ R —
4 >tz}’ it is true that \}/, (77,) = Y,(rm, )=, By hypothesis, we can find a formaula ¥(,,Z,), compatible with
7(@,) , and a sequence &,of elements of model (¢ such that ¢(7,,7;) is true on &, and does not follow -
from any of the .F-formulas which are true on Z,. For some sufficiently remote step Zf/('> z‘é} and sequence

of natural numbers r?, , we have
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VPI: /‘TTl_‘"'Zi;l
<t =p;

and
4 _
<z,‘>,

14
By virtue of the general recursweness of function 7" we can also assume that, in case a), f: is defined
on <f> and, in case b), that f‘ is so defined: A 77— N 7z, and all the numbers of AT, are y;

ordinal numbers. By the inductive definition of step Zt/, mark [£] must stand on step # 4/. We have
arrived at a contradiction.

Finally, it follows from property 4° that, for any o, a ) -enumeration of model & is constructive

by virtue of 1°. It follows from property 6° that all the models (¢, V)@, ),),-.. -are weakly constructive
and pairwise are elementarily constructively nonembeddable in one another Theorem 2 is proven.

COROLLARY 2. Weakly constructivizable model (¥ does not have weak constructivizations if and
only if there exists a finite sequence Z, of elements of { such that, for any a, and @(&,,7;), if O =
¢(a,,@,) then there exists an 7-formula Y (@,,T,) such that & = ¢ (@,,q,) and 7 (2,2,) l-—l/( Q,,Z,) —>
(a,, f ).

Example 3. If, in the foregoing corollary, 74 (&,a, a,) 1s K,-categorial, it then turns out fo be model
complete.

Example 4. In [5] there was constructed a model whose theory is categorial in all cardinalities. It
can be verified that it is autostable with respect to strong constructivizations but, by the previous example,
has infinitely many weak ones. :
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